Commit
·
f6f262b
1
Parent(s):
dd399fa
Upload 26 files
Browse files- .gitattributes +1 -0
- README.md +373 -0
- controlnet_utils.py +40 -0
- images/bag.png +0 -0
- images/bag_scribble.png +0 -0
- images/bag_scribble_out.png +0 -0
- images/bird.png +3 -0
- images/bird_canny.png +0 -0
- images/bird_canny_out.png +0 -0
- images/chef_pose_out.png +0 -0
- images/house.png +0 -0
- images/house_seg.png +0 -0
- images/house_seg_out.png +0 -0
- images/man.png +0 -0
- images/man_hed.png +0 -0
- images/man_hed_out.png +0 -0
- images/openpose.png +0 -0
- images/pose.png +0 -0
- images/room.png +0 -0
- images/room_mlsd.png +0 -0
- images/room_mlsd_out.png +0 -0
- images/stormtrooper.png +0 -0
- images/stormtrooper_depth.png +0 -0
- images/stormtrooper_depth_out.png +0 -0
- images/toy.png +0 -0
- images/toy_normal.png +0 -0
- images/toy_normal_out.png +0 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
images/bird.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,376 @@
|
|
| 1 |
---
|
| 2 |
license: openrail
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: openrail
|
| 3 |
---
|
| 4 |
+
|
| 5 |
+
# Controlnet
|
| 6 |
+
|
| 7 |
+
Controlnet is an auxiliary model which augments pre-trained diffusion models with an additional conditioning.
|
| 8 |
+
|
| 9 |
+
Controlnet comes with multiple auxiliary models, each which allows a different type of conditioning
|
| 10 |
+
|
| 11 |
+
Controlnet's auxiliary models are trained with stable diffusion 1.5. Experimentally, the auxiliary models can be used with other diffusion models such as dreamboothed stable diffusion.
|
| 12 |
+
|
| 13 |
+
The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
|
| 14 |
+
|
| 15 |
+
Some of the additional conditionings can be extracted from images via additional models. We extracted these
|
| 16 |
+
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/human_pose.git).
|
| 17 |
+
|
| 18 |
+
## Canny edge detection
|
| 19 |
+
|
| 20 |
+
Install opencv
|
| 21 |
+
|
| 22 |
+
```sh
|
| 23 |
+
$ pip install opencv-contrib-python
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
import cv2
|
| 28 |
+
from PIL import Image
|
| 29 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 30 |
+
import torch
|
| 31 |
+
import numpy as np
|
| 32 |
+
|
| 33 |
+
image = Image.open('images/bird.png')
|
| 34 |
+
image = np.array(image)
|
| 35 |
+
|
| 36 |
+
low_threshold = 100
|
| 37 |
+
high_threshold = 200
|
| 38 |
+
|
| 39 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 40 |
+
image = image[:, :, None]
|
| 41 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 42 |
+
image = Image.fromarray(image)
|
| 43 |
+
|
| 44 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 45 |
+
"fusing/stable-diffusion-v1-5-controlnet-canny",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 49 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 50 |
+
)
|
| 51 |
+
pipe.to('cuda')
|
| 52 |
+
|
| 53 |
+
image = pipe("bird", image).images[0]
|
| 54 |
+
|
| 55 |
+
image.save('images/bird_canny_out.png')
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+

|
| 59 |
+
|
| 60 |
+

|
| 61 |
+
|
| 62 |
+

|
| 63 |
+
|
| 64 |
+
## M-LSD Straight line detection
|
| 65 |
+
|
| 66 |
+
Install the additional controlnet models package.
|
| 67 |
+
|
| 68 |
+
```sh
|
| 69 |
+
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
```py
|
| 73 |
+
from PIL import Image
|
| 74 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 75 |
+
import torch
|
| 76 |
+
from human_pose import MLSDdetector
|
| 77 |
+
|
| 78 |
+
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 79 |
+
|
| 80 |
+
image = Image.open('images/room.png')
|
| 81 |
+
|
| 82 |
+
image = mlsd(image)
|
| 83 |
+
|
| 84 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 85 |
+
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 89 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 90 |
+
)
|
| 91 |
+
pipe.to('cuda')
|
| 92 |
+
|
| 93 |
+
image = pipe("room", image).images[0]
|
| 94 |
+
|
| 95 |
+
image.save('images/room_mlsd_out.png')
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+

|
| 99 |
+
|
| 100 |
+

|
| 101 |
+
|
| 102 |
+

|
| 103 |
+
|
| 104 |
+
## Pose estimation
|
| 105 |
+
|
| 106 |
+
Install the additional controlnet models package.
|
| 107 |
+
|
| 108 |
+
```sh
|
| 109 |
+
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
```py
|
| 113 |
+
from PIL import Image
|
| 114 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 115 |
+
import torch
|
| 116 |
+
from human_pose import OpenposeDetector
|
| 117 |
+
|
| 118 |
+
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
| 119 |
+
|
| 120 |
+
image = Image.open('images/pose.png')
|
| 121 |
+
|
| 122 |
+
image = openpose(image)
|
| 123 |
+
|
| 124 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 125 |
+
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 129 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 130 |
+
)
|
| 131 |
+
pipe.to('cuda')
|
| 132 |
+
|
| 133 |
+
image = pipe("chef in the kitchen", image).images[0]
|
| 134 |
+
|
| 135 |
+
image.save('images/chef_pose_out.png')
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+

|
| 139 |
+
|
| 140 |
+

|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+
## Semantic Segmentation
|
| 145 |
+
|
| 146 |
+
Semantic segmentation relies on transformers. Transformers is a
|
| 147 |
+
dependency of diffusers for running controlnet, so you should
|
| 148 |
+
have it installed already.
|
| 149 |
+
|
| 150 |
+
```py
|
| 151 |
+
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 152 |
+
from PIL import Image
|
| 153 |
+
import numpy as np
|
| 154 |
+
from controlnet_utils import ade_palette
|
| 155 |
+
import torch
|
| 156 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 157 |
+
|
| 158 |
+
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 159 |
+
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 160 |
+
|
| 161 |
+
image = Image.open("./images/house.png").convert('RGB')
|
| 162 |
+
|
| 163 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 164 |
+
|
| 165 |
+
with torch.no_grad():
|
| 166 |
+
outputs = image_segmentor(pixel_values)
|
| 167 |
+
|
| 168 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 169 |
+
|
| 170 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 171 |
+
|
| 172 |
+
palette = np.array(ade_palette())
|
| 173 |
+
|
| 174 |
+
for label, color in enumerate(palette):
|
| 175 |
+
color_seg[seg == label, :] = color
|
| 176 |
+
|
| 177 |
+
color_seg = color_seg.astype(np.uint8)
|
| 178 |
+
|
| 179 |
+
image = Image.fromarray(color_seg)
|
| 180 |
+
|
| 181 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 182 |
+
"fusing/stable-diffusion-v1-5-controlnet-seg",
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 186 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 187 |
+
)
|
| 188 |
+
pipe.to('cuda')
|
| 189 |
+
|
| 190 |
+
image = pipe("house", image).images[0]
|
| 191 |
+
|
| 192 |
+
image.save('./images/house_seg_out.png')
|
| 193 |
+
```
|
| 194 |
+
|
| 195 |
+

|
| 196 |
+
|
| 197 |
+

|
| 198 |
+
|
| 199 |
+

|
| 200 |
+
|
| 201 |
+
## Depth control
|
| 202 |
+
|
| 203 |
+
Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
|
| 204 |
+
you should have it installed already.
|
| 205 |
+
|
| 206 |
+
```py
|
| 207 |
+
from transformers import pipeline
|
| 208 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 209 |
+
from PIL import Image
|
| 210 |
+
import numpy as np
|
| 211 |
+
|
| 212 |
+
depth_estimator = pipeline('depth-estimation')
|
| 213 |
+
|
| 214 |
+
image = Image.open('./images/stormtrooper.png')
|
| 215 |
+
image = depth_estimator(image)['depth']
|
| 216 |
+
image = np.array(image)
|
| 217 |
+
image = image[:, :, None]
|
| 218 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 219 |
+
image = Image.fromarray(image)
|
| 220 |
+
|
| 221 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 222 |
+
"fusing/stable-diffusion-v1-5-controlnet-depth",
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 226 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 227 |
+
)
|
| 228 |
+
pipe.to('cuda')
|
| 229 |
+
|
| 230 |
+
image = pipe("Stormtrooper's lecture", image).images[0]
|
| 231 |
+
|
| 232 |
+
image.save('./images/stormtrooper_depth_out.png')
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+

