refactor-image-processing (#16)
Browse files- refactor: support urls, fast processor, flash attn check (9624180b21e596eb410896719e1c1708aaed343c)
- refactor: image loading in st wrapper (9ef2e43d97b27bc27da6b71bc68d6160d317da20)
- custom_st.py +80 -42
- modeling_jina_embeddings_v4.py +41 -15
- tokenizer_config.json +1 -1
custom_st.py
CHANGED
|
@@ -1,32 +1,34 @@
|
|
|
|
|
|
|
|
| 1 |
from typing import Any, Dict, List, Literal, Optional, Union
|
| 2 |
|
|
|
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
from torch import nn
|
| 6 |
-
from transformers import AutoConfig,
|
| 7 |
|
| 8 |
|
| 9 |
class Transformer(nn.Module):
|
| 10 |
|
| 11 |
save_in_root: bool = True
|
| 12 |
-
|
| 13 |
def __init__(
|
| 14 |
self,
|
| 15 |
-
model_name_or_path: str =
|
| 16 |
max_seq_length: Optional[int] = None,
|
| 17 |
config_args: Optional[Dict[str, Any]] = None,
|
| 18 |
model_args: Optional[Dict[str, Any]] = None,
|
| 19 |
tokenizer_args: Optional[Dict[str, Any]] = None,
|
| 20 |
cache_dir: Optional[str] = None,
|
| 21 |
-
backend: Literal[
|
| 22 |
**kwargs,
|
| 23 |
) -> None:
|
| 24 |
super(Transformer, self).__init__()
|
| 25 |
-
if backend !=
|
| 26 |
raise ValueError(
|
| 27 |
-
f
|
| 28 |
)
|
| 29 |
-
|
| 30 |
config_kwargs = config_args or {}
|
| 31 |
model_kwargs = model_args or {}
|
| 32 |
tokenizer_kwargs = tokenizer_args or {}
|
|
@@ -34,9 +36,11 @@ class Transformer(nn.Module):
|
|
| 34 |
self.config = AutoConfig.from_pretrained(
|
| 35 |
model_name_or_path, cache_dir=cache_dir, **config_kwargs
|
| 36 |
)
|
| 37 |
-
self.default_task = model_args.pop(
|
| 38 |
if self.default_task and self.default_task not in self.config.task_names:
|
| 39 |
-
raise ValueError(
|
|
|
|
|
|
|
| 40 |
|
| 41 |
self.model = AutoModel.from_pretrained(
|
| 42 |
model_name_or_path, config=self.config, cache_dir=cache_dir, **model_kwargs
|
|
@@ -45,6 +49,7 @@ class Transformer(nn.Module):
|
|
| 45 |
self.processor = AutoProcessor.from_pretrained(
|
| 46 |
model_name_or_path,
|
| 47 |
cache_dir=cache_dir,
|
|
|
|
| 48 |
**tokenizer_kwargs,
|
| 49 |
)
|
| 50 |
self.max_seq_length = max_seq_length or 8192
|
|
@@ -55,33 +60,52 @@ class Transformer(nn.Module):
|
|
| 55 |
encoding = {}
|
| 56 |
text_indices = []
|
| 57 |
image_indices = []
|
| 58 |
-
|
| 59 |
for i, text in enumerate(texts):
|
| 60 |
if isinstance(text, str):
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
elif isinstance(text, Image.Image):
|
| 63 |
image_indices.append(i)
|
| 64 |
else:
|
| 65 |
-
raise ValueError(f
|
| 66 |
-
|
| 67 |
if text_indices:
|
| 68 |
_texts = [texts[i] for i in text_indices]
|
| 69 |
-
text_features = self.processor.process_texts(
|
|
|
|
|
|
|
| 70 |
for key, value in text_features.items():
|
| 71 |
-
encoding[f
|
| 72 |
-
encoding[
|
| 73 |
-
|
| 74 |
if image_indices:
|
| 75 |
_images = [texts[i] for i in image_indices]
|
| 76 |
img_features = self.processor.process_images(_images)
|
| 77 |
for key, value in img_features.items():
|
| 78 |
-
encoding[f
|
| 79 |
-
encoding[
|
| 80 |
-
|
| 81 |
return encoding
|
| 82 |
-
|
| 83 |
|
| 84 |
-
def forward(
|
|
|
|
|
|
|
| 85 |
self.model.eval()
|
| 86 |
|
| 87 |
if task is None:
|
|
