File size: 53,191 Bytes
3af3aa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 |
# coding=utf-8
# Copyright 2024 Google AI, LAION team. team. All rights reserved.
#
# This code is based on open_clip framework. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to the original MaMMUT model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MaMMUT model."""
from typing import Callable, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from .configuration_mammut import MammutTextConfig, MammutVisionConfig, MammutConfig
from transformers.models.clip.modeling_clip import (
CLIPAttention,
CLIPMLP,
CLIPEncoderLayer,
CLIPTextModel,
CLIPVisionModel,
CLIPVisionModelOutput,
CLIPVisionTransformer,
CLIPTextModelOutput,
CLIPOutput,
CLIPModel,
CLIPPreTrainedModel,
CLIPVisionEmbeddings,
CLIPEncoder,
eager_attention_forward
) # noqa: E501
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput
from transformers.generation import GenerateDecoderOnlyOutput
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from transformers import AutoModel
import logging
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers import (
BeamSearchScorer,
LogitsProcessorList,
TopPLogitsWarper,
TopKLogitsWarper,
RepetitionPenaltyLogitsProcessor,
MinLengthLogitsProcessor,
MaxLengthCriteria,
StoppingCriteriaList
)
log = logging.getLogger(__name__)
class MammutCrossAttnLayer(nn.Module):
def __init__(self, config: MammutTextConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = MammutAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.layer_norm1_kv = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
k_x: Optional[torch.Tensor] = None,
v_x: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
print0_hidden_states: bool = False,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
if k_x is not None and v_x is not None:
k_x = self.layer_norm1_kv(k_x)
v_x = self.layer_norm1_kv(v_x)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
keys=k_x,
values=v_x,
print0_hidden_states=print0_hidden_states,
)
hidden_states = hidden_states.permute(1, 0, 2) # (seq_length, batch_size, embed_dim)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class LayerScale(nn.Module):
def __init__(self, dim, init_values=1e-5, inplace=False):
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x):
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class MammutAttention(CLIPAttention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Union[MammutTextConfig, MammutVisionConfig]):
super().__init__(config)
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
# self.scale = 1
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.training = False # Set to True by default, can be changed during training or evaluation
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
keys: Optional[torch.Tensor] = None,
values: Optional[torch.Tensor] = None,
print0_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
if keys is None and values is None:
keys = hidden_states
values = hidden_states
#TODO: CLIP attention interface
# keys = self.k_proj(keys)
# values = self.v_proj(values)
# if print0_hidden_states:
# # print("head_dim:", self.head_dim)
# print("query shape:", queries.shape)
# print("key shape:", keys.shape)
# print("value shape:", values.shape)
# queries = queries.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
# keys = keys.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
# values = values.view(batch_size, seq_length, -1, self.head_dim).transpose(1, 2)
# CLIP text model uses both `causal_attention_mask` and `attention_mask`
# in case FA2 kernel is called, `is_causal` should be inferred from `causal_attention_mask`
# if self.config._attn_implementation == "flash_attention_2":
# self.is_causal = causal_attention_mask is not None
# else:
# if attention_mask is not None and causal_attention_mask is not None:
# attention_mask = attention_mask + causal_attention_mask
# elif causal_attention_mask is not None:
# attention_mask = causal_attention_mask
# attention_interface: Callable = eager_attention_forward
# if self.config._attn_implementation != "eager":
# attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = F.multi_head_attention_forward(
query=hidden_states.permute(1, 0, 2), # (seq_length, batch_size, embed_dim)
key=keys.permute(1, 0, 2) if keys is not None else hidden_states.permute(1, 0, 2),
value=values.permute(1, 0, 2) if values is not None else hidden_states.permute(1, 0, 2),
embed_dim_to_check=embed_dim,
num_heads=self.num_heads,
in_proj_weight=torch.cat(
[self.q_proj.weight, self.k_proj.weight, self.v_proj.weight], dim=0
),
in_proj_bias=torch.cat(
[self.q_proj.bias, self.k_proj.bias, self.v_proj.bias], dim=0
) if self.q_proj.bias is not None else None,
bias_k=None,
bias_v=None,
add_zero_attn=False,
attn_mask=attention_mask,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
is_causal=self.is_causal,
dropout_p=0.0 if not self.training else self.dropout,
out_proj_weight=self.out_proj.weight,
out_proj_bias=self.out_proj.bias,
training=self.training, # Use the training flag to control dropout
)
# attn_output, attn_weights = attention_interface(
# self,
# queries, # (seq_length, batch_size, embed_dim)
# keys,
# values,
# attention_mask,
# is_causal=self.is_causal,
# scaling=self.scale,
# dropout=0.0 if not self.training else self.dropout,
# output_attentions=output_attentions,
# )
# attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
# attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights
class MammutEncoderLayer(CLIPEncoderLayer):
def __init__(self, config: MammutTextConfig, has_mlp: bool = True):
super().__init__(config)
self.embed_dim = config.hidden_size
self.self_attn = MammutAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPMLP(config) if has_mlp else None
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
print_hidden_states: bool = False,
) -> Tuple[torch.FloatTensor]:
"""
Forward pass for the encoder layer.
