File size: 3,383 Bytes
c21a105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
---
library_name: peft
license: llama2
base_model: neurotechnology/Lt-Llama-2-13b-instruct-hf
tags:
- generated_from_trainer
model-index:
- name: outputs/anon-lt-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml
adapter: lora
base_model: neurotechnology/Lt-Llama-2-13b-instruct-hf

# mixed precision
bf16: auto

# data & splitting
dataset_processes: 32

datasets:
  # ─────────── TRAIN ───────────
  - path: .
    type: alpaca
    data_files: ["train.json"]
    message_property_mappings:
      role: role
      content: content

validation_datasets:
  # ────────── VALIDATION ──────────
  - path: .
    type: alpaca
    data_files: ["validation.json"]
    message_property_mappings:
      role: role
      content: content

# we’re using explicit splits above, so no HF split / inline splitting:
val_set_size: 0.0
shuffle_merged_datasets: false

# LoRA hyperparameters
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
  - gate_proj
  - down_proj
  - up_proj

# optimizer & schedule
optimizer: adamw_bnb_8bit
learning_rate: 2e-4
lr_scheduler: cosine
weight_decay: 0.0

# batching & accumulation
micro_batch_size: 16
gradient_accumulation_steps: 1
gradient_checkpointing: true

# training loop
num_epochs: 3
max_prompt_len: 512
sequence_len: 4096
train_on_inputs: false

# precision & quantization
load_in_8bit: true
load_in_4bit: false
qlora_sharded_model_loading: false

# resource config
use_ray: false
ray_num_workers: 1
resources_per_worker:
  GPU: 1

# output & checkpointing
output_dir: ./outputs/anon-lt-lora
save_safetensors: true
save_only_model: false
load_best_model_at_end: true
pretrain_multipack_attn: true
pretrain_multipack_buffer_size: 10000

trl:
  log_completions: false
  ref_model_sync_steps: 64
  ref_model_mixup_alpha: 0.9
  sync_ref_model: false
  use_vllm: false
  vllm_device: auto
  vllm_dtype: auto
  vllm_gpu_memory_utilization: 0.9

```

</details><br>

# outputs/anon-lt-lora

This model is a fine-tuned version of [neurotechnology/Lt-Llama-2-13b-instruct-hf](https://huggingface.co/neurotechnology/Lt-Llama-2-13b-instruct-hf) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- num_epochs: 3.0

### Training results



### Framework versions

- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0