Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- LCM-LoRA-Technical-Report.pdf +3 -0
- README.md +273 -0
- pytorch_lora_weights.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
LCM-LoRA-Technical-Report.pdf filter=lfs diff=lfs merge=lfs -text
|
LCM-LoRA-Technical-Report.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23f42605e848334d433996c92a5baa12280b18730e56455f58f85d8f2f28f160
|
| 3 |
+
size 1726518
|
README.md
ADDED
|
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: diffusers
|
| 3 |
+
base_model: stabilityai/stable-diffusion-xl-base-1.0
|
| 4 |
+
tags:
|
| 5 |
+
- lora
|
| 6 |
+
- text-to-image
|
| 7 |
+
license: openrail++
|
| 8 |
+
inference: false
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Latent Consistency Model (LCM) LoRA: SDXL
|
| 12 |
+
|
| 13 |
+
Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556)
|
| 14 |
+
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*
|
| 15 |
+
|
| 16 |
+
It is a distilled consistency adapter for [`stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) that allows
|
| 17 |
+
to reduce the number of inference steps to only between **2 - 8 steps**.
|
| 18 |
+
|
| 19 |
+
| Model | Params / M |
|
| 20 |
+
|----------------------------------------------------------------------------|------------|
|
| 21 |
+
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5) | 67.5 |
|
| 22 |
+
| [lcm-lora-ssd-1b](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b) | 105 |
|
| 23 |
+
| [**lcm-lora-sdxl**](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | **197M** |
|
| 24 |
+
|
| 25 |
+
## Usage
|
| 26 |
+
|
| 27 |
+
LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first
|
| 28 |
+
install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
|
| 29 |
+
audio dataset from the Hugging Face Hub:
|
| 30 |
+
|
| 31 |
+
```bash
|
| 32 |
+
pip install --upgrade pip
|
| 33 |
+
pip install --upgrade diffusers transformers accelerate peft
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
***Note: For detailed usage examples we recommend you to check out our official [LCM-LoRA docs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/inference_with_lcm_lora)***
|
| 37 |
+
|
| 38 |
+
### Text-to-Image
|
| 39 |
+
|
| 40 |
+
The adapter can be loaded with it's base model `stabilityai/stable-diffusion-xl-base-1.0`. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
|
| 41 |
+
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
import torch
|
| 45 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
| 46 |
+
|
| 47 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 48 |
+
adapter_id = "latent-consistency/lcm-lora-sdxl"
|
| 49 |
+
|
| 50 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
| 51 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 52 |
+
pipe.to("cuda")
|
| 53 |
+
|
| 54 |
+
# load and fuse lcm lora
|
| 55 |
+
pipe.load_lora_weights(adapter_id)
|
| 56 |
+
pipe.fuse_lora()
|
| 57 |
+
|
| 58 |
+
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"
|
| 59 |
+
|
| 60 |
+
# disable guidance_scale by passing 0
|
| 61 |
+
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+

|
| 65 |
+
|
| 66 |
+
### Inpainting
|
| 67 |
+
|
| 68 |
+
LCM-LoRA can be used for inpainting as well.
