crodri commited on
Commit
ee91f9f
·
verified ·
1 Parent(s): d7f3efd

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:65360
8
+ - loss:ContrastiveLoss
9
+ base_model: BSC-LT/mRoBERTa
10
+ widget:
11
+ - source_sentence: El agua se volvió turbia desde que uso el ozono. ¿A qué se debe?
12
+ sentences:
13
+ - '27 de septiembre de 2009 27 de septiembre de 2009Tegucigalpa, Honduras — En un
14
+ comunicado del gobierno de facto hondureño, encabezado por Roberto Micheletti,
15
+ se ha decretado un ultimatum de 10 días para que la embajada de Brasil defina
16
+ el estatus del depuesto presidente Manuel Zelaya, quien permanece en la sede diplomática
17
+ desde el lunes pasado. En el texto del comunicado se afirma: "ningún país puede
18
+ tolerar que una embajada extranjera sea utilizada como base de mando para generar
19
+ violencia y romper la tranquilidad, como el señor Zelaya lo ha estado haciendo
20
+ desde su ingreso al territorio nacional", agregando: "nos veremos obligados a
21
+ tomar medidas adicionales conforme al derecho internacional".'
22
+ - La nubosidad es una señal de que el ozono está haciendo su trabajo. Continúe ejecutando
23
+ el filtro y desaparecerá en un par de días. La nubosidad también puede indicar
24
+ un problema en el filtro. Verifique el filtro por daños y operación apropiada.
25
+ Retrolavado si es necesario.
26
+ - El filòsof i periodista Jordi Graupera ha guanyat la votació de Primàries Catalunya
27
+ a Barcelona, amb 7.715 vots. El segon candidat més votat ha estat Adrià Alsina,
28
+ ex-membre del secretariat de l'ANC, amb 1.933 vots. La votació va començar divendres
29
+ a les 20.00 i s'ha acabat avui a les 20.00.
30
+ - source_sentence: What is a term being used for organizations that are for the citizens,
31
+ by the citizens?
32
+ sentences:
33
+ - 'The term "civil society organization" (CSO) has been used by a growing number
34
+ of organizations, such as the Center for the Study of Global Governance. The term
35
+ "citizen sector organization" (CSO) has also been advocated to describe the sector
36
+ – as one of citizens, for citizens – by organizations such as Ashoka: Innovators
37
+ for the Public. A more broadly applicable term, "Social Benefit Organization"
38
+ (SBO) has been advocated for by organizations such as MiniDonations.'
39
+ - The number e is a famous irrational number and is one of the most important numbers
40
+ in mathematics. e is the base of the Natural Logarithms.
41
+ - In 1885, British claims to a West African sphere of influence received recognition
42
+ from other European nations at the Berlin Conference. The following year, it chartered
43
+ the Royal Niger Company under the leadership of Sir George Taubman Goldie.
44
+ - source_sentence: ¿Cuándo se llevó a cabo la adquisición?
45
+ sentences:
46
+ - La operadora de telefonía móvil de Sao Paulo, Telesp Celular, controlada por Portugal
47
+ Telecom, adquirió el control de la empresa brasileña Ceterp Celular, perteneciente
48
+ al grupo español Telefónica, se informó hoy. En un aviso publicitario publicado
49
+ hoy en la prensa local, Telefónica indica que la operación se hizo efectiva ayer,
50
+ Martes, por un valor de 148,5 millones de reales (75,5 millones de dólares). La
51
+ empresa vendida formaba parte de las Centrales Telefónicas de Ribeirao Preto (Ceterp),
52
+ una pequeña compañía comprada en diciembre del año pasado por Telefónica en subasta
53
+ pública.
54
+ - Los ecologistas denuncian ante el TSJC la concesión por la Agència Catalana del'
55
+ Aigua de caudales de la depuradora de Les Fonts para el futuro campo de Torrebonica.
56
+ Adenc, que ya denunció el uso del agua, cree que han existido irregularidades
57
+ en la concesión.
58
+ - The word Anglican originates in ecclesia anglicana, a medieval Latin phrase dating
59
+ to at least 1246 that means the English Church. There is no single "Anglican Church"
60
+ with universal juridical authority, since each national or regional church has
61
+ full autonomy. As the name suggests, the communion is an association of churches
62
+ in full communion with the Archbishop of Canterbury.
63
+ - source_sentence: What was introduced that made using Mac OS alternative operating
64
+ systems easier?
65
+ sentences:
66
+ - and then to hand over control to a Mac OS-based bootloader application. Used even
67
+ by Apple for A/UX and MkLinux, this technique is no longer necessary since the
68
+ introduction of Open Firmware-based PCI Macs, though it was formerly used for
69
+ convenience on many Old World ROM systems due to bugs in the firmware implementation.[citation
70
+ needed] Now, Mac hardware boots directly from Open Firmware in most PowerPC-based
71
+ Macs or EFI in all Intel-based Macs.
72
+ - During the Napoleonic Wars in the late 18th century and early 19th century, Napoleon
73
+ annexed territory formerly controlled by the Habsburgs and Savoys. In 1798 he
74
+ established the Helvetic Republic in Switzerland; two years later he led an army
75
+ across the St. Bernard pass and conquered almost all of the Alpine regions.
76
+ - La visita coincideix amb un període de vaga a França per la reforma de les pensions
77
+ que també afecta el col·lectiu que exerceix al Principat. La visita de Jean–Michel
78
+ Blanquer a Andorra ha arrencat a primera hora amb una reunió amb el cap de govern,
79
+ Xavier Espot. No se'n sap el contingut, però de segur que han parlat del reforç
80
+ de la presència francesa a Andorra mitjançant el sistema educatiu.
81
+ - source_sentence: Of pregnant women, how many are believed to be infected with HIV?
82
+ sentences:
83
+ - In 2004, the Swaziland government acknowledged for the first time that it suffered
84
+ an AIDS crisis, with 38.8% of tested pregnant women infected with HIV (see AIDS
85
+ in Africa). The then Prime Minister Themba Dlamini declared a humanitarian crisis
86
+ due to the combined effect of drought, land degradation, increased poverty, and
87
+ HIV/AIDS.
88
+ - James Liebman, a professor of law at Columbia Law School, stated in 1996 that
89
+ his study found that when habeas corpus petitions in death penalty cases were
90
+ traced from conviction to completion of the case that there was "a 40 percent
91
+ success rate in all capital cases from 1978 to 1995." Similarly, a study by Ronald
92
+ Tabak in a law review article puts the success rate in habeas corpus cases involving
93
+ death row inmates even higher, finding that between "1976 and 1991, approximately
94
+ 47 percent of the habeas petitions filed by death row inmates were granted."
