k1h0 commited on
Commit
c44e676
·
verified ·
1 Parent(s): 37efcb9

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_under8_nsx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_under8_nsx
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the codes_nsx_under8 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 384
46
+ - total_eval_batch_size: 24
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9943502824858758,
3
+ "num_input_tokens_seen": 69206016,
4
+ "total_flos": 2.9359762154685727e+18,
5
+ "train_loss": 0.8689587211067026,
6
+ "train_runtime": 6937.0161,
7
+ "train_samples_per_second": 2.448,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 1.0,
22
+ "high_freq_factor": 4.0,
23
+ "low_freq_factor": 1.0,
24
+ "original_max_position_embeddings": 32768,
25
+ "rope_type": "llama3"
26
+ },
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.48.2",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 152064
35
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: Qwen2.5-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: qwen
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_nsx_under8
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 1000
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6f069918b07c064cbba8ae4f00f529aa9bbf84b7cdfcb7fc2694a40f6aa8ef
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ce54ed2faa3e2bae0852f9b859e4dd63c98b468b4db1f87c936a3c748854cb
3
+ size 4932749648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dfa76babe05a3ca6b3a27ffb1b6d837e5a2cf6d5985a49c938ebaa5450ac3ca
3
+ size 4991480296
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c93799b124f07f5b80b2057eb05fbf1ced98323a3df545595904ec2757774006
3
+ size 1361612328
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16163464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors"
345
+ }
346
+ }
running_log.txt ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-07-08 10:09:20] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
2
+
3
+ [INFO|2025-07-08 10:09:20] configuration_utils.py:768 >> Model config Qwen2Config {
4
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
5
+ "architectures": [
6
+ "Qwen2ForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151645,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3584,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 18944,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2",
18
+ "num_attention_heads": 28,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 4,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000.0,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.48.2",
28
+ "use_cache": true,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 152064
31
+ }
32
+
33
+
34
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/vocab.json
35
+
36
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/merges.txt
37
+
38
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer.json
39
+
40
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
41
+
42
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
43
+
44
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer_config.json
45
+
46
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
47
+
48
+ [INFO|2025-07-08 10:09:20] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
49
+
50
+ [INFO|2025-07-08 10:09:20] logging.py:157 >> Add <|im_end|> to stop words.
51
+
52
+ [INFO|2025-07-08 10:09:20] logging.py:157 >> Loading dataset Codes3_query_filtered_553474_mark_less_than_8.0.json...
53
+
54
+ [INFO|2025-07-08 10:09:48] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
55
+
56
+ [INFO|2025-07-08 10:09:48] configuration_utils.py:768 >> Model config Qwen2Config {
57
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
58
+ "architectures": [
59
+ "Qwen2ForCausalLM"
60
+ ],
61
+ "attention_dropout": 0.0,
62
+ "bos_token_id": 151643,
63
+ "eos_token_id": 151645,
64
+ "hidden_act": "silu",
65
+ "hidden_size": 3584,
66
+ "initializer_range": 0.02,
67
+ "intermediate_size": 18944,
68
+ "max_position_embeddings": 32768,
69
+ "max_window_layers": 28,
70
+ "model_type": "qwen2",
71
+ "num_attention_heads": 28,
72
+ "num_hidden_layers": 28,
73
+ "num_key_value_heads": 4,
74
+ "rms_norm_eps": 1e-06,
75
+ "rope_scaling": null,
76
+ "rope_theta": 1000000.0,
77
+ "sliding_window": null,
78
+ "tie_word_embeddings": false,
79
+ "torch_dtype": "bfloat16",
80
+ "transformers_version": "4.48.2",
81
+ "use_cache": true,
82
+ "use_sliding_window": false,
83
+ "vocab_size": 152064
84
+ }
85
+
86
+
87
+ [WARNING|2025-07-08 10:09:48] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
88
+
89
+ [INFO|2025-07-08 10:09:48] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
90
+
91
+ [INFO|2025-07-08 10:09:48] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
92
+
93
+ [INFO|2025-07-08 10:09:48] logging.py:157 >> Liger kernel has been applied to the model.
94
+
95
+ [INFO|2025-07-08 10:09:48] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/model.safetensors.index.json
96
+
97
+ [INFO|2025-07-08 10:09:48] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
98
+
99
+ [INFO|2025-07-08 10:09:48] configuration_utils.py:1140 >> Generate config GenerationConfig {
100
+ "bos_token_id": 151643,
101
+ "eos_token_id": 151645
102
+ }
103
+
104
+
105
+ [INFO|2025-07-08 10:09:53] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
106
+
107
+
108
+ [INFO|2025-07-08 10:09:53] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-Coder-7B-Instruct.
109
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
110
+
111
+ [INFO|2025-07-08 10:09:53] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/generation_config.json
112
+
113
+ [INFO|2025-07-08 10:09:53] configuration_utils.py:1140 >> Generate config GenerationConfig {
114
+ "bos_token_id": 151643,
115
+ "do_sample": true,
116
+ "eos_token_id": [
117
+ 151645,
118
+ 151643
119
+ ],
120
+ "pad_token_id": 151643,
121
+ "repetition_penalty": 1.1,
122
+ "temperature": 0.7,
123
+ "top_k": 20,
124
+ "top_p": 0.8
125
+ }
126
+
127
+
128
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Gradient checkpointing enabled.
129
+
130
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Using torch SDPA for faster training and inference.
131
+
132
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Upcasting trainable params to float32.
133
+
134
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Fine-tuning method: Freeze
135
+
136
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Set trainable layers: .13.,.27.
