Upload evaluate_speech.py
Browse files- examples/evaluate_speech.py +345 -82
examples/evaluate_speech.py
CHANGED
|
@@ -25,7 +25,7 @@ normalizer = {
|
|
| 25 |
|
| 26 |
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋
|
| 27 |
model_id = "junnei/gemma-3-4b-it-speech"
|
| 28 |
-
revision = "v1.0"
|
| 29 |
|
| 30 |
model = AutoModel.from_pretrained(
|
| 31 |
model_id, device_map="auto", revision = revision, trust_remote_code=True
|
|
@@ -45,76 +45,282 @@ INSTRUCTION = {
|
|
| 45 |
"asr": "Transcribe the audio clip into text.",
|
| 46 |
}
|
| 47 |
|
| 48 |
-
class
|
| 49 |
-
def __init__(self, processor,
|
| 50 |
-
|
| 51 |
-
self.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
trust_remote_code=True
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
original_size = len(self.data)
|
| 59 |
-
self.data = self.data.cast_column("audio", Audio(decode=False))
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
def identify_corrupted_files(example):
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
|
|
|
| 67 |
return True
|
| 68 |
except Exception:
|
| 69 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
self.ast = ast
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
|
| 85 |
-
|
| 86 |
def __len__(self):
|
| 87 |
return len(self.data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def __getitem__(self, idx):
|
| 90 |
data = self.data[idx]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
[
|
|
|
|
|
|
|
| 97 |
)
|
| 98 |
-
inputs = self.processor(text=prompt, audio=[data["audio"]["array"]], add_special_tokens=False, return_tensors='pt')
|
| 99 |
-
sentence = data['sentence'].replace('"', '')
|
| 100 |
-
answer = f"{data['translation'] if self.ast else sentence}"
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
-
def pad_sequence(sequences, padding_side='
|
| 118 |
"""
|
| 119 |
Pad a list of sequences to the same length.
|
| 120 |
sequences: list of tensors in [seq_len, *] shape
|
|
@@ -164,7 +370,6 @@ def covost_collate_fn(batch):
|
|
| 164 |
audio_embed_sizes_list = []
|
| 165 |
audio_attention_mask_list = []
|
| 166 |
input_modes_list = []
|
| 167 |
-
sentence_list = []
|
| 168 |
answer_list = []
|
| 169 |
for inputs in batch:
|
| 170 |
input_ids_list.append(inputs['input_ids'][0])
|
|
@@ -174,7 +379,6 @@ def covost_collate_fn(batch):
|
|
| 174 |
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
| 175 |
)
|
| 176 |
input_modes_list.append(inputs['input_modes'])
|
| 177 |
-
sentence_list.append(inputs['sentence'])
|
| 178 |
answer_list.append(inputs['answer'])
|
| 179 |
|
| 180 |
try:
|
|
@@ -202,14 +406,13 @@ def covost_collate_fn(batch):
|
|
| 202 |
'audio_embed_sizes': audio_embed_sizes,
|
| 203 |
'audio_attention_mask': audio_attention_mask,
|
| 204 |
'input_modes': input_modes,
|
| 205 |
-
'sentence': sentence_list,
|
| 206 |
'answer': answer_list,
|
| 207 |
}
|
| 208 |
)
|