95
+ - Si t'allotges a Casa da Pendôa tens aquestes possibilitats d'aparcament (sota
96
+ disponibilitat):Pàrquing interior de pagament,Pàrquing exterior de pagament
97
+ datasets:
98
+ - langtech-innovation/trilingual_query_relevance
99
+ pipeline_tag: sentence-similarity
100
+ library_name: sentence-transformers
101
+ metrics:
102
+ - cosine_accuracy
103
+ - cosine_accuracy_threshold
104
+ - cosine_f1
105
+ - cosine_f1_threshold
106
+ - cosine_precision
107
+ - cosine_recall
108
+ - cosine_ap
109
+ - cosine_mcc
110
+ model-index:
111
+ - name: SentenceTransformer based on BSC-LT/mRoBERTa
112
+ results:
113
+ - task:
114
+ type: binary-classification
115
+ name: Binary Classification
116
+ dataset:
117
+ name: trilingual query relevance dev
118
+ type: trilingual_query_relevance_dev
119
+ metrics:
120
+ - type: cosine_accuracy
121
+ value: 0.9286237635852973
122
+ name: Cosine Accuracy
123
+ - type: cosine_accuracy_threshold
124
+ value: 0.7209097743034363
125
+ name: Cosine Accuracy Threshold
126
+ - type: cosine_f1
127
+ value: 0.9293707135122127
128
+ name: Cosine F1
129
+ - type: cosine_f1_threshold
130
+ value: 0.7056418657302856
131
+ name: Cosine F1 Threshold
132
+ - type: cosine_precision
133
+ value: 0.9159255306533856
134
+ name: Cosine Precision
135
+ - type: cosine_recall
136
+ value: 0.9432165099523752
137
+ name: Cosine Recall
138
+ - type: cosine_ap
139
+ value: 0.9810741730295642
140
+ name: Cosine Ap
141
+ - type: cosine_mcc
142
+ value: 0.8570174689645386
143
+ name: Cosine Mcc
144
+ ---
145
+
146
+ # SentenceTransformer based on BSC-LT/mRoBERTa
147
+
148
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BSC-LT/mRoBERTa](https://huggingface.co/BSC-LT/mRoBERTa) on the [trilingual_query_relevance](https://huggingface.co/datasets/crodri/trilingual_query_relevance) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
149
+
150
+ ## Model Details
151
+
152
+ ### Model Description
153
+ - **Model Type:** Sentence Transformer
154
+ - **Base model:** [BSC-LT/mRoBERTa](https://huggingface.co/BSC-LT/mRoBERTa) <!-- at revision e2d3bb2d12e3a03baa32f1d7d1b685aea0614b86 -->
155
+ - **Maximum Sequence Length:** 512 tokens
156
+ - **Output Dimensionality:** 768 dimensions
157
+ - **Similarity Function:** Cosine Similarity
158
+ - **Training Dataset:**
159
+ - [trilingual_query_relevance](https://huggingface.co/datasets/crodri/trilingual_query_relevance)
160
+ <!-- - **Language:** Unknown -->
161
+ <!-- - **License:** Unknown -->
162
+
163
+ ### Model Sources
164
+
165
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
166
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
167
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
168
+
169
+ ### Full Model Architecture
170
+
171
+ ```
172
+ SentenceTransformer(
173
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
174
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
175
+ )
176
+ ```
177
+
178
+ ## Usage
179
+
180
+ ### Direct Usage (Sentence Transformers)
181
+
182
+ First install the Sentence Transformers library:
183
+
184
+ ```bash
185
+ pip install -U sentence-transformers
186
+ ```
187
+
188
+ Then you can load this model and run inference.
189
+ ```python
190
+ from sentence_transformers import SentenceTransformer
191
+
192
+ # Download from the 🤗 Hub
193
+ model = SentenceTransformer("langtech-innovation/mRoBERTA_retrieval")
194
+ # Run inference
195
+ sentences = [
196
+ 'Of pregnant women, how many are believed to be infected with HIV?',
197
+ 'In 2004, the Swaziland government acknowledged for the first time that it suffered an AIDS crisis, with 38.8% of tested pregnant women infected with HIV (see AIDS in Africa). The then Prime Minister Themba Dlamini declared a humanitarian crisis due to the combined effect of drought, land degradation, increased poverty, and HIV/AIDS.',
198
+ 'James Liebman, a professor of law at Columbia Law School, stated in 1996 that his study found that when habeas corpus petitions in death penalty cases were traced from conviction to completion of the case that there was "a 40 percent success rate in all capital cases from 1978 to 1995." Similarly, a study by Ronald Tabak in a law review article puts the success rate in habeas corpus cases involving death row inmates even higher, finding that between "1976 and 1991, approximately 47 percent of the habeas petitions filed by death row inmates were granted."',
199
+ ]
200
+ embeddings = model.encode(sentences)
201
+ print(embeddings.shape)
202
+ # [3, 768]
203
+
204
+ # Get the similarity scores for the embeddings
205
+ similarities = model.similarity(embeddings, embeddings)
206
+ print(similarities.shape)
207
+ # [3, 3]
208
+ ```
209
+
210
+ <!--
211
+ ### Direct Usage (Transformers)
212
+
213
+ <details><summary>Click to see the direct usage in Transformers</summary>
214
+
215
+ </details>
216
+ -->
217
+
218
+ <!--
219
+ ### Downstream Usage (Sentence Transformers)
220
+
221
+ You can finetune this model on your own dataset.
