import os import io import sys import torch import numpy as np from PIL import Image import traceback # Add debug logging def debug_log(message): print(f"DEBUG: {message}") sys.stdout.flush() debug_log("Starting handler initialization") # Safely import cairosvg with fallback try: import cairosvg debug_log("Successfully imported cairosvg") except ImportError: debug_log("cairosvg not found. Installing...") import subprocess subprocess.check_call(["pip", "install", "cairosvg", "cairocffi", "cssselect2", "defusedxml", "tinycss2"]) import cairosvg debug_log("Installed and imported cairosvg") # Add the model directory to the path sys.path.append('/code/diffsketcher') # Try to import the model try: from models.clip_model import ClipModel from models.diffusion_model import DiffusionModel from models.sketch_model import SketchModel debug_log("Successfully imported DiffSketcher models") except ImportError as e: debug_log(f"Error importing DiffSketcher models: {e}") debug_log(traceback.format_exc()) raise ImportError(f"Failed to import DiffSketcher models: {e}") class EndpointHandler: def __init__(self, model_dir): """Initialize the handler with model directory""" debug_log(f"Initializing handler with model_dir: {model_dir}") self.model_dir = model_dir self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") debug_log(f"Using device: {self.device}") # Initialize the model self.clip_model = ClipModel(device=self.device) self.diffusion_model = DiffusionModel(device=self.device) self.sketch_model = SketchModel(device=self.device) # Load checkpoint if available weights_path = os.path.join(model_dir, "checkpoint.pth") if os.path.exists(weights_path): debug_log(f"Loading checkpoint from {weights_path}") checkpoint = torch.load(weights_path, map_location=self.device) self.sketch_model.load_state_dict(checkpoint['sketch_model']) debug_log("Successfully loaded checkpoint") else: debug_log(f"Checkpoint not found at {weights_path}, using model without pre-trained weights") # Download the checkpoint if not available try: debug_log("Attempting to download checkpoint...") import urllib.request os.makedirs(os.path.dirname(weights_path), exist_ok=True) urllib.request.urlretrieve( "https://github.com/ximinng/DiffSketcher/releases/download/v0.1-weights/diffvg_checkpoint.pth", weights_path ) debug_log(f"Downloaded checkpoint to {weights_path}") checkpoint = torch.load(weights_path, map_location=self.device) self.sketch_model.load_state_dict(checkpoint['sketch_model']) debug_log("Successfully loaded downloaded checkpoint") except Exception as e: debug_log(f"Error downloading checkpoint: {e}") debug_log(traceback.format_exc()) debug_log("Continuing with uninitialized weights") def generate_svg(self, prompt, width=512, height=512): """Generate an SVG from a text prompt""" debug_log(f"Generating SVG for prompt: {prompt}") # Generate SVG using DiffSketcher text_features = self.clip_model.encode_text(prompt) latent = self.diffusion_model.generate(text_features) svg_data = self.sketch_model.generate(latent, num_paths=20, width=width, height=height) debug_log("Generated SVG using DiffSketcher") return svg_data def __call__(self, data): """Handle a request to the model""" try: debug_log(f"Handling request: {data}") # Extract the prompt if isinstance(data, dict) and "inputs" in data: if isinstance(data["inputs"], str): prompt = data["inputs"] elif isinstance(data["inputs"], dict) and "text" in data["inputs"]: prompt = data["inputs"]["text"] else: prompt = "No prompt provided" else: prompt = "No prompt provided" debug_log(f"Extracted prompt: {prompt}") # Generate SVG svg_content = self.generate_svg(prompt) # Convert SVG to PNG png_data = cairosvg.svg2png(bytestring=svg_content.encode("utf-8")) image = Image.open(io.BytesIO(png_data)) debug_log("Generated image from SVG") # Return the PIL Image directly debug_log("Returning image") return image except Exception as e: debug_log(f"Error in handler: {e}") debug_log(traceback.format_exc()) raise Exception(f"Error generating image: {str(e)}")