Upload diffsketcher_handler.py with huggingface_hub
Browse files- diffsketcher_handler.py +77 -134
diffsketcher_handler.py
CHANGED
@@ -1,149 +1,92 @@
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
-
import
|
3 |
import torch
|
4 |
-
import base64
|
5 |
-
from io import BytesIO
|
6 |
-
from PIL import Image
|
7 |
-
import cairosvg
|
8 |
import numpy as np
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
def initialize(self, context):
|
17 |
-
"""Initialize the handler."""
|
18 |
-
self.initialized = True
|
19 |
-
|
20 |
-
# Import dependencies here to avoid issues during startup
|
21 |
-
try:
|
22 |
-
import pydiffvg
|
23 |
-
self.diffvg = pydiffvg
|
24 |
-
print("Successfully imported pydiffvg")
|
25 |
-
except ImportError as e:
|
26 |
-
print(f"Warning: Could not import pydiffvg: {e}")
|
27 |
-
print("Will use placeholder SVG generation")
|
28 |
-
self.diffvg = None
|
29 |
-
|
30 |
-
# We'll initialize the actual model only when needed
|
31 |
-
return None
|
32 |
-
|
33 |
-
def _initialize_model(self):
|
34 |
-
"""Initialize the actual model when needed."""
|
35 |
-
if self.model is not None:
|
36 |
-
return
|
37 |
-
|
38 |
try:
|
39 |
-
|
40 |
-
from
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
# Load
|
43 |
-
self.model =
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
49 |
except Exception as e:
|
50 |
-
print(f"Error initializing model: {e}")
|
51 |
-
|
52 |
-
self.model = None
|
53 |
|
54 |
def preprocess(self, data):
|
55 |
-
"""
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
def _generate_placeholder_svg(self, prompt):
|
74 |
-
"""Generate a placeholder SVG when the actual model is not available."""
|
75 |
-
import svgwrite
|
76 |
-
|
77 |
-
# Create a simple SVG
|
78 |
-
dwg = svgwrite.Drawing(size=(512, 512))
|
79 |
-
# Add a background rectangle
|
80 |
-
dwg.add(dwg.rect(insert=(0, 0), size=('100%', '100%'), fill='#f0f0f0'))
|
81 |
-
# Add a circle
|
82 |
-
dwg.add(dwg.circle(center=(256, 256), r=100, fill='#3498db'))
|
83 |
-
# Add the prompt as text
|
84 |
-
dwg.add(dwg.text(prompt, insert=(50, 50), font_size=20, fill='black'))
|
85 |
-
# Add a note that this is a placeholder
|
86 |
-
dwg.add(dwg.text("Placeholder SVG - Model not available",
|
87 |
-
insert=(50, 480), font_size=16, fill='red'))
|
88 |
-
|
89 |
-
svg_string = dwg.tostring()
|
90 |
-
|
91 |
-
# Convert SVG to PNG for preview
|
92 |
-
png_data = cairosvg.svg2png(bytestring=svg_string.encode('utf-8'))
|
93 |
-
image = Image.open(BytesIO(png_data))
|
94 |
-
|
95 |
-
return svg_string, image
|
96 |
|
97 |
def inference(self, inputs):
|
98 |
-
"""
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
self.
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
try:
|
111 |
-
# This would be the actual DiffSketcher implementation
|
112 |
-
# For now, we'll just generate a placeholder
|
113 |
-
svg_string, image = self._generate_placeholder_svg(prompt)
|
114 |
-
except Exception as e:
|
115 |
-
print(f"Error during model inference: {e}")
|
116 |
-
svg_string, image = self._generate_placeholder_svg(prompt)
|
117 |
-
else:
|
118 |
-
# Use placeholder if model is not available
|
119 |
-
svg_string, image = self._generate_placeholder_svg(prompt)
|
120 |
-
|
121 |
-
return {
|
122 |
-
"svg": svg_string,
|
123 |
-
"image": image
|
124 |
-
}
|
125 |
|
126 |
def postprocess(self, inference_output):
|
127 |
-
"""
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# Convert image to base64 for JSON response
|
132 |
-
buffered = BytesIO()
|
133 |
-
image.save(buffered, format="PNG")
|
134 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
135 |
-
img_base64 = f"data:image/png;base64,{img_str}"
|
136 |
-
|
137 |
-
return {
|
138 |
-
"svg": svg_string,
|
139 |
-
"image": img_base64
|
140 |
-
}
|
141 |
-
|
142 |
-
def handle(self, data, context):
|
143 |
-
"""Handle the request."""