222
+
223
+ <details><summary>Click to expand</summary>
224
+
225
+ </details>
226
+ -->
227
+
228
+ <!--
229
+ ### Out-of-Scope Use
230
+
231
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
232
+ -->
233
+
234
+ ## Evaluation
235
+
236
+ ### Metrics
237
+
238
+ #### Binary Classification
239
+
240
+ * Dataset: `trilingual_query_relevance_dev`
241
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
242
+
243
+ | Metric | Value |
244
+ |:--------------------------|:-----------|
245
+ | cosine_accuracy | 0.9286 |
246
+ | cosine_accuracy_threshold | 0.7209 |
247
+ | cosine_f1 | 0.9294 |
248
+ | cosine_f1_threshold | 0.7056 |
249
+ | cosine_precision | 0.9159 |
250
+ | cosine_recall | 0.9432 |
251
+ | **cosine_ap** | **0.9811** |
252
+ | cosine_mcc | 0.857 |
253
+
254
+ <!--
255
+ ## Bias, Risks and Limitations
256
+
257
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
258
+ -->
259
+
260
+ <!--
261
+ ### Recommendations
262
+
263
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
264
+ -->
265
+
266
+ ## Training Details
267
+
268
+ ### Training Dataset
269
+
270
+ #### trilingual_query_relevance
271
+
272
+ * Dataset: [trilingual_query_relevance](https://huggingface.co/datasets/crodri/trilingual_query_relevance) at [64c425f](https://huggingface.co/datasets/crodri/trilingual_query_relevance/tree/64c425f05b56dd8ce5002c530fa9887953949ccc)
273
+ * Size: 65,360 training samples
274
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
275
+ * Approximate statistics based on the first 1000 samples:
276
+ | | sentence1 | sentence2 | label |
277
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------|
278
+ | type | string | string | int |
279
+ | details | <ul><li>min: 3 tokens</li><li>mean: 14.05 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 92.67 tokens</li><li>max: 390 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
280
+ * Samples:
281
+ | sentence1 | sentence2 | label |
282
+ |:-------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
283
+ | <code>Com ha dit Juncker que havia sigut Georgieva com a vicepresidenta?</code> | <code>La vicepresidenta de la Comissió Europea i responsable de Pressupostos i Recursos Humans, Kristalina Georgieva, ha presentat aquest divendres la seva dimissió i deixarà el càrrec a finals d'any per treballar al Banc Mundial. El president de la CE, Jean-Claude Juncker, ha anunciat en un comunicat que el comissari alemany Günther H. Oettinger assumirà la carpeta de Georgieva, a qui ha definit com una 'excel·lent vicepresidenta'. Amb la vacant de Georgieva, s'iniciarà el procés per nomenar un nou comissari búlgar, que haurà de ser avalat pel Parlament Europeu.</code> | <code>1</code> |
284
+ | <code>¿Cuándo intentaron agredir a Kiko?</code> | <code>El infierno del Atlético en Segunda División es especialmente duro para Kiko, precisamente el jugador que prestó su imagen a la campaña publicitaria con la que el club madrileño buscó el respaldo de su afición. El más carismático jugador rojiblanco hasta hace unos meses fue objeto el sábado por la noche de un intento de agresión a la salida del estadio, después de la humillante derrota ante el Murcia. Un grupo de los más radicales miembros del Frente Atlético le acusó de ser el principal responsable del descenso y le reprochó con suma dureza no colaborar económicamente con la peña para sufragar sus desplazamientos.</code> | <code>1</code> |
285
+ | <code>¿Cuándo fue la última vez que pudo celebrarse el desfile en la capital turca?</code> | <code>Tras el infructuoso intento de realizar la marcha del domingo, los organizadores lanzaron un comunicado diciendo que "no estamos asustados, estamos aquí, no cambiaremos (...) Ustedes están asustados, cambiarán y se acostumbrarán". El İstanbul Onur Yürüyüşü, nombre local de la marcha del orgullo gay, fue organizado por primera vez en 2003, atrayendo según los reportes, entre decenas de miles y cien mil personas en 2014, año en que se celebró el último desfile y se toparía con una serie de bloqueos en los tres años siguientes. El año pasado, a los organizadores no se les brindó permiso para hacer la marcha tras los ataques militares que enfrentó Estambul, y en 2015 la marcha fue detenida cuando iba a comenzar, y la policía empleó chorros de agua y gas lacrimógeno para dispersar a los manifestantes.</code> | <code>1</code> |
286
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
287
+ ```json
288
+ {
289
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
290
+ "margin": 0.5,
291
+ "size_average": true
292
+ }
293
+ ```
294
+
295
+ ### Evaluation Dataset
296
+
297
+ #### trilingual_query_relevance
298
+
299
+ * Dataset: [trilingual_query_relevance](https://huggingface.co/datasets/crodri/trilingual_query_relevance) at [64c425f](https://huggingface.co/datasets/crodri/trilingual_query_relevance/tree/64c425f05b56dd8ce5002c530fa9887953949ccc)
300
+ * Size: 16,378 evaluation samples
301
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
302
+ * Approximate statistics based on the first 1000 samples:
303
+ | | sentence1 | sentence2 | label |
304
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
305
+ | type | string | string | int |
306
+ | details | <ul><li>min: 3 tokens</li><li>mean: 14.22 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 93.29 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> |
307
+ * Samples:
308
+ | sentence1 | sentence2 | label |
309
+ |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
310
+ | <code>what type of flowers did Gules use?</code> | <code>"Azure, three ships with three masts, rigged and under full sail, the sails, pennants and ensigns Argent, each charged with a cross Gules; on a chief of the second a pale quarterly Azure and Gules, on the 1st and 4th a fleur-de-lis or, on the 2nd and 3rd a leopard or, between two roses Gules seeded Or barbed Vert." The shield had as a crest: "A sphere without a frame, bounded with the Zodiac in bend Or, between two pennants flottant Argent, each charged with a cross Gules, over the sphere the words DEUS INDICAT" (Latin: God Indicates).</code> | <code>1</code> |
311
+ | <code>What are the best pest control methods for Kuala Lumpur's climate?</code> | <code>The best pest control methods for Kuala Lumpur's climate are using insect baits, traps, and insecticides. It is also important to eliminate sources of food, water, and shelter for pests to prevent them from entering the home. Additionally, sealing off openings and cracks, keeping a clean and clutter-free environment, and regular inspection can help reduce the presence of pests in Kuala Lumpur's climate.</code> | <code>1</code> |
