AutoML Lite πŸ€–

Automated Machine Learning Made Simple

A lightweight, production-ready automated machine learning library that simplifies the entire ML pipeline from data preprocessing to model deployment.

🎬 Demo

AutoML Lite in Action

AutoML Lite Demo

Generated HTML Reports

AutoML Report Generation

Weights & Biases Integration

W&B Experiment Tracking

πŸš€ Quick Start

Installation

pip install automl-lite

5-Line ML Pipeline

from automl_lite import AutoMLite
import pandas as pd

# Load your data
data = pd.read_csv('your_data.csv')

# Initialize AutoML (zero configuration!)
automl = AutoMLite(time_budget=300)

# Train and get the best model
best_model = automl.fit(data, target_column='target')

# Make predictions
predictions = automl.predict(new_data)

✨ Key Features

🧠 Intelligent Automation

  • Auto Feature Engineering: 11.6x feature expansion (20β†’232 features)
  • Smart Model Selection: Tests 15+ algorithms automatically
  • Hyperparameter Optimization: Uses Optuna for efficient tuning
  • Ensemble Methods: Automatic voting classifiers

🏭 Production-Ready

  • Deep Learning: TensorFlow and PyTorch integration
  • Time Series: ARIMA, Prophet, LSTM forecasting
  • Advanced Interpretability: SHAP, LIME, permutation importance
  • Experiment Tracking: MLflow, W&B, TensorBoard
  • Interactive Dashboards: Real-time monitoring

πŸ“Š Comprehensive Reporting

  • Interactive HTML Reports: Beautiful visualizations
  • Model Performance Analysis: Confusion matrices, ROC curves
  • Feature Importance: Detailed analysis and correlations
  • Training History: Complete logs and metrics

🎯 Supported Problem Types

  • βœ… Classification (Binary & Multi-class)
  • βœ… Regression
  • βœ… Time Series Forecasting
  • βœ… Deep Learning Tasks

πŸ”₯ Performance Metrics

Production Demo Results

  • Training Time: 391.92 seconds for complete pipeline
  • Best Model: Random Forest (80.00% accuracy)
  • Feature Engineering: 20 β†’ 232 features (11.6x expansion)
  • Feature Selection: 132/166 features intelligently selected
  • Hyperparameter Optimization: 50 trials with Optuna

πŸ› οΈ Advanced Usage

Custom Configuration

config = {
    'time_budget': 600,
    'max_models': 20,
    'cv_folds': 5,
    'feature_engineering': True,
    'ensemble_method': 'voting',
    'interpretability': True
}

automl = AutoMLite(**config)

Time Series Forecasting

automl = AutoMLite(problem_type='time_series')
model = automl.fit(data, target_column='sales', date_column='date')
forecast = automl.predict_future(periods=30)

Deep Learning

automl = AutoMLite(
    include_deep_learning=True,
    deep_learning_framework='tensorflow'
)
model = automl.fit(data, target_column='target')

πŸ“ˆ CLI Interface

# Basic usage
automl-lite train data.csv --target target_column

# With custom config
automl-lite train data.csv --target target_column --config config.yaml

# Generate report
automl-lite report --model model.pkl --output report.html

🎨 Interactive Dashboard

from automl_lite.ui import launch_dashboard
launch_dashboard(automl)

πŸ” Model Interpretability

# Get SHAP values
shap_values = automl.explain_model(X_test)

# Feature importance
importance = automl.get_feature_importance()

# Partial dependence plots
automl.plot_partial_dependence('feature_name')

🎯 Use Cases

Perfect For:

  • 🏒 Data Scientists - Rapid prototyping
  • πŸš€ ML Engineers - Production development
  • πŸ“Š Analysts - Quick insights
  • πŸŽ“ Students - Learning ML concepts
  • 🏭 Startups - Fast MVP development

Industries:

  • Finance: Credit scoring, fraud detection
  • Healthcare: Disease prediction, monitoring
  • E-commerce: Segmentation, forecasting
  • Marketing: Campaign optimization
  • Manufacturing: Predictive maintenance

πŸ”§ Configuration Templates

  • Basic: Quick experiments
  • Production: Production deployment
  • Research: Extensive search
  • Customer Churn: Churn prediction
  • Fraud Detection: Fraud detection
  • House Price: Real estate prediction

πŸ“¦ Installation Options

From PyPI (Recommended)

pip install automl-lite

From Source

git clone https://github.com/Sherin-SEF-AI/AutoML-Lite.git
cd AutoML-Lite
pip install -e .

🀝 Contributing

We welcome contributions! Here's how you can help:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

πŸ“š Documentation & Resources

πŸ’¬ Join the Community

πŸ† Why Choose AutoML Lite?

Feature AutoML Lite Other Libraries
Setup Time 30 seconds 30+ minutes
Configuration Zero required Complex configs
Production Ready βœ… Built-in ❌ Manual setup
Deep Learning βœ… Integrated ❌ Separate setup
Time Series βœ… Native support ❌ Limited
Interpretability βœ… Advanced ❌ Basic
Experiment Tracking βœ… Multi-platform ❌ Limited
Interactive Reports βœ… Beautiful HTML ❌ Basic plots

🎯 Ready to Transform Your ML Workflow?

Stop spending hours on boilerplate code. Start building amazing ML models in minutes!

pip install automl-lite

Try it now and see the difference! πŸš€


Built with ❀️ by the AutoML Lite community

Tags: #python #machinelearning #automl #datascience #ml #ai #automation #productivity #opensource #deeplearning #timeseries #interpretability #experimenttracking #production #deployment

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support