|
144 |
-
if not self.initialized:
|
145 |
-
self.initialize(context)
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
import os
|
5 |
+
import sys
|
6 |
import torch
|
|
|
|
|
|
|
|
|
7 |
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
import io
|
10 |
+
import base64
|
11 |
+
from handler_template import BaseHandler
|
12 |
|
13 |
+
# Add DiffSketcher to path
|
14 |
+
sys.path.append("/app/model")
|
15 |
+
|
16 |
+
class Handler(BaseHandler):
|
17 |
+
def initialize(self):
|
18 |
+
"""Load the DiffSketcher model"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
20 |
+
from models.clip_text_encoder import CLIPTextEncoder
|
21 |
+
from models.sketch_generator import SketchGenerator
|
22 |
+
|
23 |
+
# Load text encoder
|
24 |
+
self.text_encoder = CLIPTextEncoder()
|
25 |
+
self.text_encoder.to(self.device)
|
26 |
+
self.text_encoder.eval()
|
27 |
|
28 |
+
# Load sketch generator
|
29 |
+
self.model = SketchGenerator()
|
30 |
+
weights_path = os.path.join("/app/model/weights", "diffsketcher_model.pth")
|
31 |
+
if os.path.exists(weights_path):
|
32 |
+
state_dict = torch.load(weights_path, map_location=self.device)
|
33 |
+
self.model.load_state_dict(state_dict)
|
34 |
+
else:
|
35 |
+
raise FileNotFoundError(f"Model weights not found at {weights_path}")
|
36 |
+
|
37 |
+
self.model.to(self.device)
|
38 |
+
self.model.eval()
|
39 |
|
40 |
+
self.initialized = True
|
41 |
+
print("DiffSketcher model initialized successfully")
|
42 |
except Exception as e:
|
43 |
+
print(f"Error initializing DiffSketcher model: {str(e)}")
|
44 |
+
raise
|
|
|
45 |
|
46 |
def preprocess(self, data):
|
47 |
+
"""Process the input data"""
|
48 |
+
try:
|
49 |
+
# Extract prompt from the request
|
50 |
+
prompt = data.get("prompt", "")
|
51 |
+
if not prompt:
|
52 |
+
raise ValueError("No prompt provided in the request")
|
53 |
+
|
54 |
+
# Encode text with CLIP
|
55 |
+
with torch.no_grad():
|
56 |
+
text_embedding = self.text_encoder.encode_text(prompt)
|
57 |
+
|
58 |
+
return {
|
59 |
+
"text_embedding": text_embedding,
|
60 |
+
"prompt": prompt
|
61 |
+
}
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error in preprocessing: {str(e)}")
|
64 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def inference(self, inputs):
|
67 |
+
"""Generate SVG from text embedding"""
|
68 |
+
try:
|
69 |
+
text_embedding = inputs["text_embedding"]
|
70 |
+
|
71 |
+
# Run inference
|
72 |
+
with torch.no_grad():
|
73 |
+
svg_data = self.model.generate(text_embedding)
|
74 |
+
|
75 |
+
return svg_data
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error during inference: {str(e)}")
|
78 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
def postprocess(self, inference_output):
|
81 |
+
"""Format the model output"""
|
82 |
+
try:
|
83 |
+
svg_content = inference_output["svg_content"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Return both the SVG content and base64 encoded version
|
86 |
+
return {
|
87 |
+
"svg_content": svg_content,
|
88 |
+
"svg_base64": self.svg_to_base64(svg_content)
|
89 |
+
}
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error in postprocessing: {str(e)}")
|
92 |
+
return {"error": str(e)}
|