312
+ | <code>How many housing units were there for the 2010 census?</code> | <code>The population density was 956.4 inhabitants per square mile (321.9/km²). There were 256,930 housing units at an average density of 375.9 per square mile (145.1/km²).</code> | <code>1</code> |
313
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
314
+ ```json
315
+ {
316
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
317
+ "margin": 0.5,
318
+ "size_average": true
319
+ }
320
+ ```
321
+
322
+ ### Training Hyperparameters
323
+ #### Non-Default Hyperparameters
324
+
325
+ - `eval_strategy`: steps
326
+ - `per_device_train_batch_size`: 2
327
+ - `per_device_eval_batch_size`: 2
328
+ - `num_train_epochs`: 4
329
+ - `warmup_ratio`: 0.1
330
+ - `fp16`: True
331
+ - `load_best_model_at_end`: True
332
+ - `gradient_checkpointing`: True
333
+
334
+ #### All Hyperparameters
335
+ <details><summary>Click to expand</summary>
336
+
337
+ - `overwrite_output_dir`: False
338
+ - `do_predict`: False
339
+ - `eval_strategy`: steps
340
+ - `prediction_loss_only`: True
341
+ - `per_device_train_batch_size`: 2
342
+ - `per_device_eval_batch_size`: 2
343
+ - `per_gpu_train_batch_size`: None
344
+ - `per_gpu_eval_batch_size`: None
345
+ - `gradient_accumulation_steps`: 1
346
+ - `eval_accumulation_steps`: None
347
+ - `torch_empty_cache_steps`: None
348
+ - `learning_rate`: 5e-05
349
+ - `weight_decay`: 0.0
350
+ - `adam_beta1`: 0.9
351
+ - `adam_beta2`: 0.999
352
+ - `adam_epsilon`: 1e-08
353
+ - `max_grad_norm`: 1.0
354
+ - `num_train_epochs`: 4
355
+ - `max_steps`: -1
356
+ - `lr_scheduler_type`: linear
357
+ - `lr_scheduler_kwargs`: {}
358
+ - `warmup_ratio`: 0.1
359
+ - `warmup_steps`: 0
360
+ - `log_level`: passive
361
+ - `log_level_replica`: warning
362
+ - `log_on_each_node`: True
363
+ - `logging_nan_inf_filter`: True
364
+ - `save_safetensors`: True
365
+ - `save_on_each_node`: False
366
+ - `save_only_model`: False
367
+ - `restore_callback_states_from_checkpoint`: False
368
+ - `no_cuda`: False
369
+ - `use_cpu`: False
370
+ - `use_mps_device`: False
371
+ - `seed`: 42
372
+ - `data_seed`: None
373
+ - `jit_mode_eval`: False
374
+ - `use_ipex`: False
375
+ - `bf16`: False
376
+ - `fp16`: True
377
+ - `fp16_opt_level`: O1
378
+ - `half_precision_backend`: auto
379
+ - `bf16_full_eval`: False
380
+ - `fp16_full_eval`: False
381
+ - `tf32`: None
382
+ - `local_rank`: 0
383
+ - `ddp_backend`: None
384
+ - `tpu_num_cores`: None
385
+ - `tpu_metrics_debug`: False
386
+ - `debug`: []
387
+ - `dataloader_drop_last`: False
388
+ - `dataloader_num_workers`: 0
389
+ - `dataloader_prefetch_factor`: None
390
+ - `past_index`: -1
391
+ - `disable_tqdm`: False
392
+ - `remove_unused_columns`: True
393
+ - `label_names`: None
394
+ - `load_best_model_at_end`: True
395
+ - `ignore_data_skip`: False
396
+ - `fsdp`: []
397
+ - `fsdp_min_num_params`: 0
398
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
399
+ - `fsdp_transformer_layer_cls_to_wrap`: None
400
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
401
+ - `deepspeed`: None
402
+ - `label_smoothing_factor`: 0.0
403
+ - `optim`: adamw_torch
404
+ - `optim_args`: None
405
+ - `adafactor`: False
406
+ - `group_by_length`: False
407
+ - `length_column_name`: length
408
+ - `ddp_find_unused_parameters`: None
409
+ - `ddp_bucket_cap_mb`: None
410
+ - `ddp_broadcast_buffers`: False
411
+ - `dataloader_pin_memory`: True
412
+ - `dataloader_persistent_workers`: False
413
+ - `skip_memory_metrics`: True
414
+ - `use_legacy_prediction_loop`: False
415
+ - `push_to_hub`: False
416
+ - `resume_from_checkpoint`: None
417
+ - `hub_model_id`: None
418
+ - `hub_strategy`: every_save
419
+ - `hub_private_repo`: None
420
+ - `hub_always_push`: False
421
+ - `gradient_checkpointing`: True
422
+ - `gradient_checkpointing_kwargs`: None
423
+ - `include_inputs_for_metrics`: False
424
+ - `include_for_metrics`: []
425
+ - `eval_do_concat_batches`: True
426
+ - `fp16_backend`: auto
427
+ - `push_to_hub_model_id`: None
428
+ - `push_to_hub_organization`: None
429
+ - `mp_parameters`:
430
+ - `auto_find_batch_size`: False
431
+ - `full_determinism`: False
432
+ - `torchdynamo`: None
433
+ - `ray_scope`: last
434
+ - `ddp_timeout`: 1800
435
+ - `torch_compile`: False
436
+ - `torch_compile_backend`: None
437
+ - `torch_compile_mode`: None
438
+ - `dispatch_batches`: None
439
+ - `split_batches`: None
440
+ - `include_tokens_per_second`: False
441
+ - `include_num_input_tokens_seen`: False
442
+ - `neftune_noise_alpha`: None
443
+ - `optim_target_modules`: None
444
+ - `batch_eval_metrics`: False
445
+ - `eval_on_start`: False
446
+ - `use_liger_kernel`: False
447
+ - `eval_use_gather_object`: False
448
+ - `average_tokens_across_devices`: False
449
+ - `prompts`: None
450
+ - `batch_sampler`: batch_sampler
451
+ - `multi_dataset_batch_sampler`: proportional
452
+
453
+ </details>
454
+
455
+ ### Training Logs
456
+ | Epoch | Step | Training Loss | Validation Loss | trilingual_query_relevance_dev_cosine_ap |
457
+ |:------:|:----:|:-------------:|:---------------:|:----------------------------------------:|
458
+ | 0.0031 | 100 | 0.024 | 0.0241 | 0.8502 |
459
+ | 0.0061 | 200 | 0.024 | 0.0232 | 0.8688 |
460
+ | 0.0092 | 300 | 0.0238 | 0.0215 | 0.9041 |
461
+ | 0.0122 | 400 | 0.022 | 0.0189 | 0.9431 |
462
+ | 0.0153 | 500 | 0.0201 | 0.0164 | 0.9610 |
463
+ | 0.0184 | 600 | 0.0167 | 0.0145 | 0.9676 |
464
+ | 0.0214 | 700 | 0.0143 | 0.0133 | 0.9711 |
465
+ | 0.0245 | 800 | 0.0141 | 0.0123 | 0.9689 |
466
+ | 0.0275 | 900 | 0.0121 | 0.0117 | 0.9707 |
467
+ | 0.0306 | 1000 | 0.0114 | 0.0116 | 0.9704 |
468
+ | 0.0337 | 1100 | 0.0121 | 0.0116 | 0.9690 |
469
+ | 0.0367 | 1200 | 0.0117 | 0.0112 | 0.9710 |
470
+ | 0.0398 | 1300 | 0.0114 | 0.0110 | 0.9690 |
471
+ | 0.0428 | 1400 | 0.0124 | 0.0106 | 0.9688 |
472
+ | 0.0459 | 1500 | 0.0113 | 0.0104 | 0.9712 |
473
+ | 0.0490 | 1600 | 0.0113 | 0.0103 | 0.9740 |
474
+ | 0.0520 | 1700 | 0.0114 | 0.0108 | 0.9714 |
475
+ | 0.0551 | 1800 | 0.0119 | 0.0105 | 0.9757 |
476
+ | 0.0581 | 1900 | 0.011 | 0.0101 | 0.9749 |
477
+ | 0.0612 | 2000 | 0.0138 | 0.0097 | 0.9776 |
478
+ | 0.0643 | 2100 | 0.0124 | 0.0097 | 0.9775 |
479
+ | 0.0673 | 2200 | 0.0109 | 0.0097 | 0.9776 |
480
+ | 0.0704 | 2300 | 0.0128 | 0.0106 | 0.9774 |
481
+ | 0.0734 | 2400 | 0.0143 | 0.0097 | 0.9811 |
482
+ | 0.0765 | 2500 | 0.0125 | 0.0096 | 0.9791 |