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
causal_attention_mask (`torch.FloatTensor`, *optional*): causal attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=None,
output_attentions=output_attentions,
print0_hidden_states=print_hidden_states,
)
hidden_states = hidden_states.permute(1, 0, 2) # (seq_length, batch_size, embed_dim)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states) if self.mlp is not None else hidden_states
hidden_states = residual + hidden_states
return hidden_states
class MammutMultimodalEncoder(nn.Module):
does_full_decoding: torch.jit.Final[bool]
def __init__(
self,
config: MammutConfig,
):
super().__init__()
self.config = config
self.n_cross_attn, _ = divmod(config.num_hidden_layers, config.cross_attn_ratio)
self.cross_step, _ = divmod(config.num_hidden_layers, self.n_cross_attn)
self.does_full_decoding = config.does_full_decoding
self.output_tokens = config.output_tokens
self.batch_first = config.batch_first
self.context_length = config.max_position_embeddings
self.layers = nn.ModuleList([])
self.cross_attn = nn.ModuleList([])
num_cross_attn = 0
for l_idx in range(config.num_hidden_layers):
_, r = divmod(l_idx, self.cross_step)
has_cross_attn = r == 0
layer = MammutEncoderLayer(config)
self.layers.append(layer)
if has_cross_attn:
num_cross_attn += 1
cross_attn_layer = MammutCrossAttnLayer(config)
self.cross_attn.append(cross_attn_layer)
def forward(
self,
text_embeds: torch.Tensor,
img_embeds: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = text_embeds
seq_len = hidden_states.shape[1] if self.batch_first else hidden_states.shape[0]
if causal_attention_mask is None:
causal_attention_mask = self.build_causal_mask()
else:
causal_attention_mask = causal_attention_mask.to(dtype=hidden_states.dtype)
if attention_mask is None:
attention_mask = causal_attention_mask
else:
attention_mask = attention_mask + causal_attention_mask
if img_embeds is not None:
img_embeds = img_embeds.to(dtype=hidden_states.dtype)
k_x = img_embeds
v_x = img_embeds
else:
k_x = None
v_x = None
if img_embeds is not None:
attention_mask = attention_mask[:seq_len, :seq_len]
for i, layer in enumerate(self.layers):
cross_attn_idx, r = divmod(i, self.cross_step)
has_cross_attn = r == 0 and img_embeds is not None
if i == 0:
print_hidden_states = True
else:
print_hidden_states = False
hidden_states = layer(
hidden_states=hidden_states,
attention_mask=attention_mask if img_embeds is not None else None,
causal_attention_mask=None,
output_attentions=output_attentions,
print_hidden_states=print_hidden_states,
)
if has_cross_attn:
cross_attn = self.cross_attn[cross_attn_idx]
hidden_states = cross_attn(
hidden_states=hidden_states,
k_x=k_x,
v_x=v_x,
print0_hidden_states=i== 0,
# attention_mask=attention_mask,
# causal_attention_mask=causal_attention_mask,
)
if output_hidden_states:
encoder_states = tuple(encoder_states)
if self.does_full_decoding:
encoder_states = encoder_states[:self.n_cross_attn + 1]
else:
encoder_states = encoder_states[:self.config.text_config.num_hidden_layers]
else:
encoder_states = None
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
def build_causal_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
def build_attn_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
@dataclass
class MammutPoolingOutput(BaseModelOutputWithPooling):
"""
Base class for outputs of the Mammut model.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
output_ids: Optional[torch.Tensor] = None
pooler_output: Optional[torch.FloatTensor] = None
class MammutMultimodalEmbeddings(nn.Module):
def __init__(self, config: MammutTextConfig):
super().__init__()
self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
self.position_embedding = nn.Embedding(
config.max_position_embeddings, config.hidden_size
)
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
def text_global_pool(x, text: Optional[torch.Tensor] = None, pool_type: str = 'argmax'):
