File size: 6,577 Bytes
e7f11e7
 
d6810ca
 
 
 
 
7e91f03
e7f11e7
 
 
829b4cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f11e7
d41e8a4
 
 
 
 
 
 
 
829b4cb
 
 
 
 
 
e7f11e7
 
d6810ca
e7f11e7
bae37bf
 
 
 
d41e8a4
bae37bf
d6810ca
bae37bf
d41e8a4
 
 
bae37bf
 
d41e8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae37bf
d41e8a4
 
 
 
 
 
 
 
 
bae37bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d41e8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae37bf
 
 
 
d41e8a4
bae37bf
 
 
d41e8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f11e7
d41e8a4
 
 
 
 
 
 
bae37bf
d6810ca
e7f11e7
 
829b4cb
 
 
 
 
d6810ca
e7f11e7
d6810ca
d41e8a4
 
 
 
 
 
 
 
 
d6810ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
library_name: transformers
license: llama3.2
language:
- en
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: audio-to-audio
---


<div align="center" style="line-height: 1;">
<h1>Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens </h1> 


  |
  <a href="https://huggingface.co/collections/llm-jp/llama-mimi-68ccd61797e5b6faf06ba0d5" target="_blank">πŸ€— HuggingFace</a>
  &nbsp;|
  <a href="https://arxiv.org/abs/2509.14882" target="_blank">πŸ“„ Paper</a>
  &nbsp;|
  <a href="https://speed1313.github.io/llama-mimi/" target="_blank">πŸ—£οΈ Online Demo</a>
  &nbsp;|
  <a href="https://github.com/llm-jp/llama-mimi" target="_blank">πŸ§‘β€πŸ’» Code</a>
  &nbsp;|

  <br/>

<img src="https://speed1313.github.io/llama-mimi/data/llama-mimi.svg" width="50%"/>
</div>




## Introduction
Llama-Mimi is a speech language model that uses a unified tokenizer (Mimi) and a single Transformer decoder (Llama) to jointly model sequences of interleaved semantic and acoustic tokens.
Trained on ~240k hours of English audio, Llama-Mimi achieves state-of-the-art performance in acoustic consistency on [SALMon](https://arxiv.org/abs/2409.07437) and effectively preserves speaker identity.
Visit our [demo site](https://speed1313.github.io/llama-mimi/) to hear generated speech samples.


## Models

| Models   | πŸ€— Hugging Face |
|-------|-------|
| Llama-Mimi-1.3B | [llm-jp/Llama-Mimi-1.3B](https://huggingface.co/llm-jp/Llama-Mimi-1.3B) |
| Llama-Mimi-8B | [llm-jp/Llama-Mimi-8B](https://huggingface.co/llm-jp/Llama-Mimi-8B) |



## How to Use

Install dependencies:
```bash
uv add transformers torch torchaudio
```

Generate audio continuations from a given audio prompt:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, MimiModel, AutoFeatureExtractor, StoppingCriteria
import torch
import torchaudio
import re
import requests
import io

def audio_array_to_text(
    audio_array: torch.tensor,
    audio_tokenizer,
    feature_extractor,
    num_quantizers: int,
) -> str:
    inputs = feature_extractor(
        raw_audio=audio_array,
        sampling_rate=feature_extractor.sampling_rate,
        return_tensors="pt",
    ).to(audio_tokenizer.device)
    with torch.no_grad():
        encoder_outputs = audio_tokenizer.encode(
            inputs["input_values"],
            inputs["padding_mask"],
            num_quantizers=num_quantizers,
        )
    flatten_audio_codes = encoder_outputs.audio_codes.transpose(1, 2).reshape(-1)
    assert flatten_audio_codes.numel() % num_quantizers == 0
    steps = []
    for i in range(0, flatten_audio_codes.numel(), num_quantizers):
        group = [
            f"<{flatten_audio_codes[i + j].item()}_{j}>" for j in range(num_quantizers)
        ]
        steps.append(group)

    parts = [tok for step in steps for tok in step]

    text = "".join(parts)

    return f"<audio>{text}</audio>"

def text_to_audio_values(
    text: str,
    num_quantizers: int,
    output_file: str,
    audio_tokenizer,
    feature_extractor,
):
    # Extract (val, idx) pairs from the <val_idx> format in the text
    matches = re.findall(r"<(\d+)_(\d+)>", text)
    vals = []
    for i in range(0, len(matches), num_quantizers):
        chunk = matches[i : i + num_quantizers]
        if len(chunk) < num_quantizers:
            break
        indices = [int(idx) for _, idx in chunk]
        if indices == list(range(num_quantizers)):
            vals.extend(int(val) for val, _ in chunk)
        else:
            break
    vals = vals[: len(vals) - len(vals) % num_quantizers]
    tensor_bt4 = torch.tensor(vals).reshape(1, -1, num_quantizers)  # (B, T, 4)
    tensor_b4t = tensor_bt4.transpose(1, 2)  # (B, 4, T)
    audio_values = audio_tokenizer.decode(tensor_b4t)[0]
    torchaudio.save(
        output_file,
        audio_values[0].detach().cpu(),
        feature_extractor.sampling_rate,
    )


class StopOnAudioEnd(StoppingCriteria):
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer
        self.target_text = "</audio>"
        self.target_ids = tokenizer(
            self.target_text, add_special_tokens=False
        ).input_ids

    def __call__(self, input_ids, scores, **kwargs):
        if len(input_ids[0]) < len(self.target_ids):
            return False
        return input_ids[0][-len(self.target_ids) :].tolist() == self.target_ids

temperature = 0.8
top_k = 30
do_sample = True
max_length = 1024
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "llm-jp/Llama-Mimi-1.3B"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device)
num_quantizers = model.config.num_quantizers
tokenizer = AutoTokenizer.from_pretrained(model_id)
audio_tokenizer = MimiModel.from_pretrained("kyutai/mimi")
feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")
stopping_criteria = StopOnAudioEnd(tokenizer)

audio_url = "https://speed1313.github.io/llama-mimi/data/prompt/natural/great_day_gt.wav"
response = requests.get(audio_url)
response.raise_for_status()
waveform, sample_rate = torchaudio.load(io.BytesIO(response.content))
if sample_rate != feature_extractor.sampling_rate:
    waveform = torchaudio.transforms.Resample(
        sample_rate, feature_extractor.sampling_rate
    )(waveform)
    sample_rate = feature_extractor.sampling_rate
prompt_array = waveform.squeeze().cpu().numpy()

text = audio_array_to_text(
    prompt_array, audio_tokenizer, feature_extractor, num_quantizers
)

text = text.replace("</audio>", "")
inputs = tokenizer(text, return_tensors="pt").to(device)

with torch.no_grad():
    generated = model.generate(
        **inputs,
        max_length=max_length,
        do_sample=do_sample,
        temperature=temperature,
        top_k=top_k,
        stopping_criteria=[stopping_criteria],
    )

generated_text = tokenizer.decode(generated[0])

text_to_audio_values(
    generated_text,
    num_quantizers=num_quantizers,
    output_file="output.wav",
    audio_tokenizer=audio_tokenizer,
    feature_extractor=feature_extractor,
)

```


## Pretraining & Evaluation of Llama-Mimi

Check out our repository: https://github.com/llm-jp/llama-mimi


## Citation

```
@misc{sugiura2025llamamimispeechlanguagemodels,
      title={Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens}, 
      author={Issa Sugiura and Shuhei Kurita and Yusuke Oda and Ryuichiro Higashinaka},
      year={2025},
      eprint={2509.14882},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.14882}, 
}
```