483
+ | 0.0796 | 2600 | 0.0121 | 0.0113 | 0.9806 |
484
+ | 0.0826 | 2700 | 0.009 | 0.0093 | 0.9799 |
485
+ | 0.0857 | 2800 | 0.0092 | 0.0108 | 0.9772 |
486
+ | 0.0887 | 2900 | 0.0115 | 0.0095 | 0.9760 |
487
+ | 0.0918 | 3000 | 0.0115 | 0.0098 | 0.9796 |
488
+ | 0.0949 | 3100 | 0.0109 | 0.0092 | 0.9796 |
489
+ | 0.0979 | 3200 | 0.0113 | 0.0095 | 0.9753 |
490
+ | 0.1010 | 3300 | 0.0095 | 0.0094 | 0.9759 |
491
+ | 0.1040 | 3400 | 0.0087 | 0.0097 | 0.9767 |
492
+ | 0.1071 | 3500 | 0.0101 | 0.0097 | 0.9745 |
493
+ | 0.1102 | 3600 | 0.0125 | 0.0105 | 0.9772 |
494
+ | 0.1132 | 3700 | 0.0132 | 0.0091 | 0.9798 |
495
+ | 0.1163 | 3800 | 0.0081 | 0.0089 | 0.9809 |
496
+ | 0.1193 | 3900 | 0.0109 | 0.0095 | 0.9787 |
497
+ | 0.1224 | 4000 | 0.0105 | 0.0090 | 0.9789 |
498
+ | 0.1255 | 4100 | 0.0089 | 0.0096 | 0.9774 |
499
+ | 0.1285 | 4200 | 0.0094 | 0.0095 | 0.9760 |
500
+ | 0.1316 | 4300 | 0.0118 | 0.0096 | 0.9806 |
501
+ | 0.1346 | 4400 | 0.0104 | 0.0092 | 0.9787 |
502
+ | 0.1377 | 4500 | 0.0113 | 0.0094 | 0.9776 |
503
+ | 0.1408 | 4600 | 0.0112 | 0.0094 | 0.9761 |
504
+ | 0.1438 | 4700 | 0.01 | 0.0093 | 0.9734 |
505
+ | 0.1469 | 4800 | 0.0102 | 0.0100 | 0.9724 |
506
+ | 0.1499 | 4900 | 0.0123 | 0.0100 | 0.9753 |
507
+ | 0.1530 | 5000 | 0.01 | 0.0102 | 0.9794 |
508
+ | 0.1561 | 5100 | 0.0093 | 0.0096 | 0.9772 |
509
+ | 0.1591 | 5200 | 0.0146 | 0.0096 | 0.9804 |
510
+ | 0.1622 | 5300 | 0.0102 | 0.0098 | 0.9762 |
511
+ | 0.1652 | 5400 | 0.0118 | 0.0098 | 0.9768 |
512
+ | 0.1683 | 5500 | 0.0113 | 0.0090 | 0.9790 |
513
+ | 0.1714 | 5600 | 0.0103 | 0.0096 | 0.9762 |
514
+ | 0.1744 | 5700 | 0.0107 | 0.0101 | 0.9802 |
515
+ | 0.1775 | 5800 | 0.0124 | 0.0098 | 0.9788 |
516
+ | 0.1805 | 5900 | 0.0097 | 0.0095 | 0.9785 |
517
+ | 0.1836 | 6000 | 0.0101 | 0.0099 | 0.9736 |
518
+ | 0.1867 | 6100 | 0.0116 | 0.0099 | 0.9834 |
519
+ | 0.1897 | 6200 | 0.0109 | 0.0088 | 0.9811 |
520
+
521
+
522
+ ### Framework Versions
523
+ - Python: 3.10.16
524
+ - Sentence Transformers: 3.4.1
525
+ - Transformers: 4.49.0
526
+ - PyTorch: 2.5.1+cu124
527
+ - Accelerate: 1.2.1
528
+ - Datasets: 3.2.0
529
+ - Tokenizers: 0.21.0
530
+
531
+ ## Citation
532
+
533
+ ### BibTeX
534
+
535
+ #### Sentence Transformers
536
+ ```bibtex
537
+ @inproceedings{reimers-2019-sentence-bert,
538
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
539
+ author = "Reimers, Nils and Gurevych, Iryna",
540
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
541
+ month = "11",
542
+ year = "2019",
543
+ publisher = "Association for Computational Linguistics",
544
+ url = "https://arxiv.org/abs/1908.10084",
545
+ }
546
+ ```
547
+
548
+ #### ContrastiveLoss
549
+ ```bibtex
550
+ @inproceedings{hadsell2006dimensionality,
551
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
552
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
553
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
554
+ year={2006},
555
+ volume={2},
556
+ number={},
557
+ pages={1735-1742},
558
+ doi={10.1109/CVPR.2006.100}
559
+ }
560
+ ```
561
+
562
+ <!--
563
+ ## Glossary
564
+
565
+ *Clearly define terms in order to be accessible across audiences.*
566
+ -->
567
+
568
+ <!--
569
+ ## Model Card Authors
570
+
571
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
572
+ -->
573
+
574
+ <!--
575
+ ## Model Card Contact
576
+
577
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
578
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "output/training_trilingual_query_relevance_BSC-LT-mRoBERTa-2025-03-20_21-52-43/checkpoint-6200/",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.49.0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 256000
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61ece44ba7f8ee74d751061dc315930e9716ac0a0defd0d3fa2ba6c50b118681
3
+ size 1130622968
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2bf5621066c920a83c8b0f75b8d0d95b8b1bad04ac245c6746e6d2b303b76b
3
+ size 37007530
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5072e3209a04aa01dbf4db72b8fec52cf8cd06a042c9ba819678e084f7b665d5
3
+ size 4813283
tokenizer_config.json ADDED
@@ -0,0 +1,1099 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<s>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<pad>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "3": {
31
+ "content": "<unk>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "4": {
39
+ "content": "<|im_start|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "5": {
47
+ "content": "<|im_end|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "6": {
55
+ "content": "<|reserved_token_1|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "7": {
63
+ "content": "<|reserved_token_2|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "8": {
71
+ "content": "<|reserved_token_3|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "9": {
79
+ "content": "<|reserved_token_4|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "10": {
87
+ "content": "<|reserved_token_5|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "11": {
95
+ "content": "<|reserved_token_6|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "12": {
103
+ "content": "<|reserved_token_7|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "13": {
111
+ "content": "<|reserved_token_8|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "14": {
119
+ "content": "<|reserved_token_9|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "15": {
127
+ "content": "<|reserved_token_10|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "16": {
135
+ "content": "<|reserved_token_11|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "17": {
143
+ "content": "<|reserved_token_12|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "18": {
151
+ "content": "<|reserved_token_13|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "19": {
159
+ "content": "<|reserved_token_14|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "20": {
167
+ "content": "<|reserved_token_15|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "21": {
175
+ "content": "<|reserved_token_16|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "22": {
183
+ "content": "<|reserved_token_17|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "23": {
191
+ "content": "<|reserved_token_18|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "24": {
199
+ "content": "<|reserved_token_19|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "25": {
207
+ "content": "<|reserved_token_20|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "26": {
215