137
+
138
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> trainable params: 466,115,584 || all params: 7,615,616,512 || trainable%: 6.1205
139
+
140
+ [INFO|2025-07-08 10:09:53] trainer.py:741 >> Using auto half precision backend
141
+
142
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Found linear modules: down_proj,k_proj,o_proj,up_proj,q_proj,v_proj,gate_proj
143
+
144
+ [INFO|2025-07-08 10:09:53] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
145
+
146
+ [INFO|2025-07-08 10:09:54] trainer.py:2369 >> ***** Running training *****
147
+
148
+ [INFO|2025-07-08 10:09:54] trainer.py:2370 >> Num examples = 16,981
149
+
150
+ [INFO|2025-07-08 10:09:54] trainer.py:2371 >> Num Epochs = 1
151
+
152
+ [INFO|2025-07-08 10:09:54] trainer.py:2372 >> Instantaneous batch size per device = 16
153
+
154
+ [INFO|2025-07-08 10:09:54] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 384
155
+
156
+ [INFO|2025-07-08 10:09:54] trainer.py:2376 >> Gradient Accumulation steps = 8
157
+
158
+ [INFO|2025-07-08 10:09:54] trainer.py:2377 >> Total optimization steps = 44
159
+
160
+ [INFO|2025-07-08 10:09:54] trainer.py:2378 >> Number of trainable parameters = 466,115,584
161
+
162
+ [INFO|2025-07-08 10:12:41] logging.py:157 >> {'loss': 1.1536, 'learning_rate': 4.9936e-05, 'epoch': 0.02, 'throughput': 9464.56}
163
+
164
+ [INFO|2025-07-08 10:15:17] logging.py:157 >> {'loss': 1.1215, 'learning_rate': 4.9746e-05, 'epoch': 0.05, 'throughput': 9756.96}
165
+
166
+ [INFO|2025-07-08 10:17:54] logging.py:157 >> {'loss': 1.0725, 'learning_rate': 4.9429e-05, 'epoch': 0.07, 'throughput': 9852.97}
167
+
168
+ [INFO|2025-07-08 10:20:32] logging.py:157 >> {'loss': 1.0047, 'learning_rate': 4.8987e-05, 'epoch': 0.09, 'throughput': 9867.27}
169
+
170
+ [INFO|2025-07-08 10:23:09] logging.py:157 >> {'loss': 0.9418, 'learning_rate': 4.8424e-05, 'epoch': 0.11, 'throughput': 9897.39}
171
+
172
+ [INFO|2025-07-08 10:25:47] logging.py:157 >> {'loss': 0.9885, 'learning_rate': 4.7741e-05, 'epoch': 0.14, 'throughput': 9908.82}
173
+
174
+ [INFO|2025-07-08 10:28:25] logging.py:157 >> {'loss': 0.9354, 'learning_rate': 4.6942e-05, 'epoch': 0.16, 'throughput': 9918.69}
175
+
176
+ [INFO|2025-07-08 10:31:01] logging.py:157 >> {'loss': 0.8844, 'learning_rate': 4.6031e-05, 'epoch': 0.18, 'throughput': 9935.83}
177
+
178
+ [INFO|2025-07-08 10:33:39] logging.py:157 >> {'loss': 0.9354, 'learning_rate': 4.5014e-05, 'epoch': 0.20, 'throughput': 9938.21}
179
+
180
+ [INFO|2025-07-08 10:36:15] logging.py:157 >> {'loss': 0.9176, 'learning_rate': 4.3894e-05, 'epoch': 0.23, 'throughput': 9950.66}
181
+
182
+ [INFO|2025-07-08 10:38:59] logging.py:157 >> {'loss': 0.8972, 'learning_rate': 4.2678e-05, 'epoch': 0.25, 'throughput': 9919.94}
183
+
184
+ [INFO|2025-07-08 10:41:37] logging.py:157 >> {'loss': 0.8788, 'learning_rate': 4.1372e-05, 'epoch': 0.27, 'throughput': 9921.44}
185
+
186
+ [INFO|2025-07-08 10:44:13] logging.py:157 >> {'loss': 0.8609, 'learning_rate': 3.9982e-05, 'epoch': 0.29, 'throughput': 9931.94}
187
+
188
+ [INFO|2025-07-08 10:46:50] logging.py:157 >> {'loss': 0.8719, 'learning_rate': 3.8516e-05, 'epoch': 0.32, 'throughput': 9940.78}
189
+
190
+ [INFO|2025-07-08 10:49:26] logging.py:157 >> {'loss': 0.8662, 'learning_rate': 3.6981e-05, 'epoch': 0.34, 'throughput': 9948.22}
191
+
192
+ [INFO|2025-07-08 10:52:04] logging.py:157 >> {'loss': 0.8663, 'learning_rate': 3.5385e-05, 'epoch': 0.36, 'throughput': 9950.11}
193
+
194
+ [INFO|2025-07-08 10:54:41] logging.py:157 >> {'loss': 0.8709, 'learning_rate': 3.3737e-05, 'epoch': 0.38, 'throughput': 9955.21}
195
+
196
+ [INFO|2025-07-08 10:57:21] logging.py:157 >> {'loss': 0.8467, 'learning_rate': 3.2043e-05, 'epoch': 0.41, 'throughput': 9948.37}
197
+
198
+ [INFO|2025-07-08 10:59:58] logging.py:157 >> {'loss': 0.8586, 'learning_rate': 3.0314e-05, 'epoch': 0.43, 'throughput': 9951.73}
199
+
200
