jree423 commited on
Commit
e039dd2
·
verified ·
1 Parent(s): 2d4a7fe

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +3 -87
README.md CHANGED
@@ -1,59 +1,10 @@
1
- ---
2
- license: mit
3
- base_model: runwayml/stable-diffusion-v1-5
4
- tags:
5
- - text-to-image
6
- - diffusers
7
- - vector-graphics
8
- - svg
9
- - sketch
10
- - stable-diffusion
11
- pipeline_tag: text-to-image
12
- inference: true
13
- ---
14
 
15
- # DiffSketcher
16
 
17
- This is a Hugging Face implementation of [DiffSketcher](https://github.com/ximinng/DiffSketcher), a method for generating SVG sketches from text prompts.
18
-
19
- ## Model Description
20
-
21
- DiffSketcher is a novel approach to generate SVG sketches from text prompts. It uses a differentiable rasterizer to optimize SVG parameters based on text-to-image diffusion models.
22
 
23
  ## Usage
24
 
25
- You can use this model directly with the Hugging Face Diffusers library:
26
-
27
- ```python
28
- from diffusers import DiffusionPipeline
29
-
30
- pipeline = DiffusionPipeline.from_pretrained("jree423/diffsketcher")
31
- output = pipeline(
32
- prompt="A beautiful sunset over the mountains",
33
- negative_prompt="ugly, blurry",
34
- num_paths=96,
35
- token_ind=4,
36
- num_iter=800,
37
- guidance_scale=7.5,
38
- width=1.5,
39
- seed=42
40
- )
41
-
42
- # Access the generated SVG
43
- svg = output.svg
44
-
45
- # Access the rendered image
46
- image = output.images[0]
47
-
48
- # Save the SVG
49
- with open("output.svg", "w") as f:
50
- f.write(svg)
51
- ```
52
-
53
- ## Inference API Usage
54
-
55
- You can use this model directly with the Hugging Face Inference API:
56
-
57
  ```python
58
  import requests
59
 
@@ -64,40 +15,5 @@ def query(payload):
64
  response = requests.post(API_URL, headers=headers, json=payload)
65
  return response.json()
66
 
67
- output = query({
68
- "prompt": "A beautiful sunset over the mountains",
69
- "negative_prompt": "ugly, blurry",
70
- "num_paths": 96,
71
- "token_ind": 4,
72
- "num_iter": 800,
73
- "guidance_scale": 7.5,
74
- "width": 1.5,
75
- "seed": 42
76
- })
77
  ```
78
-
79
- ## Parameters
80
-
81
- - `prompt` (str): The text prompt to guide the sketch generation
82
- - `negative_prompt` (str, optional): The prompt not to guide the sketch generation
83
- - `num_paths` (int, default=96): Number of SVG paths to generate
84
- - `token_ind` (int, default=4): Token index for attention control
85
- - `num_iter` (int, default=800): Number of optimization iterations
86
- - `guidance_scale` (float, default=7.5): Scale for classifier-free guidance
87
- - `width` (float, default=1.5): Width of the SVG paths
88
- - `seed` (int, optional): Random seed for reproducibility
89
-
90
- ## Limitations
91
-
92
- This is a simplified implementation of DiffSketcher for demonstration purposes. For the full implementation, please refer to the [original repository](https://github.com/ximinng/DiffSketcher).
93
-
94
- ## Citation
95
-
96
- ```bibtex
97
- @article{xing2023diffsketcher,
98
- title={DiffSketcher: Text Guided Vector Sketch Synthesis through Latent Diffusion Models},
99
- author={Xing, Ximing and Xie, Chuang and Yang, Yinghao and Li, Shiyin and Jia, Xu and Qiao, Yu},
100
- journal={arXiv preprint arXiv:2306.14685},
101
- year={2023}
102
- }
103
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ # Diffsketcher
3
 
4
+ This is a simplified implementation of Diffsketcher for the Hugging Face Inference API.
 
 
 
 
5
 
6
  ## Usage
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ```python
9
  import requests
10
 
 
15
  response = requests.post(API_URL, headers=headers, json=payload)
16
  return response.json()
17
 
18
+ output = query({"prompt": "a cat"})
 
 
 
 
 
 
 
 
 
19
  ```