karthik commited on
Commit
965d33a
·
1 Parent(s): 7b3a1b2

update code

Browse files
Files changed (3) hide show
  1. README.md +1 -0
  2. handler.py +6 -8
  3. requirements.txt +1 -2
README.md CHANGED
@@ -3,6 +3,7 @@ inference: false
3
  tags:
4
  - musicgen
5
  license: cc-by-nc-4.0
 
6
  ---
7
 
8
  # MusicGen - Small - 300M
 
3
  tags:
4
  - musicgen
5
  license: cc-by-nc-4.0
6
+ duplicated_from: facebook/musicgen-small
7
  ---
8
 
9
  # MusicGen - Small - 300M
handler.py CHANGED
@@ -3,10 +3,10 @@ from transformers import AutoProcessor, MusicgenForConditionalGeneration
3
  import torch
4
 
5
  class EndpointHandler:
6
- def __init__(self, path="karthik/music_gen_unlimited"):
7
  # load model and processor from path
8
  self.processor = AutoProcessor.from_pretrained(path)
9
- self.model = MusicgenForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16).to("cuda")
10
 
11
  def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
12
  """
@@ -26,13 +26,11 @@ class EndpointHandler:
26
 
27
  # pass inputs with all kwargs in data
28
  if parameters is not None:
29
- with torch.autocast("cuda"):
30
- outputs = self.model.generate(**inputs,do_sample=True, guidance_scale=3, max_new_tokens=256, **parameters)
31
  else:
32
- with torch.autocast("cuda"):
33
- outputs = self.model.generate(**inputs,do_sample=True, guidance_scale=3, max_new_tokens=256)
34
 
35
  # postprocess the prediction
36
- prediction = outputs[0].cpu().numpy().tolist()
37
 
38
- return [{"generated_audio": prediction}]
 
3
  import torch
4
 
5
  class EndpointHandler:
6
+ def __init__(self, path=""):
7
  # load model and processor from path
8
  self.processor = AutoProcessor.from_pretrained(path)
9
+ self.model = MusicgenForConditionalGeneration.from_pretrained(path).to("cuda")
10
 
11
  def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
12
  """
 
26
 
27
  # pass inputs with all kwargs in data
28
  if parameters is not None:
29
+ outputs = self.model.generate(**inputs, max_new_tokens=256, **parameters)
 
30
  else:
31
+ outputs = self.model.generate(**inputs, max_new_tokens=256)
 
32
 
33
  # postprocess the prediction
34
+ prediction = outputs[0].cpu().numpy()
35
 
36
+ return [{"generated_text": prediction}]
requirements.txt CHANGED
@@ -1,3 +1,2 @@
1
  transformers==4.31.0
2
- accelerate>=0.20.3
3
-
 
1
  transformers==4.31.0
2
+ accelerate>=0.20.3