if pool_type == 'first':
pooled, tokens = x[:, 0], x[:, 1:]
elif pool_type == 'last':
pooled, tokens = x[:, -1], x[:, :-1]
elif pool_type == 'argmax':
# take features from the eot embedding (eot_token is the highest number in each sequence)
assert text is not None
pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x
else:
pooled = tokens = x
return pooled, tokens
class MammutMultimodalTransformer(nn.Module):
def __init__(self, config: MammutTextConfig, output_tokens=True):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.encoder = MammutMultimodalEncoder(config)
self.text_projection = nn.Linear(
config.hidden_size, config.vocab_size, bias=False
) if config.hidden_size is not None else None
self.final_layer_norm = nn.LayerNorm(
embed_dim, eps=config.layer_norm_eps
)
# self.init_weights()
self.does_full_decoding = config.does_full_decoding
self.context_length = config.context_length
self.vocab_size = config.vocab_size
width = config.hidden_size
self.batch_first = config.batch_first
self.has_mlp = config.has_mlp
self.cross_attn_ratio = config.cross_attn_ratio
self.cross_step = config.cross_attn_ratio
self.n_cross_attn = config.num_hidden_layers // config.cross_attn_ratio
vocab_size = config.vocab_size
self.output_tokens = output_tokens
if self.does_full_decoding:
self.num_pos = self.context_length
self.embeddings = MammutMultimodalEmbeddings(config)
else:
self.num_pos = None
self.embeddings = None
def init_weights(self):
self.final_layer_norm.weight.data.fill_(1.0)
self.final_layer_norm.bias.data.zero_()
log.info("MammutMultimodalTransformer weights initialized.")
def forward(
self,
img_embs: torch.Tensor,
text_embs: Optional[torch.Tensor] = None,
output_tokens: Optional[bool] = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
) -> Union[CLIPVisionModelOutput, CLIPTextModelOutput]:
if text_embs is not None:
if self.embeddings is not None:
# print("text_embs shape:", text_embs.shape)
text_embs = self.embeddings(
input_ids=text_embs,
position_ids=position_ids,
# inputs_embeds=img_embs if img_embs is not None else None,
)
if self.does_full_decoding:
text_embs = text_embs[:, :self.context_length, :]
text_embs = self.encoder(
text_embeds=text_embs,
img_embeds=img_embs,
attention_mask=None,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
text_embs = text_embs.last_hidden_state
if self.does_full_decoding:
text_embs = text_embs[:, :self.context_length, :]
else:
text_embs = text_embs[:, 0, :]
if self.text_projection is not None:
output_ids = self.text_projection(text_embs)
else:
output_ids = text_embs
if output_tokens:
return MammutPoolingOutput(
last_hidden_state=text_embs, # Last hidden state is the text embeddings
hidden_states=None, # No hidden states in this implementation
attentions=None, # No attentions in this implementation
output_ids=output_ids, # Placeholder for output tokens
pooler_output=text_embs, # Pooler output is the text embeddings
)
return MammutPoolingOutput(
last_hidden_state=text_embs, # Last hidden state is the text embeddings
pooler_output=text_embs,
hidden_states=None, # No hidden states in this implementation
attentions=None, # No attentions in this implementation
)
def build_causal_mask(self, seq_len: Optional[int] = None, device: Optional[torch.device] = None) -> torch.Tensor:
if seq_len is None:
seq_len = self.context_length if self.does_full_decoding else self.config.context_length
if device is None:
device = torch.device("cpu")
mask = torch.tril(torch.ones((seq_len, seq_len), device=device)).view(1, 1, seq_len, seq_len)
return mask
def build_attn_mask(self):
# lazily create causal attention mask, with full attention between the tokens
# pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float("-inf"))
mask.triu_(1) # zero out the lower diagonal
return mask
class MammutMultimodalModel(CLIPTextModel):
"""
Mammut multimodal model with text and vision encoders.
