jimmeylove commited on
Commit
426289b
·
verified ·
1 Parent(s): 6d88f45

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +58 -182
README.md CHANGED
@@ -1,202 +1,78 @@
1
  ---
2
- base_model: meta-llama/Llama-3.2-1B-Instruct
3
- library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
 
 
 
18
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
1
  ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - llama-3.2
6
+ - sarcasm
7
+ - reddit
8
+ - peft
9
+ - lora
10
+ datasets:
11
+ - custom
12
  ---
13
 
14
+ # Sarcastic Reddit AI - Fine-tuned Llama 3.2 1B Model
15
 
16
+ This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) that has been trained to generate sarcastic Reddit-style responses. It was fine-tuned using LoRA (Low-Rank Adaptation) to maintain the base model's capabilities while specializing in sarcastic responses.
17
 
18
+ ## Model Description
19
 
20
+ - **Base Model**: meta-llama/Llama-3.2-1B-Instruct
21
+ - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
22
+ - **Training Data**: Custom dataset of Reddit-style sarcastic responses
23
+ - **Special Capabilities**:
24
+ - Generates consistently sarcastic responses regardless of input format
25
+ - Works with both questions and statements
26
+ - Produces complete responses that finish naturally
27
 
28
+ ## Intended Use
29
 
30
+ This model is intended for generating sarcastic responses in a Reddit style. It can be used for:
31
+ - Entertainment purposes
32
+ - Creative writing assistance
33
+ - Chatbot applications requiring a sarcastic personality
34
 
35
+ ## Usage
36
 
37
+ ```python
38
+ from peft import PeftModel
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+ import torch
41
 
42
+ model_name = "jimmeylove/week6Mli"
43
+ base_model = "meta-llama/Llama-3.2-1B-Instruct"
44
 
45
+ # Load base model
46
+ base_model = AutoModelForCausalLM.from_pretrained(base_model)
47
+ model = PeftModel.from_pretrained(base_model, model_name)
48
+ tokenizer = AutoTokenizer.from_pretrained(base_model)
 
 
 
49
 
50
+ # Format prompt
51
+ prompt = "On Reddit, someone asked: How do birds fly?\n\nA sarcastic Redditor replied:"
52
 
53
+ # Generate response
54
+ inputs = tokenizer(prompt, return_tensors="pt")
55
+ outputs = model.generate(
56
+ input_ids=inputs.input_ids,
57
+ attention_mask=inputs.attention_mask,
58
+ max_new_tokens=1000,
59
+ temperature=1.5,
60
+ top_p=0.95,
61
+ do_sample=True,
62
+ )
63
 
64
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
65
+ ```
 
66
 
67
+ ## Limitations
68
 
69
+ - The model may occasionally generate non-sarcastic responses
70
+ - As with all language models, it may produce inappropriate content
71
+ - The model inherits biases from its training data and base model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
  ## Training Details
74
 
75
+ The model was fine-tuned using the following parameters:
76
+ - LoRA rank: 8
77
+ - Target modules: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
78
+ - Training data: 3000 examples of sarcastic Reddit responses