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
import torch
|
| 72 |
+
from diffusers import AutoPipelineForInpainting, LCMScheduler
|
| 73 |
+
from diffusers.utils import load_image, make_image_grid
|
| 74 |
+
|
| 75 |
+
pipe = AutoPipelineForInpainting.from_pretrained(
|
| 76 |
+
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 77 |
+
torch_dtype=torch.float16,
|
| 78 |
+
variant="fp16",
|
| 79 |
+
).to("cuda")
|
| 80 |
+
|
| 81 |
+
# set scheduler
|
| 82 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 83 |
+
|
| 84 |
+
# load LCM-LoRA
|
| 85 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
| 86 |
+
pipe.fuse_lora()
|
| 87 |
+
|
| 88 |
+
# load base and mask image
|
| 89 |
+
init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png").resize((1024, 1024))
|
| 90 |
+
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint_mask.png").resize((1024, 1024))
|
| 91 |
+
|
| 92 |
+
prompt = "a castle on top of a mountain, highly detailed, 8k"
|
| 93 |
+
generator = torch.manual_seed(42)
|
| 94 |
+
image = pipe(
|
| 95 |
+
prompt=prompt,
|
| 96 |
+
image=init_image,
|
| 97 |
+
mask_image=mask_image,
|
| 98 |
+
generator=generator,
|
| 99 |
+
num_inference_steps=5,
|
| 100 |
+
guidance_scale=4,
|
| 101 |
+
).images[0]
|
| 102 |
+
make_image_grid([init_image, mask_image, image], rows=1, cols=3)
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+

|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
## Combine with styled LoRAs
|
| 109 |
+
|
| 110 |
+
LCM-LoRA can be combined with other LoRAs to generate styled-images in very few steps (4-8). In the following example, we'll use the LCM-LoRA with the [papercut LoRA](TheLastBen/Papercut_SDXL).
|
| 111 |
+
To learn more about how to combine LoRAs, refer to [this guide](https://huggingface.co/docs/diffusers/tutorials/using_peft_for_inference#combine-multiple-adapters).
|
| 112 |
+
|
| 113 |
+
```python
|
| 114 |
+
import torch
|
| 115 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
| 116 |
+
|
| 117 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 118 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 119 |
+
variant="fp16",
|
| 120 |
+
torch_dtype=torch.float16
|
| 121 |
+
).to("cuda")
|
| 122 |
+
|
| 123 |
+
# set scheduler
|
| 124 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 125 |
+
|
| 126 |
+
# load LoRAs
|
| 127 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm")
|
| 128 |
+
pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut")
|
| 129 |
+
|
| 130 |
+
# Combine LoRAs
|
| 131 |
+
pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
|
| 132 |
+
|
| 133 |
+
prompt = "papercut, a cute fox"
|
| 134 |
+
generator = torch.manual_seed(0)
|
| 135 |
+
image = pipe(prompt, num_inference_steps=4, guidance_scale=1, generator=generator).images[0]
|
| 136 |
+
image
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+

|
| 140 |
+
|
| 141 |
+
### ControlNet
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
import torch
|
| 145 |
+
import cv2
|
| 146 |
+
import numpy as np
|
| 147 |
+
from PIL import Image
|
| 148 |
+
|
| 149 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, LCMScheduler
|
| 150 |
+
from diffusers.utils import load_image
|
| 151 |
+
|
| 152 |
+
image = load_image(
|
| 153 |
+
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
| 154 |
+
).resize((1024, 1024))
|
| 155 |
+
|
| 156 |
+
image = np.array(image)
|
| 157 |
+
|
| 158 |
+
low_threshold = 100
|
| 159 |
+
high_threshold = 200
|
| 160 |
+
|
| 161 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 162 |
+
image = image[:, :, None]
|
| 163 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 164 |
+
canny_image = Image.fromarray(image)
|
| 165 |
+
|
| 166 |
+
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0-small", torch_dtype=torch.float16, variant="fp16")
|
| 167 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 168 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 169 |
+
controlnet=controlnet,
|
| 170 |
+
torch_dtype=torch.float16,
|
| 171 |
+
safety_checker=None,
|
| 172 |
+
variant="fp16"
|
| 173 |
+
).to("cuda")
|
| 174 |
+
|
| 175 |
+
# set scheduler
|
| 176 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 177 |
+
|
| 178 |
+
# load LCM-LoRA
|
| 179 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
| 180 |
+
pipe.fuse_lora()
|
| 181 |
+
|
| 182 |
+
generator = torch.manual_seed(0)
|
| 183 |
+
image = pipe(
|
| 184 |
+
"picture of the mona lisa",
|
| 185 |
+
image=canny_image,
|
| 186 |
+
num_inference_steps=5,
|
| 187 |
+
guidance_scale=1.5,
|
| 188 |
+
controlnet_conditioning_scale=0.5,
|
| 189 |
+
cross_attention_kwargs={"scale": 1},
|
| 190 |
+
generator=generator,
|
| 191 |
+
).images[0]
|
| 192 |
+
make_image_grid([canny_image, image], rows=1, cols=2)
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+

|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
<Tip>
|
| 199 |
+
The inference parameters in this example might not work for all examples, so we recommend you to try different values for `num_inference_steps`, `guidance_scale`, `controlnet_conditioning_scale` and `cross_attention_kwargs` parameters and choose the best one.
