Upload handler.py
Browse files- handler.py +30 -0
handler.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import holidays
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class EndpointHandler:
|
| 7 |
+
def __init__(self, path=""):
|
| 8 |
+
self.pipeline = pipeline("text-classification", model=path)
|
| 9 |
+
self.holidays = holidays.US()
|
| 10 |
+
|
| 11 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 12 |
+
"""
|
| 13 |
+
data args:
|
| 14 |
+
inputs (:obj: `str`)
|
| 15 |
+
date (:obj: `str`)
|
| 16 |
+
Return:
|
| 17 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
| 18 |
+
"""
|
| 19 |
+
# get inputs
|
| 20 |
+
inputs = data.pop("inputs", data)
|
| 21 |
+
# get additional date field
|
| 22 |
+
date = data.pop("date", None)
|
| 23 |
+
|
| 24 |
+
# check if date exists and if it is a holiday
|
| 25 |
+
if date is not None and date in self.holidays:
|
| 26 |
+
return [{"label": "happy", "score": 1}]
|
| 27 |
+
|
| 28 |
+
# run normal prediction
|
| 29 |
+
prediction = self.pipeline(inputs)
|
| 30 |
+
return prediction
|