Commit
·
440a9f4
1
Parent(s):
b8b8f72
fix: sentence-transformers port
Browse files- custom_st.py +108 -124
- modules.json +4 -4
custom_st.py
CHANGED
|
@@ -12,168 +12,147 @@ from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenize
|
|
| 12 |
|
| 13 |
|
| 14 |
class Transformer(nn.Module):
|
| 15 |
-
"""Huggingface AutoModel to generate token embeddings.
|
| 16 |
-
Loads the correct class, e.g. BERT / RoBERTa etc.
|
| 17 |
-
|
| 18 |
-
Args:
|
| 19 |
-
model_name_or_path: Huggingface models name
|
| 20 |
-
(https://huggingface.co/models)
|
| 21 |
-
max_seq_length: Truncate any inputs longer than max_seq_length
|
| 22 |
-
model_args: Keyword arguments passed to the Huggingface
|
| 23 |
-
Transformers model
|
| 24 |
-
tokenizer_args: Keyword arguments passed to the Huggingface
|
| 25 |
-
Transformers tokenizer
|
| 26 |
-
config_args: Keyword arguments passed to the Huggingface
|
| 27 |
-
Transformers config
|
| 28 |
-
cache_dir: Cache dir for Huggingface Transformers to store/load
|
| 29 |
-
models
|
| 30 |
-
do_lower_case: If true, lowercases the input (independent if the
|
| 31 |
-
model is cased or not)
|
| 32 |
-
tokenizer_name_or_path: Name or path of the tokenizer. When
|
| 33 |
-
None, then model_name_or_path is used
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
def __init__(
|
| 37 |
self,
|
| 38 |
model_name_or_path: str,
|
|
|
|
|
|
|
| 39 |
max_seq_length: Optional[int] = None,
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
do_lower_case: bool = False,
|
| 45 |
-
tokenizer_name_or_path: str = None,
|
| 46 |
) -> None:
|
| 47 |
super(Transformer, self).__init__()
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
config = AutoConfig.from_pretrained(
|
| 58 |
-
model_name_or_path, **config_args, cache_dir=cache_dir
|
| 59 |
-
)
|
| 60 |
-
self.jina_clip = AutoModel.from_pretrained(
|
| 61 |
-
model_name_or_path, config=config, cache_dir=cache_dir, **model_args
|
| 62 |
)
|
| 63 |
-
if max_seq_length is not None and
|
| 64 |
-
|
|
|
|
| 65 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
if tokenizer_name_or_path is not None
|
| 69 |
-
else model_name_or_path
|
| 70 |
-
),
|
| 71 |
-
cache_dir=cache_dir,
|
| 72 |
-
**tokenizer_args,
|
| 73 |
)
|
| 74 |
-
self.
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
if tokenizer_name_or_path is not None
|
| 78 |
-
else model_name_or_path
|
| 79 |
-
),
|
| 80 |
-
cache_dir=cache_dir,
|
| 81 |
-
**tokenizer_args,
|
| 82 |
)
|
| 83 |
|
| 84 |
# No max_seq_length set. Try to infer from model
|
| 85 |
if max_seq_length is None:
|
| 86 |
if (
|
| 87 |
-
hasattr(self.
|
| 88 |
-
and hasattr(self.
|
| 89 |
-
and hasattr(self.tokenizer,
|
| 90 |
):
|
| 91 |
max_seq_length = min(
|
| 92 |
-
self.
|
| 93 |
self.tokenizer.model_max_length,
|
| 94 |
)
|
| 95 |
-
|
| 96 |
self.max_seq_length = max_seq_length
|
| 97 |
-
|
| 98 |
if tokenizer_name_or_path is not None:
|
| 99 |
-
self.