| 209 |
|
| 210 |
-
def save_results(results, task, source_lang, target_lang=None, sample_idx=None):
|
| 211 |
"""๊ฒฐ๊ณผ๋ฅผ JSON ํ์ผ๋ก ์ ์ฅ"""
|
| 212 |
-
filename = f"{task}_{source_lang}"
|
| 213 |
if target_lang:
|
| 214 |
filename += f"_to_{target_lang}"
|
| 215 |
if sample_idx is not None:
|
|
@@ -244,7 +447,6 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 244 |
|
| 245 |
# ๋ฐฐ์น ๋จ์๋ก ์ฒ๋ฆฌ
|
| 246 |
for batch_idx, batch in enumerate(tqdm(dataloader)):
|
| 247 |
-
batch_sentences = batch.pop("sentence")
|
| 248 |
batch_references = batch.pop("answer")
|
| 249 |
|
| 250 |
# GPU๋ก ์ด๋
|
|
@@ -253,7 +455,10 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 253 |
|
| 254 |
# ๋ฐฐ์น ์ถ๋ก
|
| 255 |
with torch.inference_mode():
|
| 256 |
-
generate_ids = model.generate(**batch,
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
input_lengths = batch['input_ids'].shape[1]
|
| 259 |
generate_ids = generate_ids[:, input_lengths:]
|
|
@@ -264,11 +469,10 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 264 |
)
|
| 265 |
|
| 266 |
# ๊ฒฐ๊ณผ ์ ์ฅ
|
| 267 |
-
for i, (
|
| 268 |
idx = batch_idx * batch_size + i
|
| 269 |
sample_result = {
|
| 270 |
"id": idx,
|
| 271 |
-
"sentence": sentence,
|
| 272 |
"reference": reference,
|
| 273 |
"prediction": prediction
|
| 274 |
}
|
|
@@ -329,7 +533,7 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 329 |
"num_samples": len(temp_results),
|
| 330 |
"sample_results": temp_results
|
| 331 |
}
|
| 332 |
-
save_results(partial_results, task_type, source_lang, target_lang)
|
| 333 |
|
| 334 |
for item in sample_results:
|
| 335 |
ref = eval_normalizer(item["reference"])
|
|
@@ -351,6 +555,7 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 351 |
avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
|
| 352 |
|
| 353 |
results = {
|
|
|
|
| 354 |
"task": task_type,
|
| 355 |
"source_lang": source_lang,
|
| 356 |
"target_lang": target_lang,
|
|
@@ -364,60 +569,118 @@ def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size
|
|
| 364 |
}
|
| 365 |
|
| 366 |
# ์ต์ข
๊ฒฐ๊ณผ ์ ์ฅ
|
| 367 |
-
save_results(results, task_type, source_lang, target_lang)
|
| 368 |
return results
|
| 369 |
|
| 370 |
# ๋ฉ์ธ ์คํ ์ฝ๋
|
| 371 |
if __name__ == "__main__":
|
| 372 |
# ํ๊ฐํ ์ธ์ด ๋ชฉ๋ก (์์ค ์ธ์ด)
|
| 373 |
source_languages = [
|
| 374 |
-
("en_us", "English"), # ์์ด (๋ฏธ๊ตญ)
|
| 375 |
#("ko_kr", "Korean"),
|
|
|
|
| 376 |
]
|
| 377 |
|
| 378 |
# ๋ฒ์ญ ๋์ ์ธ์ด ๋ชฉ๋ก (์ฝ๋, ์ด๋ฆ)
|
| 379 |
target_languages = [
|
| 380 |
-
("ko_kr", "Korean"),
|
| 381 |
#("en_us", "English"),
|
|
|
|
| 382 |
]
|
| 383 |
|
| 384 |
data_dir = {
|
| 385 |
-
"en_us" : "/workspace/CommonVoice/EN",
|
| 386 |
#"ko_kr" : "/workspace/CommonVoice/ko",
|
|
|
|
| 387 |
}
|
| 388 |
|
| 389 |
# ์ํ ์ ์ค์ (-1์ ์ ์ฒด ๋ฐ์ดํฐ์
์ฌ์ฉ)
|
| 390 |
num_samples = -1
|
| 391 |
-
batch_size =
|
| 392 |
|
| 393 |
# ๋ชจ๋ ์์ค ์ธ์ด์ ๋ํด ASR ํ๊ฐ
|
