Upload model with FastAPI app
Browse files- Dockerfile +10 -0
- app.py +71 -0
- requirements.txt +6 -1
Dockerfile
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
COPY requirements.txt .
|
| 6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 7 |
+
|
| 8 |
+
COPY . .
|
| 9 |
+
|
| 10 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any, Optional, Union
|
| 2 |
+
import torch
|
| 3 |
+
import base64
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from fastapi import FastAPI, HTTPException
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
|
| 11 |
+
app = FastAPI()
|
| 12 |
+
|
| 13 |
+
class DiffSketcherInput(BaseModel):
|
| 14 |
+
prompt: str
|
| 15 |
+
negative_prompt: Optional[str] = None
|
| 16 |
+
num_paths: Optional[int] = 96
|
| 17 |
+
num_iter: Optional[int] = 800
|
| 18 |
+
guidance_scale: Optional[float] = 7.5
|
| 19 |
+
width: Optional[float] = 2.0
|
| 20 |
+
seed: Optional[int] = None
|
| 21 |
+
|
| 22 |
+
class DiffSketcherOutput(BaseModel):
|
| 23 |
+
svg: str
|
| 24 |
+
image: str
|
| 25 |
+
|
| 26 |
+
# Load the model
|
| 27 |
+
model = None
|
| 28 |
+
|
| 29 |
+
def load_model():
|
| 30 |
+
global model
|
| 31 |
+
if model is None:
|
| 32 |
+
model = DiffusionPipeline.from_pretrained(".")
|
| 33 |
+
model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
| 34 |
+
return model
|
| 35 |
+
|
| 36 |
+
@app.post("/", response_model=DiffSketcherOutput)
|
| 37 |
+
async def generate(input_data: DiffSketcherInput):
|
| 38 |
+
# Load the model
|
| 39 |
+
model = load_model()
|
| 40 |
+
|
| 41 |
+
# Set the seed if provided
|
| 42 |
+
if input_data.seed is not None:
|
| 43 |
+
torch.manual_seed(input_data.seed)
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
# Generate the SVG
|
| 47 |
+
output = model(
|
| 48 |
+
prompt=input_data.prompt,
|
| 49 |
+
negative_prompt=input_data.negative_prompt,
|
| 50 |
+
num_paths=input_data.num_paths,
|
| 51 |
+
num_iter=input_data.num_iter,
|
| 52 |
+
guidance_scale=input_data.guidance_scale,
|
| 53 |
+
width=input_data.width
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Get the SVG and image
|
| 57 |
+
svg = output.svg
|
| 58 |
+
image = output.images[0]
|
| 59 |
+
|
| 60 |
+
# Convert the image to base64
|
| 61 |
+
buffered = io.BytesIO()
|
| 62 |
+
image.save(buffered, format="PNG")
|
| 63 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 64 |
+
|
| 65 |
+
# Return the results
|
| 66 |
+
return {
|
| 67 |
+
"svg": svg,
|
| 68 |
+
"image": img_str
|
| 69 |
+
}
|
| 70 |
+
except Exception as e:
|
| 71 |
+
raise HTTPException(status_code=500, detail=str(e))
|
requirements.txt
CHANGED
|
@@ -2,4 +2,9 @@ diffusers>=0.26.3
|
|
| 2 |
transformers>=4.36.2
|
| 3 |
torch>=2.0.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
-
pillow>=9.0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
transformers>=4.36.2
|
| 3 |
torch>=2.0.0
|
| 4 |
numpy>=1.24.0
|
| 5 |
+
pillow>=9.0.0
|
| 6 |
+
huggingface_hub
|
| 7 |
+
requests
|
| 8 |
+
fastapi
|
| 9 |
+
uvicorn
|
| 10 |
+
pydantic
|