+ [INFO|2025-07-08 11:02:34] logging.py:157 >> {'loss': 0.8146, 'learning_rate': 2.8558e-05, 'epoch': 0.45, 'throughput': 9958.64}
201
+
202
+ [INFO|2025-07-08 11:05:10] logging.py:157 >> {'loss': 0.8188, 'learning_rate': 2.6783e-05, 'epoch': 0.47, 'throughput': 9963.10}
203
+
204
+ [INFO|2025-07-08 11:07:46] logging.py:157 >> {'loss': 0.8239, 'learning_rate': 2.5000e-05, 'epoch': 0.50, 'throughput': 9968.54}
205
+
206
+ [INFO|2025-07-08 11:10:26] logging.py:157 >> {'loss': 0.8436, 'learning_rate': 2.3217e-05, 'epoch': 0.52, 'throughput': 9962.09}
207
+
208
+ [INFO|2025-07-08 11:13:02] logging.py:157 >> {'loss': 0.8271, 'learning_rate': 2.1442e-05, 'epoch': 0.54, 'throughput': 9967.19}
209
+
210
+ [INFO|2025-07-08 11:15:40] logging.py:157 >> {'loss': 0.8421, 'learning_rate': 1.9686e-05, 'epoch': 0.56, 'throughput': 9967.45}
211
+
212
+ [INFO|2025-07-08 11:18:16] logging.py:157 >> {'loss': 0.8239, 'learning_rate': 1.7957e-05, 'epoch': 0.59, 'throughput': 9971.21}
213
+
214
+ [INFO|2025-07-08 11:20:52] logging.py:157 >> {'loss': 0.8005, 'learning_rate': 1.6263e-05, 'epoch': 0.61, 'throughput': 9974.62}
215
+
216
+ [INFO|2025-07-08 11:23:29] logging.py:157 >> {'loss': 0.8360, 'learning_rate': 1.4615e-05, 'epoch': 0.63, 'throughput': 9976.73}
217
+
218
+ [INFO|2025-07-08 11:26:06] logging.py:157 >> {'loss': 0.8231, 'learning_rate': 1.3019e-05, 'epoch': 0.66, 'throughput': 9977.25}
219
+
220
+ [INFO|2025-07-08 11:28:43] logging.py:157 >> {'loss': 0.7963, 'learning_rate': 1.1484e-05, 'epoch': 0.68, 'throughput': 9978.92}
221
+
222
+ [INFO|2025-07-08 11:31:19] logging.py:157 >> {'loss': 0.8199, 'learning_rate': 1.0018e-05, 'epoch': 0.70, 'throughput': 9982.42}
223
+
224
+ [INFO|2025-07-08 11:33:56] logging.py:157 >> {'loss': 0.8411, 'learning_rate': 8.6285e-06, 'epoch': 0.72, 'throughput': 9984.05}
225
+
226
+ [INFO|2025-07-08 11:36:34] logging.py:157 >> {'loss': 0.8219, 'learning_rate': 7.3223e-06, 'epoch': 0.75, 'throughput': 9983.50}
227
+
228
+ [INFO|2025-07-08 11:39:09] logging.py:157 >> {'loss': 0.8057, 'learning_rate': 6.1063e-06, 'epoch': 0.77, 'throughput': 9987.10}
229
+
230
+ [INFO|2025-07-08 11:41:46] logging.py:157 >> {'loss': 0.8147, 'learning_rate': 4.9865e-06, 'epoch': 0.79, 'throughput': 9988.07}
231
+
232
+ [INFO|2025-07-08 11:44:22] logging.py:157 >> {'loss': 0.8138, 'learning_rate': 3.9687e-06, 'epoch': 0.81, 'throughput': 9990.56}
233
+
234
+ [INFO|2025-07-08 11:46:59] logging.py:157 >> {'loss': 0.8135, 'learning_rate': 3.0580e-06, 'epoch': 0.84, 'throughput': 9991.17}
235
+
236
+ [INFO|2025-07-08 11:49:35] logging.py:157 >> {'loss': 0.8158, 'learning_rate': 2.2592e-06, 'epoch': 0.86, 'throughput': 9993.85}
237
+
238
+ [INFO|2025-07-08 11:52:14] logging.py:157 >> {'loss': 0.8087, 'learning_rate': 1.5763e-06, 'epoch': 0.88, 'throughput': 9991.63}
239
+
240
+ [INFO|2025-07-08 11:54:51] logging.py:157 >> {'loss': 0.8183, 'learning_rate': 1.0127e-06, 'epoch': 0.90, 'throughput': 9993.15}
241
+
242
+ [INFO|2025-07-08 11:57:25] logging.py:157 >> {'loss': 0.8280, 'learning_rate': 5.7133e-07, 'epoch': 0.93, 'throughput': 9997.39}
243
+
244
+ [INFO|2025-07-08 11:59:59] logging.py:157 >> {'loss': 0.8196, 'learning_rate': 2.5446e-07, 'epoch': 0.95, 'throughput': 10002.91}
245
+
246
+ [INFO|2025-07-08 12:02:33] logging.py:157 >> {'loss': 0.7919, 'learning_rate': 6.3697e-08, 'epoch': 0.97, 'throughput': 10008.14}
247
+
248
+ [INFO|2025-07-08 12:05:07] logging.py:157 >> {'loss': 0.7989, 'learning_rate': 0.0000e+00, 'epoch': 0.99, 'throughput': 10012.24}
249
+
250
+ [INFO|2025-07-08 12:05:07] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44
251
+
252
+ [INFO|2025-07-08 12:05:07] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44/config.json
253
+
254
+ [INFO|2025-07-08 12:05:07] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44/generation_config.json
255
+
256
+ [INFO|2025-07-08 12:05:30] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44/model.safetensors.index.json.