@@ -94,41 +118,55 @@ class Transformer(nn.Module):
|
|
| 94 |
task = self.default_task
|
| 95 |
else:
|
| 96 |
if task not in self.config.task_names:
|
| 97 |
-
raise ValueError(
|
|
|
|
|
|
|
| 98 |
|
| 99 |
device = self.model.device.type
|
| 100 |
all_embeddings = []
|
| 101 |
-
|
| 102 |
with torch.no_grad():
|
| 103 |
-
if any(k.startswith(
|
| 104 |
-
text_batch = {
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
with torch.autocast(device_type=device):
|
| 108 |
-
text_embeddings = self.model(
|
|
|
|
|
|
|
| 109 |
if self.config.truncate_dim:
|
| 110 |
-
text_embeddings = text_embeddings[:, :self.config.truncate_dim]
|
| 111 |
-
|
| 112 |
for i, embedding in enumerate(text_embeddings):
|
| 113 |
all_embeddings.append((text_indices[i], embedding))
|
| 114 |
-
|
| 115 |
-
if any(k.startswith(
|
| 116 |
-
image_batch = {
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
with torch.autocast(device_type=device):
|
| 120 |
-
img_embeddings = self.model(
|
|
|
|
|
|
|
| 121 |
if self.config.truncate_dim:
|
| 122 |
-
img_embeddings = img_embeddings[:, :self.config.truncate_dim]
|
| 123 |
-
|
| 124 |
for i, embedding in enumerate(img_embeddings):
|
| 125 |
all_embeddings.append((image_indices[i], embedding))
|
| 126 |
|
| 127 |
if not all_embeddings:
|
| 128 |
-
raise RuntimeError(
|
| 129 |
|
| 130 |
all_embeddings.sort(key=lambda x: x[0]) # sort by original index
|
| 131 |
combined_embeddings = torch.stack([emb for _, emb in all_embeddings])
|
| 132 |
-
features[
|
| 133 |
-
|
| 134 |
return features
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
from pathlib import Path
|
| 3 |
from typing import Any, Dict, List, Literal, Optional, Union
|
| 4 |
|
| 5 |
+
import requests
|
| 6 |
import torch
|
| 7 |
from PIL import Image
|
| 8 |
from torch import nn
|
| 9 |
+
from transformers import AutoConfig, AutoModel, AutoProcessor
|
| 10 |
|
| 11 |
|
| 12 |
class Transformer(nn.Module):
|
| 13 |
|
| 14 |
save_in_root: bool = True
|
| 15 |
+
|
| 16 |
def __init__(
|
| 17 |
self,
|
| 18 |
+
model_name_or_path: str = "jinaai/jina-embeddings-v4",
|
| 19 |
max_seq_length: Optional[int] = None,
|
| 20 |
config_args: Optional[Dict[str, Any]] = None,
|
| 21 |
model_args: Optional[Dict[str, Any]] = None,
|
| 22 |
tokenizer_args: Optional[Dict[str, Any]] = None,
|
| 23 |
cache_dir: Optional[str] = None,
|
| 24 |
+
backend: Literal["torch", "onnx", "openvino"] = "torch",
|
| 25 |
**kwargs,
|
| 26 |
) -> None:
|
| 27 |
super(Transformer, self).__init__()
|
| 28 |
+
if backend != "torch":
|
| 29 |
raise ValueError(
|
| 30 |
+
f"Backend '{backend}' is not supported, please use 'torch' instead"
|
| 31 |
)
|
|
|
|
| 32 |
config_kwargs = config_args or {}
|
| 33 |
model_kwargs = model_args or {}
|
| 34 |
tokenizer_kwargs = tokenizer_args or {}
|
|
|
|
| 36 |
self.config = AutoConfig.from_pretrained(
|
| 37 |
model_name_or_path, cache_dir=cache_dir, **config_kwargs
|
| 38 |
)
|
| 39 |
+
self.default_task = model_args.pop("default_task", None)
|
| 40 |
if self.default_task and self.default_task not in self.config.task_names:
|
| 41 |
+
raise ValueError(
|
| 42 |
+
f"Invalid task: {self.default_task}. Must be one of {self.config.task_names}."