| 394 |
for source_lang, target_lang in zip(source_languages, target_languages):
|
| 395 |
print(f"\n===== {source_lang[0]} ASR ํ๊ฐ ์์ =====")
|
| 396 |
|
| 397 |
# ๋ฐ์ดํฐ์
๋ก๋
|
| 398 |
-
|
| 399 |
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
try:
|
| 409 |
print(f"\n===== {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ํ๊ฐ ์์ =====")
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
|
|
|
| 421 |
|
| 422 |
except Exception as e:
|
| 423 |
error_info = {
|
|
|
|
| 25 |
|
| 26 |
# ๋ชจ๋ธ ๋ฐ ํ๋ก์ธ์ ๋ก๋
|
| 27 |
model_id = "junnei/gemma-3-4b-it-speech"
|
| 28 |
+
revision = "main" #"v1.0"
|
| 29 |
|
| 30 |
model = AutoModel.from_pretrained(
|
| 31 |
model_id, device_map="auto", revision = revision, trust_remote_code=True
|
|
|
|
| 45 |
"asr": "Transcribe the audio clip into text.",
|
| 46 |
}
|
| 47 |
|
| 48 |
+
class BaseAudioDataset(Dataset):
|
| 49 |
+
def __init__(self, processor, split, sampling_rate=16000, debug=False):
|
| 50 |
+
self.processor = processor
|
| 51 |
+
self.training = "train" in split
|
| 52 |
+
self.debug = debug
|
| 53 |
+
self.sampling_rate = sampling_rate
|
| 54 |
+
self.name = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
def set_dataset_name(self, name):
|
| 57 |
+
self.name = name
|
| 58 |
+
|
| 59 |
+
@staticmethod
|
| 60 |
+
def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
|
| 61 |
+
original_size = len(data)
|
| 62 |
+
|
| 63 |
+
data = data.cast_column(audio_field, Audio(decode=False))
|
| 64 |
+
|
| 65 |
def identify_corrupted_files(example):
|
| 66 |
try:
|
| 67 |
+
sf.read(example[audio_field]["path"])
|
| 68 |
+
|
| 69 |
+
for field in text_fields:
|
| 70 |
+
if example[field].replace('"', '') == "":
|
| 71 |
+
return False
|
| 72 |
return True
|
| 73 |
except Exception:
|
| 74 |
return False
|
| 75 |
+
|
| 76 |
+
data = data.filter(identify_corrupted_files, num_proc=16)
|
| 77 |
+
validated_size = len(data)
|
| 78 |
+
|
| 79 |
+
# ์ค๋์ค ๋์ฝ๋ฉ
|
| 80 |
+
data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
|
| 81 |
+
|
| 82 |
+
if debug:
|
| 83 |
+
print(f"๋ฐ์ดํฐ์
: {dataset_name}")
|
| 84 |
+
print(f"์๋ณธ ๋ฐ์ดํฐ ๊ฐ์: {original_size}")
|
| 85 |
+
print(f"ํํฐ๋ง ํ ๋ฐ์ดํฐ ๊ฐ์: {validated_size}")
|
| 86 |
+
print(f"ํํฐ๋ง ๋น์จ: {validated_size/original_size:.2%}")
|
| 87 |
+
|
| 88 |
+
return data
|
| 89 |
|
| 90 |
+
@staticmethod
|
| 91 |
+
def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
|
| 92 |
+
original_size = len(data)
|
| 93 |
+
|
| 94 |
+
def filter_audio_by_length(example):
|
| 95 |
+
try:
|
| 96 |
+
audio = example[audio_field]['array']
|
| 97 |
+
channel = 1
|
| 98 |
+
if hasattr(audio, 'ndim') and audio.ndim > 1:
|
| 99 |
+
channel = audio.ndim
|
| 100 |
+
audio = audio.squeeze()
|
| 101 |
+
audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
|
| 102 |
+
return min_sec <= audio_length <= max_sec
|
| 103 |
+