257
+
258
+ [INFO|2025-07-08 12:05:30] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44/tokenizer_config.json
259
+
260
+ [INFO|2025-07-08 12:05:30] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/checkpoint-44/special_tokens_map.json
261
+
262
+ [INFO|2025-07-08 12:05:31] trainer.py:2643 >>
263
+
264
+ Training completed. Do not forget to share your model on huggingface.co/models =)
265
+
266
+
267
+
268
+ [INFO|2025-07-08 12:05:31] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx
269
+
270
+ [INFO|2025-07-08 12:05:31] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/config.json
271
+
272
+ [INFO|2025-07-08 12:05:31] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/generation_config.json
273
+
274
+ [INFO|2025-07-08 12:05:54] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/model.safetensors.index.json.
275
+
276
+ [INFO|2025-07-08 12:05:54] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/tokenizer_config.json
277
+
278
+ [INFO|2025-07-08 12:05:54] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx/special_tokens_map.json
279
+
280
+ [WARNING|2025-07-08 12:05:55] logging.py:162 >> No metric eval_loss to plot.
281
+
282
+ [WARNING|2025-07-08 12:05:55] logging.py:162 >> No metric eval_accuracy to plot.
283
+
284
+ [INFO|2025-07-08 12:05:55] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
285
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
286
+
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 4096,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9943502824858758,
3
+ "num_input_tokens_seen": 69206016,
4
+ "total_flos": 2.9359762154685727e+18,
5
+ "train_loss": 0.8689587211067026,
6
+ "train_runtime": 6937.0161,
7
+ "train_samples_per_second": 2.448,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 44, "loss": 1.1536, "lr": 4.993630286525634e-05, "epoch": 0.022598870056497175, "percentage": 2.27, "elapsed_time": "0:02:46", "remaining_time": "1:59:05", "throughput": 9464.56, "total_tokens": 1572864}
2
+ {"current_steps": 2, "total_steps": 44, "loss": 1.1215, "lr": 4.9745536047023324e-05, "epoch": 0.04519774011299435, "percentage": 4.55, "elapsed_time": "0:05:22", "remaining_time": "1:52:50", "throughput": 9756.96, "total_tokens": 3145728}
3
+ {"current_steps": 3, "total_steps": 44, "loss": 1.0725, "lr": 4.942867164927899e-05, "epoch": 0.06779661016949153, "percentage": 6.82, "elapsed_time": "0:07:58", "remaining_time": "1:49:04", "throughput": 9852.97, "total_tokens": 4718592}
4
+ {"current_steps": 4, "total_steps": 44, "loss": 1.0047, "lr": 4.898732434036244e-05, "epoch": 0.0903954802259887, "percentage": 9.09, "elapsed_time": "0:10:37", "remaining_time": "1:46:16", "throughput": 9867.27, "total_tokens": 6291456}
5
+ {"current_steps": 5, "total_steps": 44, "loss": 0.9418, "lr": 4.842374312499405e-05, "epoch": 0.11299435028248588, "percentage": 11.36, "elapsed_time": "0:13:14", "remaining_time": "1:43:17", "throughput": 9897.39, "total_tokens": 7864320}
6
+ {"current_steps": 6, "total_steps": 44, "loss": 0.9885, "lr": 4.774079988386296e-05, "epoch": 0.13559322033898305, "percentage": 13.64, "elapsed_time": "0:15:52", "remaining_time": "1:40:31", "throughput": 9908.82, "total_tokens": 9437184}
7
+ {"current_steps": 7, "total_steps": 44, "loss": 0.9354, "lr": 4.6941974739181395e-05, "epoch": 0.15819209039548024, "percentage": 15.91, "elapsed_time": "0:18:30", "remaining_time": "1:37:47", "throughput": 9918.69, "total_tokens": 11010048}
8
+ {"current_steps": 8, "total_steps": 44, "loss": 0.8844, "lr": 4.6031338320779534e-05, "epoch": 0.1807909604519774, "percentage": 18.18, "elapsed_time": "0:21:06", "remaining_time": "1:34:58", "throughput": 9935.83, "total_tokens": 12582912}
9
+ {"current_steps": 9, "total_steps": 44, "loss": 0.9354, "lr": 4.5013531023109014e-05, "epoch": 0.2033898305084746, "percentage": 20.45, "elapsed_time": "0:23:44", "remaining_time": "1:32:19", "throughput": 9938.21, "total_tokens": 14155776}
10
+ {"current_steps": 10, "total_steps": 44, "loss": 0.9176, "lr": 4.389373935885646e-05, "epoch": 0.22598870056497175, "percentage": 22.73, "elapsed_time": "0:26:20", "remaining_time": "1:29:34", "throughput": 9950.66, "total_tokens": 15728640}
11
+ {"current_steps": 11, "total_steps": 44, "loss": 0.8972, "lr": 4.267766952966369e-05, "epoch": 0.24858757062146894, "percentage": 25.0, "elapsed_time": "0:29:04", "remaining_time": "1:27:12", "throughput": 9919.94, "total_tokens": 17301504}
12
+ {"current_steps": 12, "total_steps": 44, "loss": 0.8788, "lr": 4.137151834863213e-05, "epoch": 0.2711864406779661, "percentage": 27.27, "elapsed_time": "0:31:42", "remaining_time": "1:24:33", "throughput": 9921.44, "total_tokens": 18874368}
13
