Update README.md
Browse files
README.md
CHANGED
@@ -49,17 +49,20 @@ import json
|
|
49 |
from typing import Any, Dict, List
|
50 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
|
|
|
52 |
model_name = "katanemo/Arch-Agent-7B"
|
|
|
53 |
model = AutoModelForCausalLM.from_pretrained(
|
54 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
55 |
)
|
56 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
57 |
|
58 |
-
|
|
|
59 |
TASK_PROMPT = (
|
60 |
"You are a helpful assistant designed to assist with the user query by making one or more function calls if needed."
|
61 |
"\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
|
62 |
-
"You are provided with function signatures within <tools></tools> XML tags:\n<tools
|
63 |
"\n</tools>\n\nFor each function call, return a json object with function name and arguments within "
|
64 |
"""<tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": <function-name>, """
|
65 |
""""arguments": <args-json-object>}}\n</tool_call>"""
|
@@ -107,12 +110,12 @@ messages = [
|
|
107 |
{"role": "user", "content": "What is the weather in Seattle?"},
|
108 |
]
|
109 |
|
|
|
110 |
model_inputs = tokenizer.apply_chat_template(
|
111 |
-
messages, add_generation_prompt=True, return_tensors="pt"
|
112 |
).to(model.device)
|
113 |
|
114 |
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
115 |
-
|
116 |
generated_ids = [
|
117 |
output_ids[len(input_ids) :]
|
118 |
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
49 |
from typing import Any, Dict, List
|
50 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
|
52 |
+
# Specify the desired model name here
|
53 |
model_name = "katanemo/Arch-Agent-7B"
|
54 |
+
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
57 |
)
|
58 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
59 |
|
60 |
+
|
61 |
+
# Please use the recommended prompt for each model.
|
62 |
TASK_PROMPT = (
|
63 |
"You are a helpful assistant designed to assist with the user query by making one or more function calls if needed."
|
64 |
"\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
|
65 |
+
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>\n{tool_text}"
|
66 |
"\n</tools>\n\nFor each function call, return a json object with function name and arguments within "
|
67 |
"""<tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": <function-name>, """
|
68 |
""""arguments": <args-json-object>}}\n</tool_call>"""
|
|
|
110 |
{"role": "user", "content": "What is the weather in Seattle?"},
|
111 |
]
|
112 |
|
113 |
+
#### 2.2.3 Run inference
|
114 |
model_inputs = tokenizer.apply_chat_template(
|
115 |
+
messages, add_generation_prompt=True, return_tensors="pt", return_dict=True
|
116 |
).to(model.device)
|
117 |
|
118 |
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
|
|
119 |
generated_ids = [
|
120 |
output_ids[len(input_ids) :]
|
121 |
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|