"""
config_class = MammutTextConfig
base_model_prefix = "mammut_multimodal"
def __init__(self, config: MammutTextConfig):
super().__init__(config)
self.config = config.text_config
self.text_model = MammutMultimodalTransformer(config.text_config)
self.text_embed_dim = config.hidden_size
self.vision_embed_dim = config.vision_config.hidden_size
self.projection_dim = config.projection_dim
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
image_embs: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_tokens: Optional[bool] = None,
position_ids: Optional[torch.LongTensor] = None,
) -> Union[MammutPoolingOutput, CLIPTextModelOutput]:
return self.text_model(
img_embs=image_embs,
text_embs=input_ids,
output_tokens=output_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
position_ids=position_ids,
)
class MammutVisionTransformer(CLIPVisionTransformer):
"""
Mammut Vision Transformer model.
Inherits from CLIPVisionTransformer and initializes the vision model.
"""
config_class = MammutVisionConfig
base_model_prefix = "mammut_vision"
def __init__(self, config: MammutVisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = CLIPEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.pool_type = config.pool_type
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if self.pool_type == 'avg':
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
elif self.pool_type == 'tok':
pooled, tokens = x[:, 0], x[:, 1:]
elif self.pool_type == "avg_all":
pooled, tokens = x.mean(dim=1), x
else:
pooled = tokens = x
return pooled, tokens
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs: BaseModelOutput = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs.last_hidden_state
pooled_output = last_hidden_state[:, 0, :]
if self.config.final_ln_after_pool:
pooled, _ = self._global_pool(last_hidden_state)
pooled_output = self.post_layernorm(pooled)
else:
pooled_output = self.post_layernorm(pooled_output)
pooled, _ = self._global_pool(pooled_output)
pooled_output = pooled
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class MammutVisionModel(CLIPVisionModel):
"""
Mammut Vision Model.
Inherits from CLIPVisionModel and initializes the vision model.
"""
config_class = MammutVisionConfig
base_model_prefix = "mammut_vision"
def __init__(self, config: MammutVisionConfig):
super().__init__(config)
self.config = config
self.vision_model = MammutVisionTransformer(config)
self.post_init()
@dataclass
class MammutContrastiveOutput(CLIPOutput):
"""
Output class for Mammut model in contrastive learning mode.
Contains contrastive output:
- loss: Loss value if return_loss is True.
- logits_per_text: Logits for text inputs.
- logits_per_image: Logits for image inputs.
- text_embeds: Text embeddings.
- image_embeds: Image embeddings.
"""
loss: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
@dataclass
class MammutCaptioningOutput(ModelOutput):
"""
Output class for Mammut captioning part.
Contains:
- last_hidden_state: Last hidden state of the text model.
- pooler_output: Pooler output of the text model.
- hidden_states: Hidden states from the text model.
- attentions: Attention weights from the text model.
- output_ids: Output tokens from the text model.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
output_ids: Optional[torch.Tensor] = None
@dataclass
class MammutOutput(ModelOutput):
"""
Output class for Mammut model.
Contains contrastive output:
- loss: Loss value if return_loss is True.
- logits_per_text: Logits for text inputs.
- logits_per_image: Logits for image inputs.
- text_embeds: Text embeddings.
- image_embeds: Image embeddings.
Captioning output:
- text_model_output: Output from the text model.
- output_ids: Output tokens from the text model.
"""
loss: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: Optional[MammutCaptioningOutput] = None
output_ids: Optional[torch.Tensor] = None
# @dataclass
# class MammutGenerationOutput(GenerateDecoderOnlyOutput)
def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor:
"""
This method is equivalent to tensor.norm(p=2, dim=-1, keepdim=True) and used to make
model `executorch` exportable. See issue https://github.com/pytorch/executorch/issues/3566
"""
square_tensor = torch.pow(tensor, 2)
sum_tensor = torch.sum(square_tensor, dim=-1, keepdim=True)
normed_tensor = torch.pow(sum_tensor, 0.5)
return normed_tensor
class MammutModel(CLIPPreTrainedModel):
"""
Mammut model with text and vision encoders.