|
| 43 |
+
)
|
| 44 |
|
| 45 |
self.model = AutoModel.from_pretrained(
|
| 46 |
model_name_or_path, config=self.config, cache_dir=cache_dir, **model_kwargs
|
|
|
|
| 49 |
self.processor = AutoProcessor.from_pretrained(
|
| 50 |
model_name_or_path,
|
| 51 |
cache_dir=cache_dir,
|
| 52 |
+
use_fast=True,
|
| 53 |
**tokenizer_kwargs,
|
| 54 |
)
|
| 55 |
self.max_seq_length = max_seq_length or 8192
|
|
|
|
| 60 |
encoding = {}
|
| 61 |
text_indices = []
|
| 62 |
image_indices = []
|
|
|
|
| 63 |
for i, text in enumerate(texts):
|
| 64 |
if isinstance(text, str):
|
| 65 |
+
# Remove Query: or Passage: prefixes when checking for URLs or file paths
|
| 66 |
+
clean_text = text
|
| 67 |
+
if text.startswith("Query: "):
|
| 68 |
+
clean_text = text[len("Query: ") :]
|
| 69 |
+
elif text.startswith("Passage: "):
|
| 70 |
+
clean_text = text[len("Passage: ") :]
|
| 71 |
+
|
| 72 |
+
if clean_text.startswith("http"):
|
| 73 |
+
response = requests.get(clean_text)
|
| 74 |
+
texts[i] = Image.open(BytesIO(response.content)).convert("RGB")
|
| 75 |
+
image_indices.append(i)
|
| 76 |
+
elif Path(clean_text).is_file():
|
| 77 |
+
try:
|
| 78 |
+
texts[i] = Image.open(clean_text).convert("RGB")
|
| 79 |
+
image_indices.append(i)
|
| 80 |
+
except Exception as e:
|
| 81 |
+
text_indices.append(i)
|
| 82 |
+
else:
|
| 83 |
+
text_indices.append(i)
|
| 84 |
elif isinstance(text, Image.Image):
|
| 85 |
image_indices.append(i)
|
| 86 |
else:
|
| 87 |
+
raise ValueError(f"Invalid input type: {type(text)}")
|
|
|
|
| 88 |
if text_indices:
|
| 89 |
_texts = [texts[i] for i in text_indices]
|
| 90 |
+
text_features = self.processor.process_texts(
|
| 91 |
+
_texts, max_length=self.max_seq_length
|
| 92 |
+
)
|
| 93 |
for key, value in text_features.items():
|
| 94 |
+
encoding[f"text_{key}"] = value
|
| 95 |
+
encoding["text_indices"] = text_indices
|
| 96 |
+
|
| 97 |
if image_indices:
|
| 98 |
_images = [texts[i] for i in image_indices]
|
| 99 |
img_features = self.processor.process_images(_images)
|
| 100 |
for key, value in img_features.items():
|
| 101 |
+
encoding[f"image_{key}"] = value
|
| 102 |
+
encoding["image_indices"] = image_indices
|
| 103 |
+
|
| 104 |
return encoding
|
|
|
|
| 105 |
|
| 106 |
+
def forward(
|
| 107 |
+
self, features: Dict[str, torch.Tensor], task: Optional[str] = None
|
| 108 |
+
) -> Dict[str, torch.Tensor]:
|
| 109 |
self.model.eval()
|
| 110 |
|
| 111 |
if task is None:
|
|
|
|
| 118 |
task = self.default_task
|
| 119 |
else:
|
| 120 |
if task not in self.config.task_names:
|
| 121 |
+
raise ValueError(
|
| 122 |
+
f"Invalid task: {task}. Must be one of {self.config.task_names}."