except Exception as e:
|
| 104 |
+
if debug:
|
| 105 |
+
print(f"์ค๋ฅ ๋ฐ์: {str(e)[:100]}... - ์ํ ์ ์ธ๋จ")
|
| 106 |
+
return False
|
| 107 |
+
|
| 108 |
+
data = data.filter(filter_audio_by_length, num_proc=16)
|
| 109 |
+
filtered_size = len(data)
|
| 110 |
+
|
| 111 |
+
if debug:
|
| 112 |
+
print(f"๊ธธ์ด ํํฐ๋ง ์ ๋ฐ์ดํฐ ๊ฐ์: {original_size}")
|
| 113 |
+
print(f"๊ธธ์ด ํํฐ๋ง ํ ๋ฐ์ดํฐ ๊ฐ์: {filtered_size}")
|
| 114 |
+
print(f"ํํฐ๋ง ๋น์จ: {filtered_size/original_size:.2%}")
|
| 115 |
+
|
| 116 |
+
return data
|
| 117 |
|
| 118 |
+
def prepare_model_inputs(self, audio_array, instruction, answer_text):
|
| 119 |
+
user_message = {
|
| 120 |
+
'role': 'user',
|
| 121 |
+
'content': '<start_of_audio>' + instruction,
|
| 122 |
+
}
|
| 123 |
+
prompt = self.processor.tokenizer.apply_chat_template(
|
| 124 |
+
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
inputs = self.processor(
|
| 128 |
+
text=prompt,
|
| 129 |
+
audio=[audio_array],
|
| 130 |
+
add_special_tokens=False,
|
| 131 |
+
return_tensors='pt'
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
input_ids = inputs.input_ids
|
| 135 |
+
token_type_ids = inputs.token_type_ids
|
| 136 |
+
|
| 137 |
+
return {
|
| 138 |
+
'input_ids': input_ids,
|
| 139 |
+
'token_type_ids': token_type_ids,
|
| 140 |
+
'input_audio_embeds': inputs.input_audio_embeds,
|
| 141 |
+
'audio_embed_sizes': inputs.audio_embed_sizes,
|
| 142 |
+
'input_modes': inputs.input_modes,
|
| 143 |
+
'answer': answer_text,
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
# CoVoST2 Dataset Class
|
| 147 |
+
class CoVoSTDataset(BaseAudioDataset):
|
| 148 |
+
def __init__(self, processor, data_dir, split, ast=False,
|
| 149 |
+
lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
|
| 150 |
+
super().__init__(processor, split, sampling_rate, debug)
|
| 151 |
+
|
| 152 |
+
self.set_dataset_name("CoVoST")
|
| 153 |
+
|
| 154 |
self.ast = ast
|
| 155 |
+
self.lang = lang[0]
|
| 156 |
+
|
| 157 |
+
self.data = load_dataset("junnei/covost2",
|
| 158 |
+
lang[0],
|
| 159 |
+
data_dir=data_dir,
|
| 160 |
+
split=split,
|
| 161 |
+
trust_remote_code=True
|
| 162 |
+
)
|
| 163 |
|
| 164 |
+
text_fields = ["sentence", "translation"] if ast else ["sentence"]
|
| 165 |
+
self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
|
| 166 |
+
|
| 167 |
+
# (Optional) Audio length Filtering
|
| 168 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
| 169 |
|
| 170 |
+
# Instruction Setting
|
| 171 |
self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
|
| 172 |
+
|
| 173 |
def __len__(self):
|
| 174 |
return len(self.data)
|
| 175 |
+
|
| 176 |
+
def __getitem__(self, idx):
|
| 177 |
+
data = self.data[idx]
|
| 178 |
+
|
| 179 |
+
if self.ast:
|
| 180 |
+
answer_text = data["translation"]
|
| 181 |
+
else:
|
| 182 |
+
answer_text = data["sentence"].replace('"', '')
|
| 183 |
+
|
| 184 |
+
return self.prepare_model_inputs(