"""
config_class = MammutConfig
base_model_prefix = "mammut"
def __init__(self, config: MammutConfig):
super().__init__(config)
self.config = config
self.text_model = MammutMultimodalTransformer(config.text_config, output_tokens=config.output_tokens)
vision_model = MammutVisionModel._from_config(config.vision_config)
self.vision_model = vision_model.vision_model
self.text_embed_dim = config.text_config.hidden_size
self.vision_embed_dim = config.vision_config.hidden_size
self.projection_dim = config.projection_dim
self.text_projection = self.text_model.text_projection
self.visual_projection = nn.Linear(
self.vision_embed_dim, self.projection_dim, bias=False
) if self.projection_dim is not None else None
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.map_viz2txt_kv = nn.Parameter(torch.randn(
self.config.vision_config.width, self.config.text_config.width
))
self.eos_token_id = self.config.text_config.eos_token_id
self.bos_token_id = self.config.text_config.bos_token_id
self.pad_token_id = self.config.text_config.pad_token_id
self.does_full_decoding = config.text_config.does_full_decoding
self.context_length = config.text_config.context_length
self.vocab_size = config.text_config.vocab_size
self.batch_first = config.text_config.batch_first
# Initialize weights and apply final processing
self.post_init()
def get_text_features(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
img_embs: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Get text features from the Mammut model.
"""
text_model_output = self.text_model(
img_embs=img_embs,
text_embs=input_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
text_embeds = text_model_output.last_hidden_state
text_embeds = self.text_model.final_layer_norm(text_embeds)
text_embeds = text_embeds.mean(1)
text_embeds = F.normalize(text_embeds, dim=-1)
return text_embeds
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
normalize: bool = True,
) -> torch.FloatTensor:
"""
Get image features from the Mammut model.
"""
vision_outputs: CLIPVisionModelOutput = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
image_embeds = vision_outputs.pooler_output
if self.visual_projection is not None:
image_embeds = self.visual_projection(image_embeds)
image_embeds = F.normalize(image_embeds, dim=-1) if normalize else image_embeds
return image_embeds
def _contrastive_forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
output_tokens: Optional[bool] = None,
contrastive: Optional[bool] = False,
) -> MammutContrastiveOutput:
"""
Forward pass for the Mammut model in contrastive learning mode.
- **Two-pass learning:** to unify contrastive and next-token
prediction, we need to unify unconditional representation learning and token-conditioned next-token prediction objective.
- **First pass: contrastive task.** For the first pass, text features should not see image features (dual-encoder contrastive learner) but attend to all tokens at once to produce sequence-level representation. Cross-attention and causal masking is disabled.
- **Second pass: captioning task.** Using cross attention and causal masking learn caption generation task.
Return:
MammutContrastiveOutput: Contains contrastive output with logits, embeddings, and optional loss.
"""
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs: CLIPVisionModelOutput = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
# text_model is MammutMultimodalTransformer, which handles text embeddings
text_outputs: MammutPoolingOutput = self.text_model(
img_embs=None, # No image embeddings in contrastive forward pass for text model
text_embs=input_ids,
output_tokens=output_tokens,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
position_ids=position_ids,
)
image_embeds = vision_outputs.pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs.pooler_output
pooled, tokens = text_global_pool(text_embeds, text=input_ids)
text_embeds = self.text_model.final_layer_norm(text_embeds)
text_embeds = text_embeds.mean(1)
tokens = self.text_projection(pooled)
# Normalize the embeddings
image_embeds = image_embeds / _get_vector_norm(image_embeds)
text_embeds = text_embeds / _get_vector_norm(text_embeds)
# cosine similarity as logits
logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device))
logits_per_text = logits_per_text * self.logit_scale.exp().to(text_embeds.device)
logits_per_image = logits_per_text.t()
loss = None
return MammutContrastiveOutput(
loss=loss,
logits_per_text=logits_per_text,
logits_per_image=logits_per_image,
text_embeds=text_embeds,
image_embeds=image_embeds,
)
def _captioning_forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
image_embeds: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
output_tokens: Optional[bool] = None,
) -> MammutCaptioningOutput:
"""
Forward pass for the Mammut model in captioning mode.