|
| 200 |
+
</Tip>
|
| 201 |
+
|
| 202 |
+
### T2I Adapter
|
| 203 |
+
|
| 204 |
+
This example shows how to use the LCM-LoRA with the [Canny T2I-Adapter](TencentARC/t2i-adapter-canny-sdxl-1.0) and SDXL.
|
| 205 |
+
|
| 206 |
+
```python
|
| 207 |
+
import torch
|
| 208 |
+
import cv2
|
| 209 |
+
import numpy as np
|
| 210 |
+
from PIL import Image
|
| 211 |
+
|
| 212 |
+
from diffusers import StableDiffusionXLAdapterPipeline, T2IAdapter, LCMScheduler
|
| 213 |
+
from diffusers.utils import load_image, make_image_grid
|
| 214 |
+
|
| 215 |
+
# Prepare image
|
| 216 |
+
# Detect the canny map in low resolution to avoid high-frequency details
|
| 217 |
+
image = load_image(
|
| 218 |
+
"https://huggingface.co/Adapter/t2iadapter/resolve/main/figs_SDXLV1.0/org_canny.jpg"
|
| 219 |
+
).resize((384, 384))
|
| 220 |
+
|
| 221 |
+
image = np.array(image)
|
| 222 |
+
|
| 223 |
+
low_threshold = 100
|
| 224 |
+
high_threshold = 200
|
| 225 |
+
|
| 226 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 227 |
+
image = image[:, :, None]
|
| 228 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 229 |
+
canny_image = Image.fromarray(image).resize((1024, 1024))
|
| 230 |
+
|
| 231 |
+
# load adapter
|
| 232 |
+
adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-canny-sdxl-1.0", torch_dtype=torch.float16, varient="fp16").to("cuda")
|
| 233 |
+
|
| 234 |
+
pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
|
| 235 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 236 |
+
adapter=adapter,
|
| 237 |
+
torch_dtype=torch.float16,
|
| 238 |
+
variant="fp16",
|
| 239 |
+
).to("cuda")
|
| 240 |
+
|
| 241 |
+
# set scheduler
|
| 242 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 243 |
+
|
| 244 |
+
# load LCM-LoRA
|
| 245 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
|
| 246 |
+
|
| 247 |
+
prompt = "Mystical fairy in real, magic, 4k picture, high quality"
|
| 248 |
+
negative_prompt = "extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured"
|
| 249 |
+
|
| 250 |
+
generator = torch.manual_seed(0)
|
| 251 |
+
image = pipe(
|
| 252 |
+
prompt=prompt,
|
| 253 |
+
negative_prompt=negative_prompt,
|
| 254 |
+
image=canny_image,
|
| 255 |
+
num_inference_steps=4,
|
| 256 |
+
guidance_scale=1.5,
|
| 257 |
+
adapter_conditioning_scale=0.8,
|
| 258 |
+
adapter_conditioning_factor=1,
|
| 259 |
+
generator=generator,
|
| 260 |
+
).images[0]
|
| 261 |
+
make_image_grid([canny_image, image], rows=1, cols=2)
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
+

|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
## Speed Benchmark
|
| 268 |
+
|
| 269 |
+
TODO
|
| 270 |
+
|
| 271 |
+
## Training
|
| 272 |
+
|
| 273 |
+
TODO
|
pytorch_lora_weights.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a764e6859b6e04047cd761c08ff0cee96413a8e004c9f07707530cd776b19141
|
| 3 |
+
size 393855224
|