|
| 123 |
+
)
|
| 124 |
|
| 125 |
device = self.model.device.type
|
| 126 |
all_embeddings = []
|
| 127 |
+
|
| 128 |
with torch.no_grad():
|
| 129 |
+
if any(k.startswith("text_") for k in features.keys()):
|
| 130 |
+
text_batch = {
|
| 131 |
+
k[len("text_") :]: v.to(device)
|
| 132 |
+
for k, v in features.items()
|
| 133 |
+
if k.startswith("text_") and k != "text_indices"
|
| 134 |
+
}
|
| 135 |
+
text_indices = features.get("text_indices", [])
|
| 136 |
+
|
| 137 |
with torch.autocast(device_type=device):
|
| 138 |
+
text_embeddings = self.model(
|
| 139 |
+
**text_batch, task_label=task
|
| 140 |
+
).single_vec_emb
|
| 141 |
if self.config.truncate_dim:
|
| 142 |
+
text_embeddings = text_embeddings[:, : self.config.truncate_dim]
|
| 143 |
+
|
| 144 |
for i, embedding in enumerate(text_embeddings):
|
| 145 |
all_embeddings.append((text_indices[i], embedding))
|
| 146 |
+
|
| 147 |
+
if any(k.startswith("image_") for k in features.keys()):
|
| 148 |
+
image_batch = {
|
| 149 |
+
k[len("image_") :]: v.to(device)
|
| 150 |
+
for k, v in features.items()
|
| 151 |
+
if k.startswith("image_") and k != "image_indices"
|
| 152 |
+
}
|
| 153 |
+
image_indices = features.get("image_indices", [])
|
| 154 |
+
|
| 155 |
with torch.autocast(device_type=device):
|
| 156 |
+
img_embeddings = self.model(
|
| 157 |
+
**image_batch, task_label=task
|
| 158 |
+
).single_vec_emb
|
| 159 |
if self.config.truncate_dim:
|
| 160 |
+
img_embeddings = img_embeddings[:, : self.config.truncate_dim]
|
| 161 |
+
|
| 162 |
for i, embedding in enumerate(img_embeddings):
|
| 163 |
all_embeddings.append((image_indices[i], embedding))
|
| 164 |
|
| 165 |
if not all_embeddings:
|
| 166 |
+
raise RuntimeError("No embeddings were generated")
|
| 167 |
|
| 168 |
all_embeddings.sort(key=lambda x: x[0]) # sort by original index
|
| 169 |
combined_embeddings = torch.stack([emb for _, emb in all_embeddings])
|
| 170 |
+
features["sentence_embedding"] = combined_embeddings
|
| 171 |
+
|
| 172 |
return features
|
modeling_jina_embeddings_v4.py
CHANGED
|
@@ -5,20 +5,24 @@ import os
|
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from enum import Enum
|
| 7 |
from functools import partial
|
|
|
|
| 8 |
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
|
| 9 |
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
import torch
|
| 12 |
from huggingface_hub import snapshot_download
|
| 13 |
-
from peft import
|
| 14 |
from PIL import Image
|
| 15 |
from torch import nn
|
| 16 |
from torch.utils.data import DataLoader
|
| 17 |
from tqdm import tqdm
|
| 18 |
from transformers import BatchFeature
|
| 19 |
-
from .
|
|
|
|
| 20 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
| 21 |
from .custom_lora_module import MultiAdapterLinear
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
class PromptType(str, Enum):
|
|
@@ -140,7 +144,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 140 |
self._init_projection_layers(config)
|
| 141 |
self.post_init()
|
| 142 |
self.processor = JinaEmbeddingsV4Processor.from_pretrained(
|
| 143 |
-
self.name_or_path, trust_remote_code=True
|
| 144 |
)
|
| 145 |
self.single_vector_projector_dim = config.single_vector_projector_dim
|
| 146 |
self.multi_vector_projector_dim = config.multi_vector_projector_dim
|
|
@@ -160,7 +164,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 160 |
task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
|
| 161 |
"""
|
| 162 |
if task not in self.config.task_names:
|
| 163 |
-
raise ValueError(
|
|
|
|
|
|
|
| 164 |
self._task = task
|
| 165 |
|
| 166 |
def get_last_hidden_states(
|
|
@@ -342,7 +348,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 342 |
for batch in tqdm(dataloader, desc=desc):
|
| 343 |
with torch.no_grad():
|
| 344 |
batch = {k: v.to(self.device) for k, v in batch.items()}
|
| 345 |
-
with torch.autocast(
|
|
|
|
|
|
|
| 346 |
embeddings = self(**batch, task_label=task_label)
|
| 347 |
if vector_type == "single_vector":
|
| 348 |
embeddings = embeddings.single_vec_emb
|
|
@@ -395,7 +403,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 395 |
encode_kwargs["truncate_dim"] = truncate_dim
|
| 396 |
|
| 397 |
return encode_kwargs
|
| 398 |
-
|
| 399 |
def _validate_task(self, task: Optional[str] = None) -> str:
|
| 400 |
if task is None:
|
| 401 |
if self.task is None:
|
|
@@ -406,7 +414,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 406 |
task = self.task
|
| 407 |
else:
|
| 408 |
if task not in self.config.task_names:
|
| 409 |
-
raise ValueError(
|
|
|
|
|
|
|
| 410 |
return task
|
| 411 |
|
| 412 |
def encode_texts(
|
|
@@ -460,9 +470,23 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 460 |
|
| 461 |
return embeddings
|
| 462 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
def encode_images(
|
| 464 |
self,
|
| 465 |
-
images: List[Image.Image],
|
| 466 |
task: Optional[str] = None,
|
| 467 |
batch_size: int = 8,
|
| 468 |
vector_type: Optional[str] = None,
|
|
@@ -474,7 +498,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 474 |
Encodes a list of images into embeddings.
|
| 475 |
|
| 476 |
Args:
|
| 477 |
-
images: List of PIL images to encode
|
| 478 |
batch_size: Number of images to process at once
|
| 479 |
vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector')
|
| 480 |
return_numpy: Whether to return numpy arrays instead of torch tensors
|
|
@@ -489,9 +513,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 489 |
self.processor.image_processor.max_pixels = (
|
| 490 |
max_pixels # change during encoding
|
| 491 |
)
|
| 492 |
-
|
| 493 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
| 494 |
task = self._validate_task(task)
|
|
|
|
| 495 |
embeddings = self._process_batches(
|
| 496 |
data=images,
|
| 497 |
processor_fn=self.processor.process_images,
|
|
@@ -519,8 +543,10 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 519 |
"""
|
| 520 |
if "torch_dtype" not in kwargs:
|
| 521 |
kwargs["torch_dtype"] = "auto"
|
| 522 |