Return:
MammutCaptioningOutput: Contains captioning output with last hidden state, pooler output, hidden states, attentions, and output tokens.
"""
if pixel_values is None:
raise ValueError("Pixel values must be provided for captioning.")
if input_ids is None:
input_ids = torch.ones(
(pixel_values.shape[0], self.context_length), dtype=torch.long, device=pixel_values.device
) * self.bos_token_id
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if image_embeds is None:
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
image_embeds = vision_outputs.last_hidden_state
image_embeds = image_embeds @ self.map_viz2txt_kv
text_model_output = self.text_model(
img_embs=image_embeds, # Use image embeddings for captioning
text_embs=input_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
text_embeds = text_model_output.last_hidden_state
text_embeds = self.text_model.final_layer_norm(text_embeds)
logits = self.text_projection(text_embeds)
if output_tokens:
return MammutCaptioningOutput(
last_hidden_state=text_embeds,
pooler_output=image_embeds, # Placeholder for pooler output
output_ids=logits, # Output tokens from the text model
)
return MammutCaptioningOutput(
last_hidden_state=text_embeds,
pooler_output=image_embeds, # Placeholder for pooler output
output_ids=None, # No output tokens in this case
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
output_tokens: Optional[bool] = False,
contrastive_only: Optional[bool] = False,
captioning_only: Optional[bool] = False,
) -> MammutOutput:
"""
Forward pass for the Mammut model.
- **Two-pass learning:** to unify contrastive and next-token prediction, we need to unify unconditional representation learning and token-conditioned next-token prediction objective.
- **First pass: contrastive task.** For the first pass, text features should not see image features (dual-encoder contrastive learner) but attend to all tokens at once to produce sequence-level representation. Cross-attention and causal masking is disabled.
- **Second pass: captioning task.** Using cross attention and causal masking learn caption generation task.
"""
# first pass: contrastive task
# second pass: captioning task
if pixel_values is None and input_ids is None:
raise ValueError("Pixel values or input IDs must be provided for captioning.")
if output_tokens is None:
output_tokens = self.config.output_tokens
if output_tokens and not self.config.output_tokens:
raise ValueError("Output tokens are not enabled in the configuration.")
if output_tokens and pixel_values is None:
raise ValueError("Pixel values must be provided if output tokens are enabled.")
if output_tokens and input_ids is None:
# Only captioning
captioning_only = True
if input_ids is not None and pixel_values is not None:
contrastive_output = self._contrastive_forward(
input_ids=input_ids,
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
else:
contrastive_output = MammutContrastiveOutput(
loss=None,
logits_per_text=None,
logits_per_image=None,
text_embeds=None,
image_embeds=None,
)
if contrastive_only:
# If only contrastive output is needed, return it directly
return MammutOutput(
loss=contrastive_output.loss,
logits_per_text=contrastive_output.logits_per_text,
logits_per_image=contrastive_output.logits_per_image,
text_embeds=contrastive_output.text_embeds,
image_embeds=contrastive_output.image_embeds,
)
if captioning_only:
# If only captioning output is needed, return it directly
text_model_output = self._captioning_forward(
input_ids=input_ids,
pixel_values=pixel_values, # No pixel values for captioning only
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
output_tokens=output_tokens,
)
return MammutOutput(
loss=None, # No loss in captioning only mode
logits_per_text=None, # No logits in captioning only mode
logits_per_image=None, # No logits in captioning only mode
text_embeds=text_model_output.last_hidden_state, # Use last hidden state as text embeddings
image_embeds=None, # No image embeddings in captioning only mode
text_model_output=text_model_output, # Output from the text model
output_ids=text_model_output.output_ids, # Output tokens from the text model
)
# If both contrastive and captioning outputs are needed, return both
text_model_output = self._captioning_forward(
input_ids=input_ids,
pixel_values=pixel_values, # No pixel values for captioning only
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
output_tokens=output_tokens,
)
return MammutOutput(
loss=contrastive_output.loss,
logits_per_text=contrastive_output.logits_per_text,
logits_per_image=contrastive_output.logits_per_image,
text_embeds=contrastive_output.text_embeds,
image_embeds=contrastive_output.image_embeds,
text_model_output=text_model_output, # Output from the text model
output_ids=text_model_output.output_ids, # Output tokens from the text model
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
max_new_tokens: int = 20,
do_sample: bool = False,
temperature: float = 1.0,
repetition_penalty: float = 1.0,
top_p: float = 0,
top_k: int = 0,
min_seq_len: int = 1,
stopping_criteria= None,
) -> GenerateDecoderOnlyOutput:
"""
Generate captions using the Mammut model.