|
| 185 |
+
data["audio"]["array"],
|
| 186 |
+
self.instruction,
|
| 187 |
+
answer_text
|
| 188 |
+
)
|
| 189 |
|
| 190 |
+
|
| 191 |
+
# Libri Speech Dataset Class
|
| 192 |
+
class LibriSpeechDataset(BaseAudioDataset):
|
| 193 |
+
def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
|
| 194 |
+
super().__init__(processor, split, sampling_rate, debug)
|
| 195 |
+
|
| 196 |
+
self.set_dataset_name(f"LibriSpeech_{subset}")
|
| 197 |
+
|
| 198 |
+
# only ASR
|
| 199 |
+
self.ast = False
|
| 200 |
+
self.lang = "en"
|
| 201 |
+
|
| 202 |
+
if split == "train":
|
| 203 |
+
split = "train.360"
|
| 204 |
+
|
| 205 |
+
# load dataset
|
| 206 |
+
self.data = load_dataset("fixie-ai/librispeech_asr",
|
| 207 |
+
subset,
|
| 208 |
+
split=split,
|
| 209 |
+
trust_remote_code=True
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# (Optional) Audio length Filtering
|
| 213 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
| 214 |
+
|
| 215 |
+
# Instruction Setting
|
| 216 |
+
self.instruction = INSTRUCTION["asr"]
|
| 217 |
+
|
| 218 |
+
def __len__(self):
|
| 219 |
+
return len(self.data)
|
| 220 |
+
|
| 221 |
def __getitem__(self, idx):
|
| 222 |
data = self.data[idx]
|
| 223 |
+
|
| 224 |
+
# Libri Speech is only for ASR
|
| 225 |
+
answer_text = data["text"].replace('"', '')
|
| 226 |
+
|
| 227 |
+
return self.prepare_model_inputs(
|
| 228 |
+
data["audio"]["array"],
|
| 229 |
+
self.instruction,
|
| 230 |
+
answer_text
|
| 231 |
)
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
+
# Fleurs Dataset Class
|
| 234 |
+
class FleursDataset(BaseAudioDataset):
|
| 235 |
+
def __init__(self, processor, split, source_lang, target_lang=None,
|
| 236 |
+
mode="asr", sampling_rate=16000, debug=False):
|
| 237 |
+
super().__init__(processor, split, sampling_rate, debug)
|
| 238 |
+
|
| 239 |
+
self.set_dataset_name("Fleurs")
|
| 240 |
+
|
| 241 |
+
# Mode Setting (ASR or AST)
|
| 242 |
+
if mode not in ["asr", "ast"]:
|
| 243 |
+
raise ValueError("mode must be 'asr' or 'ast'.")
|
| 244 |
+
|
| 245 |
+
self.mode = mode
|
| 246 |
+
self.ast = (mode == "ast")
|
| 247 |
+
self.source_lang = source_lang
|
| 248 |
+
|
| 249 |
+
# Language name mapping (expand if needed)
|
| 250 |
+
self.lang_names = {
|
| 251 |
+
'en_us': 'English', 'ko_kr': 'Korean'
|
| 252 |
}
|
| 253 |
+
|
| 254 |
+
# load dataset - source language dataset
|
| 255 |
+
self.data = load_dataset("google/fleurs",
|
| 256 |
+
source_lang,
|
| 257 |
+
split=split,
|
| 258 |
+
trust_remote_code=True
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# (Optional) Audio length Filtering
|
| 262 |
+
self.data = self.filter_by_audio_length(self.data, "audio")
|
| 263 |
+
|
| 264 |
+
# When AST mode, load target language dataset.
|
| 265 |
+
if self.ast:
|
| 266 |
+
if target_lang is None:
|
| 267 |
+
raise ValueError("AST mode requires target_lang.")