|
| 236 |
+
|
| 237 |
+

|
| 238 |
+
|
| 239 |
+

|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
## Normal map
|
| 243 |
+
|
| 244 |
+
```py
|
| 245 |
+
from PIL import Image
|
| 246 |
+
from transformers import pipeline
|
| 247 |
+
import numpy as np
|
| 248 |
+
import cv2
|
| 249 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 250 |
+
|
| 251 |
+
image = Image.open("images/toy.png").convert("RGB")
|
| 252 |
+
|
| 253 |
+
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
| 254 |
+
|
| 255 |
+
image = depth_estimator(image)['predicted_depth'][0]
|
| 256 |
+
|
| 257 |
+
image = image.numpy()
|
| 258 |
+
|
| 259 |
+
image_depth = image.copy()
|
| 260 |
+
image_depth -= np.min(image_depth)
|
| 261 |
+
image_depth /= np.max(image_depth)
|
| 262 |
+
|
| 263 |
+
bg_threhold = 0.4
|
| 264 |
+
|
| 265 |
+
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
| 266 |
+
x[image_depth < bg_threhold] = 0
|
| 267 |
+
|
| 268 |
+
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
| 269 |
+
y[image_depth < bg_threhold] = 0
|
| 270 |
+
|
| 271 |
+
z = np.ones_like(x) * np.pi * 2.0
|
| 272 |
+
|
| 273 |
+
image = np.stack([x, y, z], axis=2)
|
| 274 |
+
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
| 275 |
+
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
| 276 |
+
image = Image.fromarray(image)
|
| 277 |
+
|
| 278 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 279 |
+
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 283 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 284 |
+
)
|
| 285 |
+
pipe.to('cuda')
|
| 286 |
+
|
| 287 |
+
image = pipe("cute toy", image).images[0]
|
| 288 |
+
|
| 289 |
+
image.save('images/toy_normal_out.png')
|
| 290 |
+
```
|
| 291 |
+
|
| 292 |
+