+ {"current_steps": 13, "total_steps": 44, "loss": 0.8609, "lr": 3.9981941662783674e-05, "epoch": 0.2937853107344633, "percentage": 29.55, "elapsed_time": "0:34:18", "remaining_time": "1:21:49", "throughput": 9931.94, "total_tokens": 20447232}
14
+ {"current_steps": 14, "total_steps": 44, "loss": 0.8719, "lr": 3.851602043638994e-05, "epoch": 0.3163841807909605, "percentage": 31.82, "elapsed_time": "0:36:55", "remaining_time": "1:19:06", "throughput": 9940.78, "total_tokens": 22020096}
15
+ {"current_steps": 15, "total_steps": 44, "loss": 0.8662, "lr": 3.6981224668001424e-05, "epoch": 0.3389830508474576, "percentage": 34.09, "elapsed_time": "0:39:31", "remaining_time": "1:16:25", "throughput": 9948.22, "total_tokens": 23592960}
16
+ {"current_steps": 16, "total_steps": 44, "loss": 0.8663, "lr": 3.5385375325047166e-05, "epoch": 0.3615819209039548, "percentage": 36.36, "elapsed_time": "0:42:09", "remaining_time": "1:13:46", "throughput": 9950.11, "total_tokens": 25165824}
17
+ {"current_steps": 17, "total_steps": 44, "loss": 0.8709, "lr": 3.3736604489977466e-05, "epoch": 0.384180790960452, "percentage": 38.64, "elapsed_time": "0:44:45", "remaining_time": "1:11:05", "throughput": 9955.21, "total_tokens": 26738688}
18
+ {"current_steps": 18, "total_steps": 44, "loss": 0.8467, "lr": 3.2043313921035743e-05, "epoch": 0.4067796610169492, "percentage": 40.91, "elapsed_time": "0:47:25", "remaining_time": "1:08:30", "throughput": 9948.37, "total_tokens": 28311552}
19
+ {"current_steps": 19, "total_steps": 44, "loss": 0.8586, "lr": 3.0314132238824415e-05, "epoch": 0.4293785310734463, "percentage": 43.18, "elapsed_time": "0:50:02", "remaining_time": "1:05:51", "throughput": 9951.73, "total_tokens": 29884416}
20
+ {"current_steps": 20, "total_steps": 44, "loss": 0.8146, "lr": 2.8557870956832132e-05, "epoch": 0.4519774011299435, "percentage": 45.45, "elapsed_time": "0:52:38", "remaining_time": "1:03:10", "throughput": 9958.64, "total_tokens": 31457280}
21
+ {"current_steps": 21, "total_steps": 44, "loss": 0.8188, "lr": 2.6783479579980807e-05, "epoch": 0.4745762711864407, "percentage": 47.73, "elapsed_time": "0:55:15", "remaining_time": "1:00:30", "throughput": 9963.1, "total_tokens": 33030144}
22
+ {"current_steps": 22, "total_steps": 44, "loss": 0.8239, "lr": 2.5e-05, "epoch": 0.4971751412429379, "percentage": 50.0, "elapsed_time": "0:57:51", "remaining_time": "0:57:51", "throughput": 9968.54, "total_tokens": 34603008}
23
+ {"current_steps": 23, "total_steps": 44, "loss": 0.8436, "lr": 2.3216520420019195e-05, "epoch": 0.519774011299435, "percentage": 52.27, "elapsed_time": "1:00:31", "remaining_time": "0:55:15", "throughput": 9962.09, "total_tokens": 36175872}
24
+ {"current_steps": 24, "total_steps": 44, "loss": 0.8271, "lr": 2.1442129043167874e-05, "epoch": 0.5423728813559322, "percentage": 54.55, "elapsed_time": "1:03:07", "remaining_time": "0:52:36", "throughput": 9967.19, "total_tokens": 37748736}
25
+ {"current_steps": 25, "total_steps": 44, "loss": 0.8421, "lr": 1.9685867761175584e-05, "epoch": 0.5649717514124294, "percentage": 56.82, "elapsed_time": "1:05:45", "remaining_time": "0:49:58", "throughput": 9967.45, "total_tokens": 39321600}
26
+ {"current_steps": 26, "total_steps": 44, "loss": 0.8239, "lr": 1.795668607896426e-05, "epoch": 0.5875706214689266, "percentage": 59.09, "elapsed_time": "1:08:21", "remaining_time": "0:47:19", "throughput": 9971.21, "total_tokens": 40894464}
27
+ {"current_steps": 27, "total_steps": 44, "loss": 0.8005, "lr": 1.6263395510022543e-05, "epoch": 0.6101694915254238, "percentage": 61.36, "elapsed_time": "1:10:57", "remaining_time": "0:44:40", "throughput": 9974.62, "total_tokens": 42467328}
28
+ {"current_steps": 28, "total_steps": 44, "loss": 0.836, "lr": 1.4614624674952842e-05, "epoch": 0.632768361581921, "percentage": 63.64, "elapsed_time": "1:13:34", "remaining_time": "0:42:02", "throughput": 9976.73, "total_tokens": 44040192}
29
+ {"current_steps": 29, "total_steps": 44, "loss": 0.8231, "lr": 1.301877533199859e-05, "epoch": 0.655367231638418, "percentage": 65.91, "elapsed_time": "1:16:11", "remaining_time": "0:39:24", "throughput": 9977.25, "total_tokens": 45613056}
30
+ {"current_steps": 30, "total_steps": 44, "loss": 0.7963, "lr": 1.148397956361007e-05, "epoch": 0.6779661016949152, "percentage": 68.18, "elapsed_time": "1:18:48", "remaining_time": "0:36:46", "throughput": 9978.92, "total_tokens": 47185920}
31
+ {"current_steps": 31, "total_steps": 44, "loss": 0.8199, "lr": 1.0018058337216327e-05, "epoch": 0.7005649717514124, "percentage": 70.45, "elapsed_time": "1:21:24", "remaining_time": "0:34:08", "throughput": 9982.42, "total_tokens": 48758784}
32
+ {"current_steps": 32, "total_steps": 44, "loss": 0.8411, "lr": 8.628481651367876e-06, "epoch": 0.7231638418079096, "percentage": 72.73, "elapsed_time": "1:24:01", "remaining_time": "0:31:30", "throughput": 9984.05, "total_tokens": 50331648}