|
| 268 |
+
|
| 269 |
+
self.target_lang = target_lang
|
| 270 |
+
self.lang = f"{source_lang}_{target_lang}"
|
| 271 |
+
|
| 272 |
+
# load dataset - target language dataset (for translation)
|
| 273 |
+
target_data = load_dataset("google/fleurs",
|
| 274 |
+
target_lang,
|
| 275 |
+
split=split,
|
| 276 |
+
trust_remote_code=True
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
source_dict = {item['id']: item for item in self.data}
|
| 280 |
+
target_dict = {item['id']: item for item in target_data}
|
| 281 |
+
|
| 282 |
+
# only Common ID, add translation fields
|
| 283 |
+
common_ids = set(source_dict.keys()) & set(target_dict.keys())
|
| 284 |
+
print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
|
| 285 |
+
self.data = [
|
| 286 |
+
{**source_dict[id], 'translation': target_dict[id]['transcription']}
|
| 287 |
+
for id in common_ids
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
# Instruction Setting - use target language name
|
| 291 |
+
target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
|
| 292 |
+
self.instruction = INSTRUCTION["ast"].format(target_lang_name)
|
| 293 |
+
else:
|
| 294 |
+
# ASR mode
|
| 295 |
+
self.lang = source_lang
|
| 296 |
+
self.instruction = INSTRUCTION["asr"]
|
| 297 |
+
|
| 298 |
+
if self.debug:
|
| 299 |
+
print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
|
| 300 |
+
print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
|
| 301 |
+
if self.ast:
|
| 302 |
+
print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
|
| 303 |
+
print(f"dataset size: {len(self.data)}")
|
| 304 |
+
|
| 305 |
+
def __len__(self):
|
| 306 |
+
return len(self.data)
|
| 307 |
+
|
| 308 |
+
def __getitem__(self, idx):
|
| 309 |
+
data = self.data[idx]
|
| 310 |
+
audio_array = data["audio"]["array"]
|
| 311 |
|
| 312 |
+
if self.ast:
|
| 313 |
+
answer_text = data["translation"]
|
| 314 |
+
else:
|
| 315 |
+
answer_text = data["transcription"]
|
| 316 |
+
|
| 317 |
+
return self.prepare_model_inputs(
|
| 318 |
+
audio_array,
|
| 319 |
+
self.instruction,
|
| 320 |
+
answer_text
|
| 321 |
+
)
|
| 322 |
|
| 323 |
+
def pad_sequence(sequences, padding_side='left', padding_value=0):
|
| 324 |
"""
|
| 325 |
Pad a list of sequences to the same length.
|
| 326 |
sequences: list of tensors in [seq_len, *] shape
|
|
|
|
| 370 |
audio_embed_sizes_list = []
|
| 371 |
audio_attention_mask_list = []
|
| 372 |
input_modes_list = []
|
|
|
|
| 373 |
answer_list = []
|
| 374 |
for inputs in batch:
|
| 375 |
input_ids_list.append(inputs['input_ids'][0])
|
|
|
|
| 379 |
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
| 380 |
)
|
| 381 |
input_modes_list.append(inputs['input_modes'])
|
|
|
|
| 382 |
answer_list.append(inputs['answer'])
|
| 383 |
|
| 384 |
try:
|
|
|
|
| 406 |
'audio_embed_sizes': audio_embed_sizes,
|
| 407 |
'audio_attention_mask': audio_attention_mask,
|
| 408 |
'input_modes': input_modes,
|
|
|
|
| 409 |
'answer': answer_list,
|
| 410 |
}
|
| 411 |
)
|
| 412 |
|
| 413 |