Args:
input_ids (torch.LongTensor, optional): Input token IDs for the text model.
pixel_values (torch.FloatTensor, optional): Pixel values for the vision model.
attention_mask (torch.Tensor, optional): Attention mask for the text model.
position_ids (torch.LongTensor, optional): Position IDs for the text model.
max_new_tokens (int): Maximum length of the generated sequence.
do_sample (bool): Whether to sample from the distribution or take argmax.
temperature (float): Temperature for sampling.
repetition_penalty (float): Penalty for repetition in sampling.
top_p (float): Top-p sampling parameter.
top_k (int): Top-k sampling parameter.
min_seq_len (int): Minimum sequence length for generation.
stopping_criteria: Stopping criteria for generation.
Returns:
GenerateDecoderOnlyOutput: Contains the generated sequences and logits.
"""
# This method should implement the generation logic for the Mammut model.
if input_ids is None and pixel_values is None:
raise ValueError("Input IDs or pixel values must be provided for generation.")
if input_ids is None:
input_ids = torch.ones(
(pixel_values.shape[0], 1), dtype=torch.long, device=pixel_values.device
) * self.bos_token_id
if pixel_values is None:
raise ValueError("Pixel values must be provided for generation.")
self.eval()
device = pixel_values.device if pixel_values is not None else input_ids.device
if input_ids is None:
input_ids = torch.ones(
(pixel_values.shape[0], 1), dtype=torch.long, device=device
) * self.bos_token_id
eos_token_id = self.eos_token_id if self.eos_token_id is not None else self.text_model.config.eos_token_id
logit_processor = LogitsProcessorList(
[
MinLengthLogitsProcessor(min_seq_len, eos_token_id),
RepetitionPenaltyLogitsProcessor(repetition_penalty),
]
)
if do_sample:
if top_k > 0:
logit_warper = LogitsProcessorList(
[
TopKLogitsWarper(top_k),
]
)
if top_p > 0:
logit_warper = LogitsProcessorList(
[
TopPLogitsWarper(top_p),
]
)
if stopping_criteria is None:
stopping_criteria = [MaxLengthCriteria(max_new_tokens)]
stopping_criteria = StoppingCriteriaList(
stopping_criteria
)
out = input_ids
vision_outputs = self.vision_model(
pixel_values=pixel_values
)
image_embeds = vision_outputs.last_hidden_state
with torch.no_grad():
while True:
x = out[:, -max_new_tokens:]
# Get text features
captioning_output = self._captioning_forward(
input_ids=x,
pixel_values=pixel_values,
image_embeds=image_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=False,
output_hidden_states=False,
interpolate_pos_encoding=False,
output_tokens=True, # We want the output tokens
)
output_ids = captioning_output.output_ids
# Get logits for the next token
logits = output_ids[:, -1]
mask = (out[:, -1] == eos_token_id) | (out[:, -1] == self.pad_token_id)
logits = logits[~mask, :]
filtered_logits = logit_processor(x[~mask, :], logits)
filtered_logits = logit_warper(x[~mask, :], filtered_logits)
# Sample or take the argmax of the logits
cur_len = out.shape[1]
if cur_len >= max_new_tokens:
next_token = torch.ones((sum(~mask), 1), device=device, dtype=torch.long) * eos_token_id
elif do_sample:
probs = F.softmax(filtered_logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(filtered_logits, dim=-1, keepdim=True)
if mask.all():
break
# Check if we have reached the end of the sequence or max length
if (out.shape[1] >= max_new_tokens) or (next_token == eos_token_id).all():
break
# Append the next token to the output sequence
out = torch.cat([out, next_token], dim=1)
output_ids = out.long() if out.dtype != torch.long else out
# If we reach the end of the sequence or max length, break the loop
return GenerateDecoderOnlyOutput(
logits=logits,
sequences=output_ids, # Output tokens from the text model
)
AutoModel.register(MammutConfig, MammutModel)
|