File size: 6,577 Bytes
e7f11e7 d6810ca 7e91f03 e7f11e7 829b4cb e7f11e7 d41e8a4 829b4cb e7f11e7 d6810ca e7f11e7 bae37bf d41e8a4 bae37bf d6810ca bae37bf d41e8a4 bae37bf d41e8a4 bae37bf d41e8a4 bae37bf d41e8a4 bae37bf d41e8a4 bae37bf d41e8a4 e7f11e7 d41e8a4 bae37bf d6810ca e7f11e7 829b4cb d6810ca e7f11e7 d6810ca d41e8a4 d6810ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
library_name: transformers
license: llama3.2
language:
- en
base_model:
- meta-llama/Llama-3.2-1B
pipeline_tag: audio-to-audio
---
<div align="center" style="line-height: 1;">
<h1>Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens </h1>
|
<a href="https://huggingface.co/collections/llm-jp/llama-mimi-68ccd61797e5b6faf06ba0d5" target="_blank">π€ HuggingFace</a>
|
<a href="https://arxiv.org/abs/2509.14882" target="_blank">π Paper</a>
|
<a href="https://speed1313.github.io/llama-mimi/" target="_blank">π£οΈ Online Demo</a>
|
<a href="https://github.com/llm-jp/llama-mimi" target="_blank">π§βπ» Code</a>
|
<br/>
<img src="https://speed1313.github.io/llama-mimi/data/llama-mimi.svg" width="50%"/>
</div>
## Introduction
Llama-Mimi is a speech language model that uses a unified tokenizer (Mimi) and a single Transformer decoder (Llama) to jointly model sequences of interleaved semantic and acoustic tokens.
Trained on ~240k hours of English audio, Llama-Mimi achieves state-of-the-art performance in acoustic consistency on [SALMon](https://arxiv.org/abs/2409.07437) and effectively preserves speaker identity.
Visit our [demo site](https://speed1313.github.io/llama-mimi/) to hear generated speech samples.
## Models
| Models | π€ Hugging Face |
|-------|-------|
| Llama-Mimi-1.3B | [llm-jp/Llama-Mimi-1.3B](https://huggingface.co/llm-jp/Llama-Mimi-1.3B) |
| Llama-Mimi-8B | [llm-jp/Llama-Mimi-8B](https://huggingface.co/llm-jp/Llama-Mimi-8B) |
## How to Use
Install dependencies:
```bash
uv add transformers torch torchaudio
```
Generate audio continuations from a given audio prompt:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, MimiModel, AutoFeatureExtractor, StoppingCriteria
import torch
import torchaudio
import re
import requests
import io
def audio_array_to_text(
audio_array: torch.tensor,
audio_tokenizer,
feature_extractor,
num_quantizers: int,
) -> str:
inputs = feature_extractor(
raw_audio=audio_array,
sampling_rate=feature_extractor.sampling_rate,
return_tensors="pt",
).to(audio_tokenizer.device)
with torch.no_grad():
encoder_outputs = audio_tokenizer.encode(
inputs["input_values"],
inputs["padding_mask"],
num_quantizers=num_quantizers,
)
flatten_audio_codes = encoder_outputs.audio_codes.transpose(1, 2).reshape(-1)
assert flatten_audio_codes.numel() % num_quantizers == 0
steps = []
for i in range(0, flatten_audio_codes.numel(), num_quantizers):
group = [
f"<{flatten_audio_codes[i + j].item()}_{j}>" for j in range(num_quantizers)
]
steps.append(group)
parts = [tok for step in steps for tok in step]
text = "".join(parts)
return f"<audio>{text}</audio>"
def text_to_audio_values(
text: str,
num_quantizers: int,
output_file: str,
audio_tokenizer,
feature_extractor,
):
# Extract (val, idx) pairs from the <val_idx> format in the text
matches = re.findall(r"<(\d+)_(\d+)>", text)
vals = []
for i in range(0, len(matches), num_quantizers):
chunk = matches[i : i + num_quantizers]
if len(chunk) < num_quantizers:
break
indices = [int(idx) for _, idx in chunk]
if indices == list(range(num_quantizers)):
vals.extend(int(val) for val, _ in chunk)
else:
break
vals = vals[: len(vals) - len(vals) % num_quantizers]
tensor_bt4 = torch.tensor(vals).reshape(1, -1, num_quantizers) # (B, T, 4)
tensor_b4t = tensor_bt4.transpose(1, 2) # (B, 4, T)
audio_values = audio_tokenizer.decode(tensor_b4t)[0]
torchaudio.save(
output_file,
audio_values[0].detach().cpu(),
feature_extractor.sampling_rate,
)
class StopOnAudioEnd(StoppingCriteria):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.target_text = "</audio>"
self.target_ids = tokenizer(
self.target_text, add_special_tokens=False
).input_ids
def __call__(self, input_ids, scores, **kwargs):
if len(input_ids[0]) < len(self.target_ids):
return False
return input_ids[0][-len(self.target_ids) :].tolist() == self.target_ids
temperature = 0.8
top_k = 30
do_sample = True
max_length = 1024
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "llm-jp/Llama-Mimi-1.3B"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16).eval().to(device)
num_quantizers = model.config.num_quantizers
tokenizer = AutoTokenizer.from_pretrained(model_id)
audio_tokenizer = MimiModel.from_pretrained("kyutai/mimi")
feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")
stopping_criteria = StopOnAudioEnd(tokenizer)
audio_url = "https://speed1313.github.io/llama-mimi/data/prompt/natural/great_day_gt.wav"
response = requests.get(audio_url)
response.raise_for_status()
waveform, sample_rate = torchaudio.load(io.BytesIO(response.content))
if sample_rate != feature_extractor.sampling_rate:
waveform = torchaudio.transforms.Resample(
sample_rate, feature_extractor.sampling_rate
)(waveform)
sample_rate = feature_extractor.sampling_rate
prompt_array = waveform.squeeze().cpu().numpy()
text = audio_array_to_text(
prompt_array, audio_tokenizer, feature_extractor, num_quantizers
)
text = text.replace("</audio>", "")
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated = model.generate(
**inputs,
max_length=max_length,
do_sample=do_sample,
temperature=temperature,
top_k=top_k,
stopping_criteria=[stopping_criteria],
)
generated_text = tokenizer.decode(generated[0])
text_to_audio_values(
generated_text,
num_quantizers=num_quantizers,
output_file="output.wav",
audio_tokenizer=audio_tokenizer,
feature_extractor=feature_extractor,
)
```
## Pretraining & Evaluation of Llama-Mimi
Check out our repository: https://github.com/llm-jp/llama-mimi
## Citation
```
@misc{sugiura2025llamamimispeechlanguagemodels,
title={Llama-Mimi: Speech Language Models with Interleaved Semantic and Acoustic Tokens},
author={Issa Sugiura and Shuhei Kurita and Yusuke Oda and Ryuichiro Higashinaka},
year={2025},
eprint={2509.14882},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.14882},
}
``` |