+
def save_results(results, dataset_name, task, source_lang, target_lang=None, sample_idx=None):
|
| 414 |
"""๊ฒฐ๊ณผ๋ฅผ JSON ํ์ผ๋ก ์ ์ฅ"""
|
| 415 |
+
filename = f"{task}_{dataset_name}_{source_lang}"
|
| 416 |
if target_lang:
|
| 417 |
filename += f"_to_{target_lang}"
|
| 418 |
if sample_idx is not None:
|
|
|
|
| 447 |
|
| 448 |
# ๋ฐฐ์น ๋จ์๋ก ์ฒ๋ฆฌ
|
| 449 |
for batch_idx, batch in enumerate(tqdm(dataloader)):
|
|
|
|
| 450 |
batch_references = batch.pop("answer")
|
| 451 |
|
| 452 |
# GPU๋ก ์ด๋
|
|
|
|
| 455 |
|
| 456 |
# ๋ฐฐ์น ์ถ๋ก
|
| 457 |
with torch.inference_mode():
|
| 458 |
+
generate_ids = model.generate(**batch,
|
| 459 |
+
max_new_tokens=256,
|
| 460 |
+
#temperature = 1.0, top_p = 0.95, top_k = 64, do_sample=True
|
| 461 |
+
)
|
| 462 |
|
| 463 |
input_lengths = batch['input_ids'].shape[1]
|
| 464 |
generate_ids = generate_ids[:, input_lengths:]
|
|
|
|
| 469 |
)
|
| 470 |
|
| 471 |
# ๊ฒฐ๊ณผ ์ ์ฅ
|
| 472 |
+
for i, (reference, prediction) in enumerate(zip(batch_references, batch_predictions)):
|
| 473 |
idx = batch_idx * batch_size + i
|
| 474 |
sample_result = {
|
| 475 |
"id": idx,
|
|
|
|
| 476 |
"reference": reference,
|
| 477 |
"prediction": prediction
|
| 478 |
}
|
|
|
|
| 533 |
"num_samples": len(temp_results),
|
| 534 |
"sample_results": temp_results
|
| 535 |
}
|
| 536 |
+
save_results(partial_results, dataset.name, task_type, source_lang, target_lang)
|
| 537 |
|
| 538 |
for item in sample_results:
|
| 539 |
ref = eval_normalizer(item["reference"])
|
|
|
|
| 555 |
avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
|
| 556 |
|
| 557 |
results = {
|
| 558 |
+
"dataset": dataset.name,
|
| 559 |
"task": task_type,
|
| 560 |
"source_lang": source_lang,
|
| 561 |
"target_lang": target_lang,
|
|
|
|
| 569 |
}
|
| 570 |
|
| 571 |
# ์ต์ข
๊ฒฐ๊ณผ ์ ์ฅ
|
| 572 |
+
save_results(results, dataset.name, task_type, source_lang, target_lang)
|
| 573 |
return results
|
| 574 |
|
| 575 |
# ๋ฉ์ธ ์คํ ์ฝ๋
|
| 576 |
if __name__ == "__main__":
|
| 577 |
# ํ๊ฐํ ์ธ์ด ๋ชฉ๋ก (์์ค ์ธ์ด)
|
| 578 |
source_languages = [
|
|
|
|
| 579 |
#("ko_kr", "Korean"),
|
| 580 |
+
("en_us", "English"), # ์์ด (๋ฏธ๊ตญ)
|
| 581 |
]
|
| 582 |
|
| 583 |
# ๋ฒ์ญ ๋์ ์ธ์ด ๋ชฉ๋ก (์ฝ๋, ์ด๋ฆ)
|
| 584 |
target_languages = [
|
|
|
|
| 585 |
#("en_us", "English"),
|
| 586 |
+
("ko_kr", "Korean"),
|
| 587 |
]
|
| 588 |
|
| 589 |
data_dir = {
|
|
|
|
| 590 |
#"ko_kr" : "/workspace/CommonVoice/ko",
|
| 591 |
+
"en_us" : "/workspace/CommonVoice/EN",
|
| 592 |
}
|
| 593 |
|
| 594 |
# ์ํ ์ ์ค์ (-1์ ์ ์ฒด ๋ฐ์ดํฐ์
์ฌ์ฉ)
|
| 595 |
num_samples = -1
|
| 596 |
+
batch_size = 32
|
| 597 |
|
| 598 |
# ๋ชจ๋ ์์ค ์ธ์ด์ ๋ํด ASR ํ๊ฐ
|
| 599 |
for source_lang, target_lang in zip(source_languages, target_languages):
|
| 600 |
print(f"\n===== {source_lang[0]} ASR ํ๊ฐ ์์ =====")
|
| 601 |
|
| 602 |
# ๋ฐ์ดํฐ์
๋ก๋
|
| 603 |
+
split = "test"
|
| 604 |
|
| 605 |
+
datasets = []
|
| 606 |
+
|
| 607 |
+
# Covost ASR mode (English -> English text)
|
| 608 |
+
covost = CoVoSTDataset(