-
|
| 523 |
kwargs["key_mapping"] = super()._checkpoint_conversion_mapping
|
|
|
|
|
|
|
| 524 |
|
| 525 |
base_model = super().from_pretrained(
|
| 526 |
pretrained_model_name_or_path, *args, **kwargs
|
|
@@ -547,19 +573,19 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
| 547 |
model_id=adapter_dir,
|
| 548 |
config=lora_config,
|
| 549 |
)
|
| 550 |
-
|
| 551 |
@property
|
| 552 |
def task(self):
|
| 553 |
return self.model.task
|
| 554 |
-
|
| 555 |
@task.setter
|
| 556 |
def task(self, value):
|
| 557 |
self.model.task = value
|
| 558 |
-
|
| 559 |
peft_model.task = property(task.fget, task.fset)
|
| 560 |
peft_model.__class__.task = property(
|
| 561 |
lambda self: self.model.task,
|
| 562 |
-
lambda self, value: setattr(self.model,
|
| 563 |
)
|
| 564 |
|
| 565 |
return peft_model
|
|
|
|
| 5 |
from dataclasses import dataclass
|
| 6 |
from enum import Enum
|
| 7 |
from functools import partial
|
| 8 |
+
from io import BytesIO
|
| 9 |
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
|
| 10 |
|
| 11 |
import numpy as np
|
| 12 |
+
import requests
|
| 13 |
import torch
|
| 14 |
from huggingface_hub import snapshot_download
|
| 15 |
+
from peft import LoraConfig, PeftModel
|
| 16 |
from PIL import Image
|
| 17 |
from torch import nn
|
| 18 |
from torch.utils.data import DataLoader
|
| 19 |
from tqdm import tqdm
|
| 20 |
from transformers import BatchFeature
|
| 21 |
+
from transformers.utils import is_flash_attn_2_available
|
| 22 |
+
|
| 23 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
| 24 |
from .custom_lora_module import MultiAdapterLinear
|
| 25 |
+
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
| 26 |
|
| 27 |
|
| 28 |
class PromptType(str, Enum):
|
|
|
|
| 144 |
self._init_projection_layers(config)
|
| 145 |
self.post_init()
|
| 146 |
self.processor = JinaEmbeddingsV4Processor.from_pretrained(
|
| 147 |
+
self.name_or_path, trust_remote_code=True, use_fast=True
|
| 148 |
)
|
| 149 |
self.single_vector_projector_dim = config.single_vector_projector_dim
|
| 150 |
self.multi_vector_projector_dim = config.multi_vector_projector_dim
|
|
|
|
| 164 |
task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
|
| 165 |
"""
|
| 166 |
if task not in self.config.task_names:
|
| 167 |
+
raise ValueError(
|
| 168 |
+
f"Invalid task: {task}. Must be one of {self.config.task_names}."
|
| 169 |
+
)
|
| 170 |
self._task = task
|
| 171 |
|
| 172 |
def get_last_hidden_states(
|
|
|
|
| 348 |
for batch in tqdm(dataloader, desc=desc):
|
| 349 |
with torch.no_grad():
|
| 350 |
batch = {k: v.to(self.device) for k, v in batch.items()}
|
| 351 |
+
with torch.autocast(
|
| 352 |
+
device_type=torch.device(self.device).type, dtype=torch.bfloat16
|
| 353 |
+
):
|
| 354 |
embeddings = self(**batch, task_label=task_label)
|
| 355 |
if vector_type == "single_vector":
|
| 356 |
embeddings = embeddings.single_vec_emb
|
|
|
|
| 403 |
encode_kwargs["truncate_dim"] = truncate_dim
|
| 404 |
|
| 405 |
return encode_kwargs
|
| 406 |
+
|
| 407 |
def _validate_task(self, task: Optional[str] = None) -> str:
|
| 408 |
if task is None:
|
| 409 |
if self.task is None:
|
|
|
|
| 414 |
task = self.task
|
| 415 |
else:
|
| 416 |
if task not in self.config.task_names:
|
| 417 |
+
raise ValueError(
|
| 418 |
+
f"Invalid task: {task}. Must be one of {self.config.task_names}."
|
| 419 |
+
)
|
| 420 |
return task
|
| 421 |
|
| 422 |
def encode_texts(
|
|
|
|
| 470 |
|
| 471 |
return embeddings
|
| 472 |
|
| 473 |
+
def _load_images_if_needed(
|
| 474 |
+
self, images: List[Union[str, Image.Image]]
|
| 475 |
+
) -> List[Image.Image]:
|
| 476 |
+
loaded_images = []
|
| 477 |
+
for image in images:
|
| 478 |
+
if isinstance(image, str):
|
| 479 |
+
if image.startswith("http"):
|
| 480 |
+
response = requests.get(image)
|
| 481 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 482 |
+
else:
|
| 483 |
+
image = Image.open(image).convert("RGB")
|
| 484 |
+
loaded_images.append(image)
|
| 485 |
+
return loaded_images
|
| 486 |
+
|
| 487 |
def encode_images(
|
| 488 |
self,
|
| 489 |
+
images: List[Union[str, Image.Image]],
|
| 490 |
task: Optional[str] = None,
|
| 491 |
batch_size: int = 8,
|
| 492 |
vector_type: Optional[str] = None,
|
|
|
|
| 498 |
Encodes a list of images into embeddings.
|
| 499 |
|
| 500 |
Args:
|
| 501 |
+
images: List of PIL images, URLs, or local file paths to encode
|
| 502 |
batch_size: Number of images to process at once
|
| 503 |
vector_type: Type of embedding vector to generate ('single_vector' or 'multi_vector')
|
| 504 |
return_numpy: Whether to return numpy arrays instead of torch tensors
|
|
|
|
| 513 |
self.processor.image_processor.max_pixels = (
|
| 514 |
max_pixels # change during encoding
|
| 515 |
)
|
|
|
|
| 516 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
| 517 |
task = self._validate_task(task)
|
| 518 |
+
images = self._load_images_if_needed(images)
|
| 519 |
embeddings = self._process_batches(
|
| 520 |
data=images,
|
| 521 |
processor_fn=self.processor.process_images,
|
|
|
|
| 543 |
"""
|
| 544 |
if "torch_dtype" not in kwargs:
|
| 545 |
kwargs["torch_dtype"] = "auto"
|
| 546 |
+
|
| 547 |
kwargs["key_mapping"] = super()._checkpoint_conversion_mapping
|
| 548 |
+
if not is_flash_attn_2_available():
|
| 549 |
+
kwargs["attn_implementation"] = "sdpa"
|
| 550 |
|
| 551 |
base_model = super().from_pretrained(
|
| 552 |
pretrained_model_name_or_path, *args, **kwargs
|
|
|
|
| 573 |
model_id=adapter_dir,
|
| 574 |
config=lora_config,
|
| 575 |
)
|
| 576 |
+
|
| 577 |
@property
|
| 578 |
def task(self):
|
| 579 |
return self.model.task
|
| 580 |
+
|
| 581 |
@task.setter
|
| 582 |
def task(self, value):
|
| 583 |
self.model.task = value
|
| 584 |
+
|
| 585 |
peft_model.task = property(task.fget, task.fset)
|
| 586 |
peft_model.__class__.task = property(
|
| 587 |
lambda self: self.model.task,
|
| 588 |
+
lambda self, value: setattr(self.model, "task", value),
|
| 589 |
)
|
| 590 |
|
| 591 |
return peft_model
|
tokenizer_config.json
CHANGED
|
@@ -202,7 +202,7 @@
|
|
| 202 |
"extra_special_tokens": {},
|
| 203 |
"model_max_length": 131072,
|
| 204 |
"pad_token": "<|endoftext|>",
|
| 205 |
-
"processor_class": "
|
| 206 |
"split_special_tokens": false,
|
| 207 |
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
"unk_token": null
|
|
|
|
| 202 |
"extra_special_tokens": {},
|
| 203 |
"model_max_length": 131072,
|
| 204 |
"pad_token": "<|endoftext|>",
|
| 205 |
+
"processor_class": "JinaEmbeddingsV4Processor",
|
| 206 |
"split_special_tokens": false,
|
| 207 |
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
"unk_token": null
|