from typing import Dict, List, Any from transformers import AutoModelForCausalLM, AutoTokenizer class EndpointHandler(): def __init__(self, path=""): # Preload all the elements you are going to need at inference. # pseudo: self.tokenizer= AutoTokenizer.from_pretrained(path) self.model= AutoModelForCausalLM.from_pretrained(path) def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ text = data.pop("text") inputs = self.tokenizer(text, return_tensors="pt") logits = self.model(inputs).logits return [{"predictions":logits.argmax(dim=-1)}]