|
| 293 |
+
|
| 294 |
+

|
| 295 |
+
|
| 296 |
+

|
| 297 |
+
|
| 298 |
+
## Scribble
|
| 299 |
+
|
| 300 |
+
Install the additional controlnet models package.
|
| 301 |
+
|
| 302 |
+
```sh
|
| 303 |
+
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 304 |
+
```
|
| 305 |
+
|
| 306 |
+
```py
|
| 307 |
+
from PIL import Image
|
| 308 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 309 |
+
import torch
|
| 310 |
+
from human_pose import HEDdetector
|
| 311 |
+
|
| 312 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 313 |
+
|
| 314 |
+
image = Image.open('images/bag.png')
|
| 315 |
+
|
| 316 |
+
image = hed(image, scribble=True)
|
| 317 |
+
|
| 318 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 319 |
+
"fusing/stable-diffusion-v1-5-controlnet-scribble",
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 323 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 324 |
+
)
|
| 325 |
+
pipe.to('cuda')
|
| 326 |
+
|
| 327 |
+
image = pipe("bag", image).images[0]
|
| 328 |
+
|
| 329 |
+
image.save('images/bag_scribble_out.png')
|
| 330 |
+
```
|
| 331 |
+
|
| 332 |
+

|
| 333 |
+
|
| 334 |
+

|
| 335 |
+
|
| 336 |
+

|
| 337 |
+
|
| 338 |
+
## HED Boundary
|
| 339 |
+
|
| 340 |
+
Install the additional controlnet models package.
|
| 341 |
+
|
| 342 |
+
```sh
|
| 343 |
+
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
```py
|
| 347 |
+
from PIL import Image
|
| 348 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 349 |
+
import torch
|
| 350 |
+
from human_pose import HEDdetector
|
| 351 |
+
|
| 352 |
+
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 353 |
+
|
| 354 |
+
image = Image.open('images/man.png')
|
| 355 |
+
|
| 356 |
+
image = hed(image)
|
| 357 |
+
|
| 358 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 359 |
+
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 363 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 364 |
+
)
|
| 365 |
+
pipe.to('cuda')
|
| 366 |
+
|
| 367 |
+
image = pipe("oil painting of handsome old man, masterpiece", image).images[0]
|
| 368 |
+
|
| 369 |
+
image.save('images/man_hed_out.png')
|
| 370 |
+
```
|
| 371 |
+
|
| 372 |
+

|
| 373 |
+
|
| 374 |
+

|
| 375 |
+
|
| 376 |
+

|
controlnet_utils.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def ade_palette():
|
| 2 |
+
"""ADE20K palette that maps each class to RGB values."""
|
| 3 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 4 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 5 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 6 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 7 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 8 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 9 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 10 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 11 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 12 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 13 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 14 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 15 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 16 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 17 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 18 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 19 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 20 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 21 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 22 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 23 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 24 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 25 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 26 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 27 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 28 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 29 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 30 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 31 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 32 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 33 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 34 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 35 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 36 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 37 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 38 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 39 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 40 |
+
[102, 255, 0], [92, 0, 255]]
|
images/bag.png
ADDED
|
images/bag_scribble.png
ADDED
|
images/bag_scribble_out.png
ADDED
|
images/bird.png
ADDED
|
Git LFS Details
|
images/bird_canny.png
ADDED
|
images/bird_canny_out.png
ADDED
|
images/chef_pose_out.png
ADDED
|
images/house.png
ADDED
|
images/house_seg.png
ADDED
|
images/house_seg_out.png
ADDED
|
images/man.png
ADDED
|
images/man_hed.png
ADDED
|
images/man_hed_out.png
ADDED
|
images/openpose.png
ADDED
|
images/pose.png
ADDED
|
images/room.png
ADDED
|
images/room_mlsd.png
ADDED
|
images/room_mlsd_out.png
ADDED
|
images/stormtrooper.png
ADDED
|
images/stormtrooper_depth.png
ADDED
|
images/stormtrooper_depth_out.png
ADDED
|
images/toy.png
ADDED
|
images/toy_normal.png
ADDED
|
images/toy_normal_out.png
ADDED
|