33
+ {"current_steps": 33, "total_steps": 44, "loss": 0.8219, "lr": 7.3223304703363135e-06, "epoch": 0.7457627118644068, "percentage": 75.0, "elapsed_time": "1:26:39", "remaining_time": "0:28:53", "throughput": 9983.5, "total_tokens": 51904512}
34
+ {"current_steps": 34, "total_steps": 44, "loss": 0.8057, "lr": 6.106260641143546e-06, "epoch": 0.768361581920904, "percentage": 77.27, "elapsed_time": "1:29:14", "remaining_time": "0:26:14", "throughput": 9987.1, "total_tokens": 53477376}
35
+ {"current_steps": 35, "total_steps": 44, "loss": 0.8147, "lr": 4.986468976890993e-06, "epoch": 0.7909604519774012, "percentage": 79.55, "elapsed_time": "1:31:51", "remaining_time": "0:23:37", "throughput": 9988.07, "total_tokens": 55050240}
36
+ {"current_steps": 36, "total_steps": 44, "loss": 0.8138, "lr": 3.968661679220468e-06, "epoch": 0.8135593220338984, "percentage": 81.82, "elapsed_time": "1:34:27", "remaining_time": "0:20:59", "throughput": 9990.56, "total_tokens": 56623104}
37
+ {"current_steps": 37, "total_steps": 44, "loss": 0.8135, "lr": 3.058025260818609e-06, "epoch": 0.8361581920903954, "percentage": 84.09, "elapsed_time": "1:37:04", "remaining_time": "0:18:21", "throughput": 9991.17, "total_tokens": 58195968}
38
+ {"current_steps": 38, "total_steps": 44, "loss": 0.8158, "lr": 2.2592001161370392e-06, "epoch": 0.8587570621468926, "percentage": 86.36, "elapsed_time": "1:39:40", "remaining_time": "0:15:44", "throughput": 9993.85, "total_tokens": 59768832}
39
+ {"current_steps": 39, "total_steps": 44, "loss": 0.8087, "lr": 1.5762568750059604e-06, "epoch": 0.8813559322033898, "percentage": 88.64, "elapsed_time": "1:42:19", "remaining_time": "0:13:07", "throughput": 9991.63, "total_tokens": 61341696}
40
+ {"current_steps": 40, "total_steps": 44, "loss": 0.8183, "lr": 1.0126756596375686e-06, "epoch": 0.903954802259887, "percentage": 90.91, "elapsed_time": "1:44:55", "remaining_time": "0:10:29", "throughput": 9993.15, "total_tokens": 62914560}
41
+ {"current_steps": 41, "total_steps": 44, "loss": 0.828, "lr": 5.713283507210148e-07, "epoch": 0.9265536723163842, "percentage": 93.18, "elapsed_time": "1:47:30", "remaining_time": "0:07:51", "throughput": 9997.39, "total_tokens": 64487424}
42
+ {"current_steps": 42, "total_steps": 44, "loss": 0.8196, "lr": 2.544639529766829e-07, "epoch": 0.9491525423728814, "percentage": 95.45, "elapsed_time": "1:50:04", "remaining_time": "0:05:14", "throughput": 10002.91, "total_tokens": 66060288}
43
+ {"current_steps": 43, "total_steps": 44, "loss": 0.7919, "lr": 6.369713474366212e-08, "epoch": 0.9717514124293786, "percentage": 97.73, "elapsed_time": "1:52:37", "remaining_time": "0:02:37", "throughput": 10008.14, "total_tokens": 67633152}
44
+ {"current_steps": 44, "total_steps": 44, "loss": 0.7989, "lr": 0.0, "epoch": 0.9943502824858758, "percentage": 100.0, "elapsed_time": "1:55:12", "remaining_time": "0:00:00", "throughput": 10012.24, "total_tokens": 69206016}
45
+ {"current_steps": 44, "total_steps": 44, "epoch": 0.9943502824858758, "percentage": 100.0, "elapsed_time": "1:55:35", "remaining_time": "0:00:00", "throughput": 9977.96, "total_tokens": 69206016}
trainer_state.json ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9943502824858758,
5
+ "eval_steps": 500,
6
+ "global_step": 44,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.022598870056497175,
13
+ "grad_norm": 1.389330267906189,
14
+ "learning_rate": 4.993630286525634e-05,
15
+ "loss": 1.1536,
16
+ "num_input_tokens_seen": 1572864,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.04519774011299435,
21
+ "grad_norm": 1.1050268411636353,
22
+ "learning_rate": 4.9745536047023324e-05,
23
+ "loss": 1.1215,
24
+ "num_input_tokens_seen": 3145728,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.06779661016949153,
29
+ "grad_norm": 0.8083967566490173,
30
+ "learning_rate": 4.942867164927899e-05,
31
+ "loss": 1.0725,
32
+ "num_input_tokens_seen": 4718592,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.0903954802259887,
37
+ "grad_norm": 0.5546463131904602,
38
+ "learning_rate": 4.898732434036244e-05,
39
+ "loss": 1.0047,
40
+ "num_input_tokens_seen": 6291456,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.11299435028248588,
45
+ "grad_norm": 0.3899783194065094,
46
+ "learning_rate": 4.842374312499405e-05,
47
+ "loss": 0.9418,
48
+ "num_input_tokens_seen": 7864320,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.13559322033898305,
53
+ "grad_norm": 0.36992546916007996,
54
+ "learning_rate": 4.774079988386296e-05,
55
+ "loss": 0.9885,
56
+ "num_input_tokens_seen": 9437184,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.15819209039548024,
61
+ "grad_norm": 0.2956640124320984,
62
+ "learning_rate": 4.6941974739181395e-05,
