kiritps commited on
Commit
3ae40a6
·
verified ·
1 Parent(s): 60efbe2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -151
README.md CHANGED
@@ -1,204 +1,142 @@
1
  ---
2
- base_model: meta-llama/Llama-2-7b-hf
3
  library_name: peft
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
 
 
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
 
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
 
 
 
 
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ## Training procedure
201
-
202
 
203
  The following `bitsandbytes` quantization config was used during training:
204
  - quant_method: bitsandbytes
@@ -212,7 +150,16 @@ The following `bitsandbytes` quantization config was used during training:
212
  - bnb_4bit_use_double_quant: True
213
  - bnb_4bit_compute_dtype: bfloat16
214
 
215
- ### Framework versions
 
 
 
 
 
 
216
 
 
217
 
218
- - PEFT 0.6.2
 
 
 
1
  ---
 
2
  library_name: peft
3
+ license: apache-2.0
4
+ base_model: meta-llama/Llama-2-7b-hf
5
+ tags:
6
+ - resume-screening
7
+ - hr-tech
8
+ - llama2
9
+ - lora
10
+ - peft
11
+ - fine-tuned
12
  ---
13
 
14
+ # Advanced Resume Screening Model
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ ## Model Description
17
 
18
+ This is a LoRA (Low-Rank Adaptation) fine-tuned version of Llama-2-7B specifically optimized for resume screening and candidate evaluation tasks. The model can analyze resumes, extract key information, and provide structured assessments of candidate qualifications.
 
 
 
 
 
 
19
 
20
+ - **Developed by:** kiritps
21
+ - **Model type:** Causal Language Model (LoRA Fine-tuned)
22
+ - **Language(s):** English
23
+ - **License:** Apache 2.0
24
+ - **Finetuned from model:** meta-llama/Llama-2-7b-hf
25
 
26
+ ## Model Sources
27
 
28
+ - **Repository:** https://huggingface.co/kiritps/Advanced-resume-screening
 
 
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ This model is designed for HR professionals and recruitment systems to:
35
+ - Analyze and screen resumes automatically
36
+ - Extract key qualifications and skills
37
+ - Provide structured candidate assessments
38
+ - Filter candidates based on specific criteria
39
+ - Generate summaries of candidate profiles
40
 
41
+ ### Downstream Use
42
 
43
+ The model can be integrated into:
44
+ - Applicant Tracking Systems (ATS)
45
+ - HR management platforms
46
+ - Recruitment automation tools
47
+ - Candidate matching systems
48
 
49
  ### Out-of-Scope Use
50
 
51
+ - Should not be used as the sole decision-maker in hiring processes
52
+ - Not intended for discriminatory screening based on protected characteristics
53
+ - Not suitable for general-purpose text generation outside of resume/HR context
54
 
55
+ ## How to Get Started with the Model
 
 
 
 
 
 
 
 
56
 
57
+ from transformers import AutoTokenizer, AutoModelForCausalLM
58
+ from peft import PeftModel
59
 
60
+ Load base model and tokenizer
61
+ base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
62
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
63
 
64
+ Load LoRA adapter
65
+ model = PeftModel.from_pretrained(base_model, "kiritps/Advanced-resume-screening")
66
 
67
+ Example usage
68
+ prompt = "Analyze this resume and provide key qualifications: [RESUME TEXT HERE]"
69
+ inputs = tokenizer(prompt, return_tensors="pt")
70
+ outputs = model.generate(**inputs, max_length=512, temperature=0.7)
71
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
72
 
73
+ text
74
 
75
  ## Training Details
76
 
77
  ### Training Data
78
 
79
+ The model was fine-tuned on a curated dataset of resume-response pairs, designed to teach the model how to:
80
+ - Extract relevant information from resumes
81
+ - Provide structured analysis of candidate qualifications
82
+ - Generate appropriate screening responses
83
 
84
  ### Training Procedure
85
 
 
 
 
 
 
 
 
86
  #### Training Hyperparameters
87
 
88
+ - **Training regime:** 4-bit quantization with bfloat16 mixed precision
89
+ - **LoRA rank:** 64
90
+ - **LoRA alpha:** 16
91
+ - **Learning rate:** 2e-4
92
+ - **Batch size:** 4
93
+ - **Gradient accumulation steps:** 4
94
+ - **Training epochs:** Multiple checkpoints saved (3840, 4320, 4800, 5280, 5760 steps)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
+ #### Quantization Configuration
97
 
98
+ - **Quantization method:** bitsandbytes
99
+ - **Load in 4bit:** True
100
+ - **Quantization type:** nf4
101
+ - **Double quantization:** True
102
+ - **Compute dtype:** bfloat16
103
 
104
+ ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
+ ### Limitations
107
 
108
+ - Model responses should be reviewed by human recruiters
109
+ - May exhibit biases present in training data
110
+ - Performance may vary across different industries or job types
111
+ - Requires careful prompt engineering for optimal results
112
 
113
+ ### Recommendations
114
 
115
+ - Use as a screening aid, not a replacement for human judgment
116
+ - Regularly audit outputs for potential bias
117
+ - Combine with diverse evaluation methods
118
+ - Ensure compliance with local employment laws and regulations
 
119
 
120
+ ## Technical Specifications
121
 
122
+ ### Model Architecture
123
 
124
+ - **Parameter Count:** ~7B parameters (base) + LoRA adapters
125
+ - **Quantization:** 4-bit NF4 quantization
126
 
127
  ### Compute Infrastructure
128
 
 
 
129
  #### Hardware
130
+ - GPU training environment
131
+ - Compatible with consumer and enterprise GPUs
132
 
133
  #### Software
134
+ - **Framework:** PyTorch
135
+ - **PEFT Version:** 0.6.2
136
+ - **Transformers:** Latest compatible version
137
+ - **Quantization:** bitsandbytes
138
 
139
+ ## Training Procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  The following `bitsandbytes` quantization config was used during training:
142
  - quant_method: bitsandbytes
 
150
  - bnb_4bit_use_double_quant: True
151
  - bnb_4bit_compute_dtype: bfloat16
152
 
153
+ ### Framework Versions
154
+ - PEFT 0.6.2
155
+ - Transformers (compatible version)
156
+ - PyTorch (latest stable)
157
+ - bitsandbytes (for quantization)
158
+
159
+ ## Model Card Authors
160
 
161
+ kiritps
162
 
163
+ ## Model Card Contact
164
+
165
+ For questions or issues regarding this model, please open an issue in the model repository.