jree423 commited on
Commit
40f5d6e
·
verified ·
1 Parent(s): 45675d3

Add: diffsketcher README.md with original implementation

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -7,9 +7,13 @@ tags:
7
  license: mit
8
  ---
9
 
10
- # Vector Graphics Generation
11
 
12
- This model generates vector graphics (SVG) from text prompts.
 
 
 
 
13
 
14
  ## Usage
15
 
@@ -34,3 +38,16 @@ with open("output.png", "wb") as f:
34
  - "a red sports car"
35
  - "a portrait of a woman"
36
  - "a cat playing with a ball"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  license: mit
8
  ---
9
 
10
+ # DiffSketcher - Vector Graphics Generation
11
 
12
+ This model generates vector graphics (SVG) from text prompts using the original DiffSketcher implementation.
13
+
14
+ ## Model Description
15
+
16
+ DiffSketcher is a state-of-the-art vector graphics generation model that creates high-quality SVG images from text prompts. It uses a diffusion model to guide the SVG generation process.
17
 
18
  ## Usage
19
 
 
38
  - "a red sports car"
39
  - "a portrait of a woman"
40
  - "a cat playing with a ball"
41
+
42
+ ## How It Works
43
+
44
+ 1. **Text Encoding**: The text prompt is encoded using CLIP.
45
+ 2. **Diffusion Process**: A diffusion model generates a latent representation.
46
+ 3. **SVG Generation**: The latent representation is used to generate an SVG.
47
+ 4. **PNG Conversion**: The SVG is converted to PNG for display.
48
+
49
+ ## Performance Considerations
50
+
51
+ - The original implementation requires significant computational resources
52
+ - Generation can take several minutes depending on the complexity
53
+ - GPU acceleration is recommended for optimal performance