+ "content": "<|reserved_token_21|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "27": {
223
+ "content": "<|reserved_token_22|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "28": {
231
+ "content": "<|reserved_token_23|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "29": {
239
+ "content": "<|reserved_token_24|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "30": {
247
+ "content": "<|reserved_token_25|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "31": {
255
+ "content": "<|reserved_token_26|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32": {
263
+ "content": "<|reserved_token_27|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "33": {
271
+ "content": "<|reserved_token_28|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "34": {
279
+ "content": "<|reserved_token_29|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "35": {
287
+ "content": "<|reserved_token_30|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "36": {
295
+ "content": "<|reserved_token_31|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "37": {
303
+ "content": "<|reserved_token_32|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "38": {
311
+ "content": "<|reserved_token_33|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "39": {
319
+ "content": "<|reserved_token_34|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "40": {
327
+ "content": "<|reserved_token_35|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "41": {
335
+ "content": "<|reserved_token_36|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": false,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "42": {
343
+ "content": "<|reserved_token_37|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": false,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "43": {
351
+ "content": "<|reserved_token_38|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": false,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "44": {
359
+ "content": "<|reserved_token_39|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": false,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "45": {
367
+ "content": "<|reserved_token_40|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": false,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "46": {
375
+ "content": "<|reserved_token_41|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": false,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "47": {
383
+ "content": "<|reserved_token_42|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": false,
387
+ "single_word": false,
388
+ "special": true
389
+ },
390
+ "48": {
391
+ "content": "<|reserved_token_43|>",
392
+ "lstrip": false,
393
+ "normalized": false,
394
+ "rstrip": false,
395
+ "single_word": false,
396
+ "special": true
397
+ },
398
+ "49": {
399
+ "content": "<|reserved_token_44|>",
400
+ "lstrip": false,
401
+ "normalized": false,
402
+ "rstrip": false,
403
+ "single_word": false,
404
+ "special": true
405
+ },
406
+ "50": {
407
+ "content": "<|reserved_token_45|>",
408
+ "lstrip": false,
409
+ "normalized": false,
410
+ "rstrip": false,
411
+ "single_word": false,
412
+ "special": true
413
+ },
414
+ "51": {
415
+ "content": "<|reserved_token_46|>",
416
+ "lstrip": false,
417
+ "normalized": false,
418
+ "rstrip": false,
419
+ "single_word": false,
420
+ "special": true
421
+ },
422
+ "52": {
423
+ "content": "<|reserved_token_47|>",
424
+ "lstrip": false,
425
+ "normalized": false,
426
+ "rstrip": false,
427
+ "single_word": false,
428
+ "special": true
429
+ },
430
+ "53": {
431
+ "content": "<|reserved_token_48|>",
432
+ "lstrip": false,
433
+ "normalized": false,
434
+ "rstrip": false,
435
+ "single_word": false,
436
+ "special": true
437
+ },
438
+ "54": {
439
+ "content": "<|reserved_token_49|>",
440
+ "lstrip": false,
441
+ "normalized": false,
442
+ "rstrip": false,
443
+ "single_word": false,
444
+ "special": true
445
+ },
446
+ "55": {
447
+ "content": "<|reserved_token_50|>",
448
+ "lstrip": false,
449
+ "normalized": false,
450
+ "rstrip": false,
451
+ "single_word": false,
452
+ "special": true
453
+ },
454
+ "56": {
455
+ "content": "<|reserved_token_51|>",
456
+ "lstrip": false,
457
+ "normalized": false,
458
+ "rstrip": false,
459
+ "single_word": false,
460
+ "special": true
461
+ },
462
+ "57": {
463
+ "content": "<|reserved_token_52|>",
464
+ "lstrip": false,
465
+ "normalized": false,
466
+ "rstrip": false,
467
+ "single_word": false,
468
+ "special": true
469
+ },
470
+ "58": {
471
+ "content": "<|reserved_token_53|>",
472
+ "lstrip": false,
473
+ "normalized": false,
474
+ "rstrip": false,
475
+ "single_word": false,
476
+ "special": true
477
+ },
478
+ "59": {
479
+ "content": "<|reserved_token_54|>",
480
+ "lstrip": false,
481
+ "normalized": false,
482
+ "rstrip": false,
483
+ "single_word": false,
484
+ "special": true
485
+ },
486
+ "60": {
487
+ "content": "<|reserved_token_55|>",
488
+ "lstrip": false,
489
+ "normalized": false,
490
+ "rstrip": false,
491
+ "single_word": false,
492
+ "special": true
493
+ },
494
+ "61": {
495
+ "content": "<|reserved_token_56|>",
496
+ "lstrip": false,
497
+ "normalized": false,
498
+ "rstrip": false,
499
+ "single_word": false,
500
+ "special": true
501
+ },
502
+ "62": {
503
+ "content": "<|reserved_token_57|>",
504
+ "lstrip": false,
505
+ "normalized": false,
506
+ "rstrip": false,
507
+ "single_word": false,
508
+ "special": true
509
+ },
510
+ "63": {
511
+ "content": "<|reserved_token_58|>",
512
+ "lstrip": false,
513
+ "normalized": false,
514
+ "rstrip": false,
515
+ "single_word": false,
516
+ "special": true
517
+ },
518
+ "64": {
519
+ "content": "<|reserved_token_59|>",
520
+ "lstrip": false,
521
+ "normalized": false,
522
+ "rstrip": false,
523
+ "single_word": false,
524
+ "special": true
525
+ },
526
+ "65": {
527
+ "content": "<|reserved_token_60|>",
528
+ "lstrip": false,
529
+ "normalized": false,
530
+ "rstrip": false,
531
+ "single_word": false,
532
+ "special": true
533
+ },
534
+ "66": {
535
+ "content": "<|reserved_token_61|>",
536
+ "lstrip": false,
537
+ "normalized": false,
538
+ "rstrip": false,
539
+ "single_word": false,
540
+ "special": true
541
+ },
542
+ "67": {
543
+ "content": "<|reserved_token_62|>",
544
+ "lstrip": false,
545
+ "normalized": false,
546
+ "rstrip": false,
547
+ "single_word": false,
548
+ "special": true
549
+ },
550
+ "68": {
551
+ "content": "<|reserved_token_63|>",
552
+ "lstrip": false,
553
+ "normalized": false,
554
+ "rstrip": false,
555