63
+ "loss": 0.9354,
64
+ "num_input_tokens_seen": 11010048,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.1807909604519774,
69
+ "grad_norm": 0.2466004639863968,
70
+ "learning_rate": 4.6031338320779534e-05,
71
+ "loss": 0.8844,
72
+ "num_input_tokens_seen": 12582912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.2033898305084746,
77
+ "grad_norm": 0.25577887892723083,
78
+ "learning_rate": 4.5013531023109014e-05,
79
+ "loss": 0.9354,
80
+ "num_input_tokens_seen": 14155776,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.22598870056497175,
85
+ "grad_norm": 0.24122916162014008,
86
+ "learning_rate": 4.389373935885646e-05,
87
+ "loss": 0.9176,
88
+ "num_input_tokens_seen": 15728640,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.24858757062146894,
93
+ "grad_norm": 0.20128831267356873,
94
+ "learning_rate": 4.267766952966369e-05,
95
+ "loss": 0.8972,
96
+ "num_input_tokens_seen": 17301504,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.2711864406779661,
101
+ "grad_norm": 0.1990034431219101,
102
+ "learning_rate": 4.137151834863213e-05,
103
+ "loss": 0.8788,
104
+ "num_input_tokens_seen": 18874368,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.2937853107344633,
109
+ "grad_norm": 0.18727582693099976,
110
+ "learning_rate": 3.9981941662783674e-05,
111
+ "loss": 0.8609,
112
+ "num_input_tokens_seen": 20447232,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.3163841807909605,
117
+ "grad_norm": 0.183744877576828,
118
+ "learning_rate": 3.851602043638994e-05,
119
+ "loss": 0.8719,
120
+ "num_input_tokens_seen": 22020096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.3389830508474576,
125
+ "grad_norm": 0.19635234773159027,
126
+ "learning_rate": 3.6981224668001424e-05,
127
+ "loss": 0.8662,
128
+ "num_input_tokens_seen": 23592960,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.3615819209039548,
133
+ "grad_norm": 0.18947215378284454,
134
+ "learning_rate": 3.5385375325047166e-05,
135
+ "loss": 0.8663,
136
+ "num_input_tokens_seen": 25165824,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.384180790960452,
141
+ "grad_norm": 0.18483321368694305,
142
+ "learning_rate": 3.3736604489977466e-05,
143
+ "loss": 0.8709,
144
+ "num_input_tokens_seen": 26738688,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.4067796610169492,
149
+ "grad_norm": 0.16091912984848022,
150
+ "learning_rate": 3.2043313921035743e-05,
151
+ "loss": 0.8467,
152
+ "num_input_tokens_seen": 28311552,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.4293785310734463,
157
+ "grad_norm": 0.15878094732761383,
158
+ "learning_rate": 3.0314132238824415e-05,
159
+ "loss": 0.8586,
160
+ "num_input_tokens_seen": 29884416,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.4519774011299435,
165
+ "grad_norm": 0.16434833407402039,
166
+ "learning_rate": 2.8557870956832132e-05,
167
+ "loss": 0.8146,
168
+ "num_input_tokens_seen": 31457280,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.4745762711864407,
173
+ "grad_norm": 0.1497550904750824,
174
+ "learning_rate": 2.6783479579980807e-05,
175
+ "loss": 0.8188,
176
+ "num_input_tokens_seen": 33030144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.4971751412429379,
181
+ "grad_norm": 0.1458846926689148,
182
+ "learning_rate": 2.5e-05,
183
+ "loss": 0.8239,
184
+ "num_input_tokens_seen": 34603008,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.519774011299435,
189
+ "grad_norm": 0.13780465722084045,
190
+ "learning_rate": 2.3216520420019195e-05,
191
+ "loss": 0.8436,
192
+ "num_input_tokens_seen": 36175872,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.5423728813559322,
197
+ "grad_norm": 0.1300361305475235,
198
+ "learning_rate": 2.1442129043167874e-05,
199
+ "loss": 0.8271,
200
+ "num_input_tokens_seen": 37748736,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.5649717514124294,
205
+ "grad_norm": 0.13375268876552582,
206
+ "learning_rate": 1.9685867761175584e-05,
207
+ "loss": 0.8421,
208
+ "num_input_tokens_seen": 39321600,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.5875706214689266,
213
+ "grad_norm": 0.12455960363149643,
214
+ "learning_rate": 1.795668607896426e-05,
215
+ "loss": 0.8239,
216
+ "num_input_tokens_seen": 40894464,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.6101694915254238,
221
+ "grad_norm": 0.11861604452133179,
222
+ "learning_rate": 1.6263395510022543e-05,
223
+ "loss": 0.8005,
224
+ "num_input_tokens_seen": 42467328,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.632768361581921,
229
+ "grad_norm": 0.1256602257490158,
230
+ "learning_rate": 1.4614624674952842e-05,
231
+ "loss": 0.836,
232
+ "num_input_tokens_seen": 44040192,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.655367231638418,
237
+ "grad_norm": 0.12941180169582367,
238