|
| 100 |
-
|
| 101 |
-
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 102 |
-
"""Returns token_embeddings, cls_token"""
|
| 103 |
-
if 'input_ids' in features:
|
| 104 |
-
embedding = self.jina_clip.get_text_features(
|
| 105 |
-
input_ids=features['input_ids']
|
| 106 |
-
)
|
| 107 |
-
else:
|
| 108 |
-
embedding = self.jina_clip.get_image_features(
|
| 109 |
-
pixel_values=features['pixel_values']
|
| 110 |
-
)
|
| 111 |
-
return {'sentence_embedding': embedding}
|
| 112 |
-
|
| 113 |
-
def get_word_embedding_dimension(self) -> int:
|
| 114 |
-
return self.config.text_config.embed_dim
|
| 115 |
|
| 116 |
@staticmethod
|
| 117 |
-
def
|
| 118 |
-
header, data = data_image_str.split(
|
| 119 |
image_data = base64.b64decode(data)
|
| 120 |
return Image.open(BytesIO(image_data))
|
| 121 |
|
| 122 |
def tokenize(
|
| 123 |
-
self,
|
| 124 |
) -> Dict[str, torch.Tensor]:
|
| 125 |
-
"""
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
if isinstance(sample, str):
|
| 130 |
-
if sample.startswith(
|
| 131 |
response = requests.get(sample)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
else:
|
| 136 |
try:
|
| 137 |
-
|
|
|
|
| 138 |
except Exception as e:
|
| 139 |
_ = str(e)
|
| 140 |
-
|
|
|
|
| 141 |
elif isinstance(sample, Image.Image):
|
| 142 |
-
|
|
|
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
if texts:
|
| 148 |
-
return self.tokenizer(
|
| 149 |
texts,
|
| 150 |
padding=padding,
|
| 151 |
-
truncation=
|
| 152 |
-
return_tensors=
|
| 153 |
max_length=self.max_seq_length,
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 160 |
-
self.
|
| 161 |
-
output_path, safe_serialization=safe_serialization
|
| 162 |
-
)
|
| 163 |
self.tokenizer.save_pretrained(output_path)
|
| 164 |
-
self.
|
| 165 |
|
| 166 |
@staticmethod
|
| 167 |
-
def load(input_path: str) ->
|
| 168 |
# Old classes used other config names than 'sentence_bert_config.json'
|
| 169 |
for config_name in [
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
]:
|
| 178 |
sbert_config_path = os.path.join(input_path, config_name)
|
| 179 |
if os.path.exists(sbert_config_path):
|
|
@@ -183,14 +162,19 @@ class Transformer(nn.Module):
|
|
| 183 |
config = json.load(fIn)
|
| 184 |
|
| 185 |
# Don't allow configs to set trust_remote_code
|
| 186 |
-
if
|
| 187 |
-
config[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
if (
|
| 189 |
-
|
| 190 |
-
and
|
| 191 |
):
|
| 192 |
-
config[
|
| 193 |
-
if 'config_args' in config and 'trust_remote_code' in config['config_args']:
|
| 194 |
-
config['config_args'].pop('trust_remote_code')
|
| 195 |
|
| 196 |
return Transformer(model_name_or_path=input_path, **config)
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
class Transformer(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
def __init__(
|
| 16 |
self,
|
| 17 |
model_name_or_path: str,
|
| 18 |
+
tokenizer_name_or_path: Optional[str] = None,
|
| 19 |
+
image_processor_name_or_path: Optional[str] = None,
|
| 20 |
max_seq_length: Optional[int] = None,
|
| 21 |
+
config_kwargs: Optional[Dict[str, Any]] = None,
|
| 22 |
+
model_kwargs: Optional[Dict[str, Any]] = None,
|
| 23 |
+
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
| 24 |
+
image_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
|
|
|
|
|
| 25 |
) -> None:
|
| 26 |
super(Transformer, self).__init__()
|
| 27 |
+
|
| 28 |
+
config_kwargs = config_kwargs or {}
|
| 29 |
+
model_kwargs = model_kwargs or {}
|
| 30 |
+
tokenizer_kwargs = tokenizer_kwargs or {}
|
| 31 |
+
image_processor_kwargs = image_processor_kwargs or {}
|
| 32 |
+
|
| 33 |
+
config = AutoConfig.from_pretrained(model_name_or_path, **config_kwargs)
|
| 34 |
+
self.model = AutoModel.from_pretrained(
|
| 35 |
+
model_name_or_path, config=config, **model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
+
if max_seq_length is not None and "model_max_length" not in tokenizer_kwargs:
|
| 38 |
+
tokenizer_kwargs["model_max_length"] = max_seq_length
|
| 39 |
+
|
| 40 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 41 |
+
tokenizer_name_or_path or model_name_or_path,
|
| 42 |
+
**tokenizer_kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
+
self.image_processor = AutoImageProcessor.from_pretrained(
|
| 45 |
+
image_processor_name_or_path or model_name_or_path,
|
| 46 |
+
**image_processor_kwargs,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
# No max_seq_length set. Try to infer from model
|
| 50 |
if max_seq_length is None:
|
| 51 |
if (
|
| 52 |
+
hasattr(self.model, "config")
|
| 53 |
+
and hasattr(self.model.config, "max_position_embeddings")
|
| 54 |
+
and hasattr(self.tokenizer, "model_max_length")
|
| 55 |
):
|
| 56 |
max_seq_length = min(
|
| 57 |
+
self.model.config.max_position_embeddings,
|
| 58 |
self.tokenizer.model_max_length,
|
| 59 |
)
|
|
|
|
| 60 |
self.max_seq_length = max_seq_length
|
|
|
|
| 61 |
if tokenizer_name_or_path is not None:
|
| 62 |
+
self.model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
@staticmethod
|
| 65 |
+
def _decode_data_image(data_image_str: str) -> Image.Image:
|
| 66 |
+
header, data = data_image_str.split(",", 1)
|
| 67 |
image_data = base64.b64decode(data)
|
| 68 |
return Image.open(BytesIO(image_data))
|
| 69 |
|
| 70 |
def tokenize(
|
| 71 |
+
self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True
|
| 72 |
) -> Dict[str, torch.Tensor]:
|
| 73 |
+
"""
|
| 74 |
+
Encodes input samples. Text samples are tokenized. Image URLs, image data
|
| 75 |
+
buffers and PIL images are passed through the image processor.
|
| 76 |
+
"""
|
| 77 |
+
_images = []
|
| 78 |
+
_texts = []
|
| 79 |
+
_image_or_text_descriptors = []
|
| 80 |
+
for sample in texts:
|
| 81 |
if isinstance(sample, str):
|
| 82 |
+
if sample.startswith("http"):
|
| 83 |
response = requests.get(sample)
|
| 84 |
+
_images.append(Image.open(BytesIO(response.content)).convert("RGB"))
|
| 85 |
+
_image_or_text_descriptors.append(0)
|
| 86 |
+
elif sample.startswith("data:image/"):
|
| 87 |
+
_images.append(self._decode_data_image(sample).convert("RGB"))
|
| 88 |
+
_image_or_text_descriptors.append(0)
|
| 89 |
else:
|
| 90 |
try:
|
| 91 |
+
_images.append(Image.open(sample).convert("RGB"))
|
| 92 |
+
_image_or_text_descriptors.append(0)
|
| 93 |
except Exception as e:
|
| 94 |
_ = str(e)
|
| 95 |
+
_texts.append(sample)
|
| 96 |
+
_image_or_text_descriptors.append(1)
|
| 97 |
elif isinstance(sample, Image.Image):
|
| 98 |
+
_images.append(sample.convert("RGB"))
|
| 99 |
+
_image_or_text_descriptors.append(0)
|
| 100 |
|
| 101 |
+
encoding = {}
|
| 102 |
+
if len(_texts):
|
| 103 |
+
encoding["input_ids"] = self.tokenizer(
|
|
|
|
|
|
|
| 104 |
texts,
|
| 105 |
padding=padding,
|
| 106 |
+
truncation="longest_first",
|
| 107 |
+
return_tensors="pt",
|
| 108 |
max_length=self.max_seq_length,
|
| 109 |
+
).input_ids
|
| 110 |
+
|
| 111 |
+
if len(_images):
|
| 112 |
+
encoding["pixel_values"] = self.image_processor(
|
| 113 |
+
_images, return_tensors="pt"
|
| 114 |
+
).pixel_values
|
| 115 |
+
|
| 116 |
+
encoding["image_text_info"] = _image_or_text_descriptors
|
| 117 |
+
return encoding
|
| 118 |
+
|
| 119 |
+
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
| 120 |
+
image_embeddings = []
|
| 121 |
+
text_embeddings = []
|
| 122 |
+
|
| 123 |
+
if "pixel_values" in features:
|
| 124 |
+
image_embeddings = self.model.get_image_features(features["pixel_values"])
|
| 125 |
+
if "input_ids" in features:
|
| 126 |
+
text_embeddings = self.model.get_text_features(features["input_ids"])
|
| 127 |
+
|
| 128 |
+
sentence_embedding = []
|
| 129 |
+
image_features = iter(image_embeddings)
|
| 130 |
+
text_features = iter(text_embeddings)
|
| 131 |
+
for _, _input_type in enumerate(features["image_text_info"]):
|
| 132 |
+
if _input_type == 0:
|
| 133 |
+
sentence_embedding.append(next(image_features))
|
| 134 |
+
else:
|
| 135 |
+
sentence_embedding.append(next(text_features))
|
| 136 |
+
|
| 137 |
+
features["sentence_embedding"] = torch.stack(sentence_embedding).float()
|
| 138 |
+
return features
|
| 139 |
|
| 140 |
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
| 141 |
+
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
|
|
|
|
|
|
| 142 |
self.tokenizer.save_pretrained(output_path)
|
| 143 |
+
self.image_processor.save_pretrained(output_path)
|
| 144 |
|
| 145 |
@staticmethod
|
| 146 |
+
def load(input_path: str) -> "Transformer":
|
| 147 |
# Old classes used other config names than 'sentence_bert_config.json'
|
| 148 |
for config_name in [
|
| 149 |
+
"sentence_bert_config.json",
|
| 150 |
+
"sentence_roberta_config.json",
|
| 151 |
+
"sentence_distilbert_config.json",
|
| 152 |
+
"sentence_camembert_config.json",
|
| 153 |
+
"sentence_albert_config.json",
|
| 154 |
+
"sentence_xlm-roberta_config.json",
|
| 155 |
+
"sentence_xlnet_config.json",
|
| 156 |
]:
|
| 157 |
sbert_config_path = os.path.join(input_path, config_name)
|
| 158 |
if os.path.exists(sbert_config_path):
|
|
|
|
| 162 |
config = json.load(fIn)
|
| 163 |
|
| 164 |
# Don't allow configs to set trust_remote_code
|
| 165 |
+
if "config_kwargs" in config and "trust_remote_code" in config["config_kwargs"]:
|
| 166 |
+
config["config_kwargs"].pop("trust_remote_code")
|
| 167 |
+
if "model_kwargs" in config and "trust_remote_code" in config["model_kwargs"]:
|
| 168 |
+
config["model_kwargs"].pop("trust_remote_code")
|
| 169 |
+
if (
|
| 170 |
+
"tokenizer_kwargs" in config
|
| 171 |
+
and "trust_remote_code" in config["tokenizer_kwargs"]
|
| 172 |
+
):
|
| 173 |
+
config["tokenizer_kwargs"].pop("trust_remote_code")
|
| 174 |
if (
|
| 175 |
+
"image_processor_kwargs" in config
|
| 176 |
+
and "trust_remote_code" in config["image_processor_kwargs"]
|
| 177 |
):
|
| 178 |
+
config["image_processor_kwargs"].pop("trust_remote_code")
|
|
|
|
|
|
|
| 179 |
|
| 180 |
return Transformer(model_name_or_path=input_path, **config)
|
modules.json
CHANGED
|
@@ -1,14 +1,14 @@
|
|
| 1 |
[
|
| 2 |
{
|
| 3 |
"idx": 0,
|
| 4 |
-
"name": "
|
| 5 |
"path": "",
|
| 6 |
"type": "custom_st.Transformer"
|
| 7 |
},
|
| 8 |
{
|
| 9 |
-
"idx":
|
| 10 |
-
"name": "
|
| 11 |
-
"path": "
|
| 12 |
"type": "sentence_transformers.models.Normalize"
|
| 13 |
}
|
| 14 |
]
|
|
|
|
| 1 |
[
|
| 2 |
{
|
| 3 |
"idx": 0,
|
| 4 |
+
"name": "transformer",
|
| 5 |
"path": "",
|
| 6 |
"type": "custom_st.Transformer"
|
| 7 |
},
|
| 8 |
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "normalizer",
|
| 11 |
+
"path": "1_Normalize",
|
| 12 |
"type": "sentence_transformers.models.Normalize"
|
| 13 |
}
|
| 14 |
]
|