linoyts HF Staff commited on
Commit
00ee877
·
verified ·
1 Parent(s): 29e362f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -6
README.md CHANGED
@@ -12,9 +12,9 @@ pipeline_tag: video-to-video
12
  library_name: diffusers
13
  ---
14
 
15
- # LTX Video Spatial Upscaler 0.9.7 Model Card
16
 
17
- This model card focuses on the LTX Video Spatial Upscaler 0.9.7, a component model designed to work in conjunction with the LTX-Video generation models.
18
  The main LTX-Video codebase is available [here](https://github.com/Lightricks/LTX-Video).
19
 
20
  LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 30 FPS videos at a 1216×704 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
@@ -34,8 +34,8 @@ We provide a model for both text-to-video as well as image+text-to-video usecase
34
 
35
 
36
  **This upscaler model is compatible with and can be used to improve the output quality of videos generated by both:**
37
- * `Lightricks/LTX-Video-0.9.7-dev`
38
- * `Lightricks/LTX-Video-0.9.7-distilled`
39
 
40
 
41
  ## Model Details
@@ -43,7 +43,7 @@ We provide a model for both text-to-video as well as image+text-to-video usecase
43
  - **Model type:** Latent Diffusion Video Spatial Upscaler
44
  - **Input:** Latent video frames from an LTX Video model.
45
  - **Output:** Higher-resolution latent video frames.
46
- - **Compatibility:** can be used with `Lightricks/LTX-Video-0.9.7-dev` and `Lightricks/LTX-Video-0.9.7-distilled`.
47
 
48
  ## Usage
49
 
@@ -120,7 +120,7 @@ from diffusers.utils import export_to_video, load_image
120
 
121
  # Choose your base LTX Video model:
122
  # base_model_id = "Lightricks/LTX-Video-0.9.7-dev"
123
- base_model_id = "Lightricks/LTX-Video-0.9.7-distilled" # Using distilled for this example
124
 
125
  # 0. Load base model and upsampler
126
  pipe = LTXConditionPipeline.from_pretrained(base_model_id, torch_dtype=torch.bfloat16)
 
12
  library_name: diffusers
13
  ---
14
 
15
+ # LTX Video Spatial Upscaler 0.9.8 Model Card
16
 
17
+ This model card focuses on the LTX Video Spatial Upscaler 0.9.8, a component model designed to work in conjunction with the LTX-Video generation models.
18
  The main LTX-Video codebase is available [here](https://github.com/Lightricks/LTX-Video).
19
 
20
  LTX-Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 30 FPS videos at a 1216×704 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content.
 
34
 
35
 
36
  **This upscaler model is compatible with and can be used to improve the output quality of videos generated by both:**
37
+ * `Lightricks/LTX-Video-0.9.8-dev`
38
+ * `Lightricks/LTX-Video-0.9.8-distilled`
39
 
40
 
41
  ## Model Details
 
43
  - **Model type:** Latent Diffusion Video Spatial Upscaler
44
  - **Input:** Latent video frames from an LTX Video model.
45
  - **Output:** Higher-resolution latent video frames.
46
+ - **Compatibility:** can be used with `Lightricks/LTX-Video-0.9.7-dev` and `Lightricks/LTX-Video-0.9.8-distilled`.
47
 
48
  ## Usage
49
 
 
120
 
121
  # Choose your base LTX Video model:
122
  # base_model_id = "Lightricks/LTX-Video-0.9.7-dev"
123
+ base_model_id = "Lightricks/LTX-Video-0.9.8-distilled" # Using distilled for this example
124
 
125
  # 0. Load base model and upsampler
126
  pipe = LTXConditionPipeline.from_pretrained(base_model_id, torch_dtype=torch.bfloat16)