|
| 609 |
+
processor=processor,
|
| 610 |
+
data_dir="/workspace/CommonVoice/EN",
|
| 611 |
+
split=split,
|
| 612 |
+
ast=False,
|
| 613 |
+
lang=("en_ko", "Korean")
|
| 614 |
+
)
|
| 615 |
+
datasets.append(covost)
|
| 616 |
+
|
| 617 |
+
# Libri Speech Clean ASR mode (English -> English text)
|
| 618 |
+
libri_speech_clean = LibriSpeechDataset(
|
| 619 |
+
processor=processor,
|
| 620 |
+
subset="clean",
|
| 621 |
+
split=split
|
| 622 |
+
)
|
| 623 |
+
datasets.append(libri_speech_clean)
|
| 624 |
+
|
| 625 |
+
# Libri Speech Other ASR mode (English -> English text)
|
| 626 |
+
libri_speech_other = LibriSpeechDataset(
|
| 627 |
+
processor=processor,
|
| 628 |
+
subset="other",
|
| 629 |
+
split=split
|
| 630 |
+
)
|
| 631 |
+
datasets.append(libri_speech_other)
|
| 632 |
+
|
| 633 |
+
# Fleurs ASR mode (English -> English text)
|
| 634 |
+
fleurs = FleursDataset(
|
| 635 |
+
processor=processor,
|
| 636 |
+
split=split,
|
| 637 |
+
source_lang="en_us", # English
|
| 638 |
+
mode="asr"
|
| 639 |
+
)
|
| 640 |
+
datasets.append(fleurs)
|
| 641 |
+
|
| 642 |
+
for dataset in datasets:
|
| 643 |
+
# ASR ํ๊ฐ
|
| 644 |
+
asr_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = True)
|
| 645 |
|
| 646 |
+
print(f"\n=== {asr_results.get('dataset', 'Dataset')} | {source_lang[0]} ASR ๊ฒฐ๊ณผ ===")
|
| 647 |
+
print(f"BLEU: {asr_results.get('metrics', {}).get('bleu', 'N/A')}")
|
| 648 |
+
print(f"WER: {asr_results.get('metrics', {}).get('wer', 'N/A')}")
|
| 649 |
+
print(f"CER: {asr_results.get('metrics', {}).get('cer', 'N/A')}")
|
| 650 |
+
|
| 651 |
try:
|
| 652 |
print(f"\n===== {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ํ๊ฐ ์์ =====")
|
| 653 |
+
|
| 654 |
+
datasets = []
|
| 655 |
+
|
| 656 |
+
# Covost AST mode (English -> Korean text)
|
| 657 |
+
covost = CoVoSTDataset(
|
| 658 |
+
processor=processor,
|
| 659 |
+
data_dir="/workspace/CommonVoice/EN",
|
| 660 |
+
split=split,
|
| 661 |
+
ast=True,
|
| 662 |
+
lang=("en_ko", "Korean")
|
| 663 |
+
)
|
| 664 |
+
datasets.append(covost)
|
| 665 |
+
|
| 666 |
+
# Fleurs AST mode (English -> Korean text)
|
| 667 |
+
fleurs = FleursDataset(
|
| 668 |
+
processor=processor,
|
| 669 |
+
split=split,
|
| 670 |
+
source_lang="en_us", # English
|
| 671 |
+
target_lang="ko_kr", # Korean
|
| 672 |
+
mode="ast"
|
| 673 |
+
)
|
| 674 |
+
datasets.append(fleurs)
|
| 675 |
|
| 676 |
+
for dataset in datasets:
|
| 677 |
+
# ๋ฒ์ญ ํ๊ฐ
|
| 678 |
+
translation_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = False)
|
| 679 |
+
|
| 680 |
+
print(f"\n=== {translation_results.get('dataset', 'Dataset')} | {source_lang[0]} -> {target_lang[0]} ๋ฒ์ญ ๊ฒฐ๊ณผ ===")
|
| 681 |
+
print(f"BLEU: {translation_results.get('metrics', {}).get('bleu', 'N/A')}")
|
| 682 |
+
print(f"WER: {translation_results.get('metrics', {}).get('wer', 'N/A')}")
|
| 683 |
+
print(f"CER: {translation_results.get('metrics', {}).get('cer', 'N/A')}")
|
| 684 |
|
| 685 |
except Exception as e:
|
| 686 |
error_info = {
|