import torch # Training Hyperparameters LEARNING_RATE = 0.0001 BATCH_SIZE = 16 NUM_WORKERS = 16 MAX_EPOCHS = 101 NB_RUNS = 5 TESTING_VERSION = (0,1,2,3,4) # DATASET WEIGHTS = None LABELS = 'pressure' SPLIT_BY = 'sequence' LOAD_DATA = 'all_data' DATASET_SPLIT = (0.8, 0.1, 0.1) STANDARDIZE_RANGE = (170, 350) DOWNSAMPLE_SIZE = (224, 224) NUM_CLASSES = 1 TYPE_SAVE = 'standard' #'standard' or 'same_size' # Computation ACCELERATOR = 'gpu' if torch.cuda.is_available() else 'cpu' DEVICE = [0] DATA_DIR = '/app/datasets/wnp/' LOG_DIR = "/app/pyphoon2/reanalysis/tb_logs"