+ "single_word": false,
556
+ "special": true
557
+ },
558
+ "69": {
559
+ "content": "<|reserved_token_64|>",
560
+ "lstrip": false,
561
+ "normalized": false,
562
+ "rstrip": false,
563
+ "single_word": false,
564
+ "special": true
565
+ },
566
+ "70": {
567
+ "content": "<|reserved_token_65|>",
568
+ "lstrip": false,
569
+ "normalized": false,
570
+ "rstrip": false,
571
+ "single_word": false,
572
+ "special": true
573
+ },
574
+ "71": {
575
+ "content": "<|reserved_token_66|>",
576
+ "lstrip": false,
577
+ "normalized": false,
578
+ "rstrip": false,
579
+ "single_word": false,
580
+ "special": true
581
+ },
582
+ "72": {
583
+ "content": "<|reserved_token_67|>",
584
+ "lstrip": false,
585
+ "normalized": false,
586
+ "rstrip": false,
587
+ "single_word": false,
588
+ "special": true
589
+ },
590
+ "73": {
591
+ "content": "<|reserved_token_68|>",
592
+ "lstrip": false,
593
+ "normalized": false,
594
+ "rstrip": false,
595
+ "single_word": false,
596
+ "special": true
597
+ },
598
+ "74": {
599
+ "content": "<|reserved_token_69|>",
600
+ "lstrip": false,
601
+ "normalized": false,
602
+ "rstrip": false,
603
+ "single_word": false,
604
+ "special": true
605
+ },
606
+ "75": {
607
+ "content": "<|reserved_token_70|>",
608
+ "lstrip": false,
609
+ "normalized": false,
610
+ "rstrip": false,
611
+ "single_word": false,
612
+ "special": true
613
+ },
614
+ "76": {
615
+ "content": "<|reserved_token_71|>",
616
+ "lstrip": false,
617
+ "normalized": false,
618
+ "rstrip": false,
619
+ "single_word": false,
620
+ "special": true
621
+ },
622
+ "77": {
623
+ "content": "<|reserved_token_72|>",
624
+ "lstrip": false,
625
+ "normalized": false,
626
+ "rstrip": false,
627
+ "single_word": false,
628
+ "special": true
629
+ },
630
+ "78": {
631
+ "content": "<|reserved_token_73|>",
632
+ "lstrip": false,
633
+ "normalized": false,
634
+ "rstrip": false,
635
+ "single_word": false,
636
+ "special": true
637
+ },
638
+ "79": {
639
+ "content": "<|reserved_token_74|>",
640
+ "lstrip": false,
641
+ "normalized": false,
642
+ "rstrip": false,
643
+ "single_word": false,
644
+ "special": true
645
+ },
646
+ "80": {
647
+ "content": "<|reserved_token_75|>",
648
+ "lstrip": false,
649
+ "normalized": false,
650
+ "rstrip": false,
651
+ "single_word": false,
652
+ "special": true
653
+ },
654
+ "81": {
655
+ "content": "<|reserved_token_76|>",
656
+ "lstrip": false,
657
+ "normalized": false,
658
+ "rstrip": false,
659
+ "single_word": false,
660
+ "special": true
661
+ },
662
+ "82": {
663
+ "content": "<|reserved_token_77|>",
664
+ "lstrip": false,
665
+ "normalized": false,
666
+ "rstrip": false,
667
+ "single_word": false,
668
+ "special": true
669
+ },
670
+ "83": {
671
+ "content": "<|reserved_token_78|>",
672
+ "lstrip": false,
673
+ "normalized": false,
674
+ "rstrip": false,
675
+ "single_word": false,
676
+ "special": true
677
+ },
678
+ "84": {
679
+ "content": "<|reserved_token_79|>",
680
+ "lstrip": false,
681
+ "normalized": false,
682
+ "rstrip": false,
683
+ "single_word": false,
684
+ "special": true
685
+ },
686
+ "85": {
687
+ "content": "<|reserved_token_80|>",
688
+ "lstrip": false,
689
+ "normalized": false,
690
+ "rstrip": false,
691
+ "single_word": false,
692
+ "special": true
693
+ },
694
+ "86": {
695
+ "content": "<|reserved_token_81|>",
696
+ "lstrip": false,
697
+ "normalized": false,
698
+ "rstrip": false,
699
+ "single_word": false,
700
+ "special": true
701
+ },
702
+ "87": {
703
+ "content": "<|reserved_token_82|>",
704
+ "lstrip": false,
705
+ "normalized": false,
706
+ "rstrip": false,
707
+ "single_word": false,
708
+ "special": true
709
+ },
710
+ "88": {
711
+ "content": "<|reserved_token_83|>",
712
+ "lstrip": false,
713
+ "normalized": false,
714
+ "rstrip": false,
715
+ "single_word": false,
716
+ "special": true
717
+ },
718
+ "89": {
719
+ "content": "<|reserved_token_84|>",
720
+ "lstrip": false,
721
+ "normalized": false,
722
+ "rstrip": false,
723
+ "single_word": false,
724
+ "special": true
725
+ },
726
+ "90": {
727
+ "content": "<|reserved_token_85|>",
728
+ "lstrip": false,
729
+ "normalized": false,
730
+ "rstrip": false,
731
+ "single_word": false,
732
+ "special": true
733
+ },
734
+ "91": {
735
+ "content": "<|reserved_token_86|>",
736
+ "lstrip": false,
737
+ "normalized": false,
738
+ "rstrip": false,
739
+ "single_word": false,
740
+ "special": true
741
+ },
742
+ "92": {
743
+ "content": "<|reserved_token_87|>",
744
+ "lstrip": false,
745
+ "normalized": false,
746
+ "rstrip": false,
747
+ "single_word": false,
748
+ "special": true
749
+ },
750
+ "93": {
751
+ "content": "<|reserved_token_88|>",
752
+ "lstrip": false,
753
+ "normalized": false,
754
+ "rstrip": false,
755
+ "single_word": false,
756
+ "special": true
757
+ },
758
+ "94": {
759
+ "content": "<|reserved_token_89|>",
760
+ "lstrip": false,
761
+ "normalized": false,
762
+ "rstrip": false,
763
+ "single_word": false,
764
+ "special": true
765
+ },
766
+ "95": {
767
+ "content": "<|reserved_token_90|>",
768
+ "lstrip": false,
769
+ "normalized": false,
770
+ "rstrip": false,
771
+ "single_word": false,
772
+ "special": true
773
+ },
774
+ "96": {
775
+ "content": "<|reserved_token_91|>",
776
+ "lstrip": false,
777
+ "normalized": false,
778
+ "rstrip": false,
779
+ "single_word": false,
780
+ "special": true
781
+ },
782
+ "97": {
783
+ "content": "<|reserved_token_92|>",
784
+ "lstrip": false,
785
+ "normalized": false,
786
+ "rstrip": false,
787
+ "single_word": false,
788
+ "special": true
789
+ },
790
+ "98": {
791
+ "content": "<|reserved_token_93|>",
792
+ "lstrip": false,
793
+ "normalized": false,
794
+ "rstrip": false,
795
+ "single_word": false,
796
+ "special": true
797
+ },
798
+ "99": {
799
+ "content": "<|reserved_token_94|>",
800
+ "lstrip": false,
801
+ "normalized": false,
802
+ "rstrip": false,
803
+ "single_word": false,
804
+ "special": true
805
+ },
806
+ "100": {
807
+ "content": "<|reserved_token_95|>",
808
+ "lstrip": false,
809
+ "normalized": false,
810
+ "rstrip": false,
811
+ "single_word": false,
812
+ "special": true
813
+ },
814
+ "101": {
815
+ "content": "<|reserved_token_96|>",
816
+ "lstrip": false,
817
+ "normalized": false,
818
+ "rstrip": false,
819
+ "single_word": false,
820
+ "special": true
821
+ },
822
+ "102": {
823
+ "content": "<|reserved_token_97|>",
824
+ "lstrip": false,
825
+ "normalized": false,
826
+ "rstrip": false,
827
+ "single_word": false,
828
+ "special": true
829
+ },
830
+ "103": {
831
+ "content": "<mask>",
832