+ "learning_rate": 1.301877533199859e-05,
239
+ "loss": 0.8231,
240
+ "num_input_tokens_seen": 45613056,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.6779661016949152,
245
+ "grad_norm": 0.1277913600206375,
246
+ "learning_rate": 1.148397956361007e-05,
247
+ "loss": 0.7963,
248
+ "num_input_tokens_seen": 47185920,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.7005649717514124,
253
+ "grad_norm": 0.12341845035552979,
254
+ "learning_rate": 1.0018058337216327e-05,
255
+ "loss": 0.8199,
256
+ "num_input_tokens_seen": 48758784,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.7231638418079096,
261
+ "grad_norm": 0.12854008376598358,
262
+ "learning_rate": 8.628481651367876e-06,
263
+ "loss": 0.8411,
264
+ "num_input_tokens_seen": 50331648,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.7457627118644068,
269
+ "grad_norm": 0.12963342666625977,
270
+ "learning_rate": 7.3223304703363135e-06,
271
+ "loss": 0.8219,
272
+ "num_input_tokens_seen": 51904512,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.768361581920904,
277
+ "grad_norm": 0.12576307356357574,
278
+ "learning_rate": 6.106260641143546e-06,
279
+ "loss": 0.8057,
280
+ "num_input_tokens_seen": 53477376,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.7909604519774012,
285
+ "grad_norm": 0.12176015228033066,
286
+ "learning_rate": 4.986468976890993e-06,
287
+ "loss": 0.8147,
288
+ "num_input_tokens_seen": 55050240,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.8135593220338984,
293
+ "grad_norm": 0.12038470059633255,
294
+ "learning_rate": 3.968661679220468e-06,
295
+ "loss": 0.8138,
296
+ "num_input_tokens_seen": 56623104,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.8361581920903954,
301
+ "grad_norm": 0.12175320088863373,
302
+ "learning_rate": 3.058025260818609e-06,
303
+ "loss": 0.8135,
304
+ "num_input_tokens_seen": 58195968,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.8587570621468926,
309
+ "grad_norm": 0.11917068809270859,
310
+ "learning_rate": 2.2592001161370392e-06,
311
+ "loss": 0.8158,
312
+ "num_input_tokens_seen": 59768832,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.8813559322033898,
317
+ "grad_norm": 0.11807029694318771,
318
+ "learning_rate": 1.5762568750059604e-06,
319
+ "loss": 0.8087,
320
+ "num_input_tokens_seen": 61341696,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.903954802259887,
325
+ "grad_norm": 0.12152665853500366,
326
+ "learning_rate": 1.0126756596375686e-06,
327
+ "loss": 0.8183,
328
+ "num_input_tokens_seen": 62914560,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.9265536723163842,
333
+ "grad_norm": 0.1269780844449997,
334
+ "learning_rate": 5.713283507210148e-07,
335
+ "loss": 0.828,
336
+ "num_input_tokens_seen": 64487424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.9491525423728814,
341
+ "grad_norm": 0.12324244529008865,
342
+ "learning_rate": 2.544639529766829e-07,
343
+ "loss": 0.8196,
344
+ "num_input_tokens_seen": 66060288,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.9717514124293786,
349
+ "grad_norm": 0.11345086246728897,
350
+ "learning_rate": 6.369713474366212e-08,
351
+ "loss": 0.7919,
352
+ "num_input_tokens_seen": 67633152,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.9943502824858758,
357
+ "grad_norm": 0.11618965864181519,
358
+ "learning_rate": 0.0,
359
+ "loss": 0.7989,
360
+ "num_input_tokens_seen": 69206016,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.9943502824858758,
365
+ "num_input_tokens_seen": 69206016,
366
+ "step": 44,
367
+ "total_flos": 2.9359762154685727e+18,
368
+ "train_loss": 0.8689587211067026,
369
+ "train_runtime": 6937.0161,
370
+ "train_samples_per_second": 2.448,
371
+ "train_steps_per_second": 0.006
372
+ }
373
+ ],
374
+ "logging_steps": 1,
375
+ "max_steps": 44,
376
+ "num_input_tokens_seen": 69206016,
377
+ "num_train_epochs": 1,
378
+ "save_steps": 1000,
379
+ "stateful_callbacks": {
380
+ "TrainerControl": {
381
+ "args": {
382
+ "should_epoch_stop": false,
383
+ "should_evaluate": false,
384
+ "should_log": false,
385
+ "should_save": true,
386
+ "should_training_stop": true
387
+ },
388
+ "attributes": {}
389
+ }
390
+ },
391
+ "total_flos": 2.9359762154685727e+18,
392
+ "train_batch_size": 16,
393
+ "trial_name": null,
394
+ "trial_params": null
395
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9391951953814b84cc445237bb0ecc801d98372b8195ce4af9dc72a463a296db
3
+ size 5624
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_nsx_under8
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: Qwen/Qwen2.5-Coder-7B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_under8_nsx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 1000
34
+ stage: sft
35
+ template: qwen
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff