Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ pipeline_tag: fill-mask
|
|
12 |
[](https://huggingface.co/datasets/jhu-clsp)
|
13 |
[](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)
|
14 |
|
15 |
-
> π― **TL;DR**: State-of-the-art paired encoder and decoder models (17M-1B params) trained identically for fair comparison. First open replication of ModernBERT recipe.
|
16 |
|
17 |
π [Paper (Coming Soon)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) | π [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)
|
18 |
|
@@ -202,30 +202,9 @@ This checkpoint availability enables detailed analysis of training dynamics, los
|
|
202 |
|
203 |
## Usage Examples
|
204 |
|
205 |
-
### Encoder: Text Classification & Embeddings
|
206 |
-
|
207 |
-
```python
|
208 |
-
from transformers import AutoTokenizer, AutoModel
|
209 |
-
import torch
|
210 |
-
|
211 |
-
# Load model and tokenizer
|
212 |
-
tokenizer = AutoTokenizer.from_pretrained("jhu-clsp/ettin-encoder-150m")
|
213 |
-
model = AutoModel.from_pretrained("jhu-clsp/ettin-encoder-150m")
|
214 |
-
|
215 |
-
def get_embeddings(text):
|
216 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
217 |
-
with torch.no_grad():
|
218 |
-
outputs = model(**inputs)
|
219 |
-
# Use [CLS] token representation
|
220 |
-
return outputs.last_hidden_state[:, 0, :]
|
221 |
-
|
222 |
-
# Example usage
|
223 |
-
text = "This movie is absolutely fantastic!"
|
224 |
-
embeddings = get_embeddings(text)
|
225 |
-
print(f"Embedding shape: {embeddings.shape}")
|
226 |
-
```
|
227 |
-
|
228 |
### Encoder: Masked Language Modeling
|
|
|
|
|
229 |
|
230 |
```python
|
231 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
@@ -254,8 +233,13 @@ predictions = predict_masked_token(masked_text)
|
|
254 |
print(f"Predictions: {predictions}")
|
255 |
```
|
256 |
|
|
|
|
|
257 |
### Decoder: Text Generation
|
258 |
|
|
|
|
|
|
|
259 |
```python
|
260 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
261 |
import torch
|
@@ -289,21 +273,8 @@ generated = generate_text(prompt)
|
|
289 |
print(generated)
|
290 |
```
|
291 |
|
292 |
-
|
293 |
|
294 |
-
```python
|
295 |
-
# Example: Few-shot sentiment classification
|
296 |
-
prompt = '''
|
297 |
-
Examples:
|
298 |
-
Text: "I love this movie!" Sentiment: Positive
|
299 |
-
Text: "This is terrible." Sentiment: Negative
|
300 |
-
Text: "It was okay." Sentiment: Neutral
|
301 |
-
|
302 |
-
Text: "Absolutely amazing film!" Sentiment:'''
|
303 |
-
|
304 |
-
result = generate_text(prompt, max_length=len(tokenizer.encode(prompt)) + 10)
|
305 |
-
print(result)
|
306 |
-
```
|
307 |
|
308 |
## π¬ Research Applications
|
309 |
|
|
|
12 |
[](https://huggingface.co/datasets/jhu-clsp)
|
13 |
[](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)
|
14 |
|
15 |
+
> π― **TL;DR**: State-of-the-art paired encoder and decoder models (17M-1B params) trained identically for fair comparison. First open replication of ModernBERT recipe. Decoder version beats Llama 3.2.
|
16 |
|
17 |
π [Paper (Coming Soon)](https://github.com/jhu-clsp/ettin-encoder-vs-decoder) | π [GitHub Repository](https://github.com/jhu-clsp/ettin-encoder-vs-decoder)
|
18 |
|
|
|
202 |
|
203 |
## Usage Examples
|
204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
### Encoder: Masked Language Modeling
|
206 |
+
<details>
|
207 |
+
<summary>Click to expand <strong>encoder</strong> usage examples</summary>
|
208 |
|
209 |
```python
|
210 |
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
|
|
233 |
print(f"Predictions: {predictions}")
|
234 |
```
|
235 |
|
236 |
+
</details>
|
237 |
+
|
238 |
### Decoder: Text Generation
|
239 |
|
240 |
+
<details>
|
241 |
+
<summary>Click to expand <strong>decoder text generation</strong></summary>
|
242 |
+
|
243 |
```python
|
244 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
245 |
import torch
|
|
|
273 |
print(generated)
|
274 |
```
|
275 |
|
276 |
+
</details>
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
## π¬ Research Applications
|
280 |
|