+ "lstrip": false,
833
+ "normalized": false,
834
+ "rstrip": false,
835
+ "single_word": false,
836
+ "special": false
837
+ },
838
+ "104": {
839
+ "content": "\\r",
840
+ "lstrip": false,
841
+ "normalized": false,
842
+ "rstrip": false,
843
+ "single_word": false,
844
+ "special": false
845
+ },
846
+ "105": {
847
+ "content": "▁▁",
848
+ "lstrip": false,
849
+ "normalized": false,
850
+ "rstrip": false,
851
+ "single_word": false,
852
+ "special": false
853
+ },
854
+ "106": {
855
+ "content": "▁▁▁",
856
+ "lstrip": false,
857
+ "normalized": false,
858
+ "rstrip": false,
859
+ "single_word": false,
860
+ "special": false
861
+ },
862
+ "107": {
863
+ "content": "▁▁▁▁",
864
+ "lstrip": false,
865
+ "normalized": false,
866
+ "rstrip": false,
867
+ "single_word": false,
868
+ "special": false
869
+ },
870
+ "108": {
871
+ "content": "▁▁▁▁▁",
872
+ "lstrip": false,
873
+ "normalized": false,
874
+ "rstrip": false,
875
+ "single_word": false,
876
+ "special": false
877
+ },
878
+ "109": {
879
+ "content": "▁▁▁▁▁▁",
880
+ "lstrip": false,
881
+ "normalized": false,
882
+ "rstrip": false,
883
+ "single_word": false,
884
+ "special": false
885
+ },
886
+ "110": {
887
+ "content": "▁▁▁▁▁▁▁",
888
+ "lstrip": false,
889
+ "normalized": false,
890
+ "rstrip": false,
891
+ "single_word": false,
892
+ "special": false
893
+ },
894
+ "111": {
895
+ "content": "▁▁▁▁▁▁▁▁",
896
+ "lstrip": false,
897
+ "normalized": false,
898
+ "rstrip": false,
899
+ "single_word": false,
900
+ "special": false
901
+ },
902
+ "112": {
903
+ "content": "▁▁▁▁▁▁▁▁▁",
904
+ "lstrip": false,
905
+ "normalized": false,
906
+ "rstrip": false,
907
+ "single_word": false,
908
+ "special": false
909
+ },
910
+ "113": {
911
+ "content": "▁▁▁▁▁▁▁▁▁▁",
912
+ "lstrip": false,
913
+ "normalized": false,
914
+ "rstrip": false,
915
+ "single_word": false,
916
+ "special": false
917
+ },
918
+ "114": {
919
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
920
+ "lstrip": false,
921
+ "normalized": false,
922
+ "rstrip": false,
923
+ "single_word": false,
924
+ "special": false
925
+ },
926
+ "115": {
927
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
928
+ "lstrip": false,
929
+ "normalized": false,
930
+ "rstrip": false,
931
+ "single_word": false,
932
+ "special": false
933
+ },
934
+ "116": {
935
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
936
+ "lstrip": false,
937
+ "normalized": false,
938
+ "rstrip": false,
939
+ "single_word": false,
940
+ "special": false
941
+ },
942
+ "117": {
943
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
944
+ "lstrip": false,
945
+ "normalized": false,
946
+ "rstrip": false,
947
+ "single_word": false,
948
+ "special": false
949
+ },
950
+ "118": {
951
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
952
+ "lstrip": false,
953
+ "normalized": false,
954
+ "rstrip": false,
955
+ "single_word": false,
956
+ "special": false
957
+ },
958
+ "119": {
959
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
960
+ "lstrip": false,
961
+ "normalized": false,
962
+ "rstrip": false,
963
+ "single_word": false,
964
+ "special": false
965
+ },
966
+ "120": {
967
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
968
+ "lstrip": false,
969
+ "normalized": false,
970
+ "rstrip": false,
971
+ "single_word": false,
972
+ "special": false
973
+ },
974
+ "121": {
975
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
976
+ "lstrip": false,
977
+ "normalized": false,
978
+ "rstrip": false,
979
+ "single_word": false,
980
+ "special": false
981
+ },
982
+ "122": {
983
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
984
+ "lstrip": false,
985
+ "normalized": false,
986
+ "rstrip": false,
987
+ "single_word": false,
988
+ "special": false
989
+ },
990
+ "123": {
991
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
992
+ "lstrip": false,
993
+ "normalized": false,
994
+ "rstrip": false,
995
+ "single_word": false,
996
+ "special": false
997
+ },
998
+ "124": {
999
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1000
+ "lstrip": false,
1001
+ "normalized": false,
1002
+ "rstrip": false,
1003
+ "single_word": false,
1004
+ "special": false
1005
+ },
1006
+ "125": {
1007
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1008
+ "lstrip": false,
1009
+ "normalized": false,
1010
+ "rstrip": false,
1011
+ "single_word": false,
1012
+ "special": false
1013
+ },
1014
+ "126": {
1015
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1016
+ "lstrip": false,
1017
+ "normalized": false,
1018
+ "rstrip": false,
1019
+ "single_word": false,
1020
+ "special": false
1021
+ },
1022
+ "127": {
1023
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1024
+ "lstrip": false,
1025
+ "normalized": false,
1026
+ "rstrip": false,
1027
+ "single_word": false,
1028
+ "special": false
1029
+ },
1030
+ "128": {
1031
+ "content": "\t\t",
1032
+ "lstrip": false,
1033
+ "normalized": false,
1034
+ "rstrip": false,
1035
+ "single_word": false,
1036
+ "special": false
1037
+ },
1038
+ "129": {
1039
+ "content": "\t\t\t",
1040
+ "lstrip": false,
1041
+ "normalized": false,
1042
+ "rstrip": false,
1043
+ "single_word": false,
1044
+ "special": false
1045
+ },
1046
+ "130": {
1047
+ "content": "\t\t\t\t",
1048
+ "lstrip": false,
1049
+ "normalized": false,
1050
+ "rstrip": false,
1051
+ "single_word": false,
1052
+ "special": false
1053
+ },
1054
+ "131": {
1055
+ "content": "\t\t\t\t\t",
1056
+ "lstrip": false,
1057
+ "normalized": false,
1058
+ "rstrip": false,
1059
+ "single_word": false,
1060
+ "special": false
1061
+ },
1062
+ "132": {
1063
+ "content": "\t\t\t\t\t\t",
1064
+ "lstrip": false,
1065
+ "normalized": false,
1066
+ "rstrip": false,
1067
+ "single_word": false,
1068
+ "special": false
1069
+ },
1070
+ "133": {
1071
+ "content": "\n\n",
1072
+ "lstrip": false,
1073
+ "normalized": false,
1074
+ "rstrip": false,
1075
+ "single_word": false,
1076
+ "special": false
1077
+ },
1078
+ "134": {
1079
+ "content": "\n\n\n",
1080
+ "lstrip": false,
1081
+ "normalized": false,
1082
+ "rstrip": false,
1083
+ "single_word": false,
1084
+ "special": false
1085
+ }
1086
+ },
1087
+ "bos_token": "<s>",
1088
+ "clean_up_tokenization_spaces": false,
1089
+ "eos_token": "</s>",
1090
+ "extra_special_tokens": {},
1091
+ "legacy": true,
1092
+ "model_max_length": 512,
1093
+ "pad_token": "<pad>",
1094
+ "sp_model_kwargs": {},
1095
+ "spaces_between_special_tokens": false,
1096
+ "tokenizer_class": "LlamaTokenizer",
1097
+ "unk_token": "<unk>",
1098
+ "use_default_system_prompt": false
1099
+ }