--- library_name: transformers license: mit --- # sglang-EAGLE3-Qwen3-235B-A22B ## Model Introduction The Eagle3 draft model was trained using the [SpecForge](https://github.com/sgl-project/SpecForge) framework for the Qwen3-235B-A22B model, leveraging a combination of UltraChat and ShareGPT datasets. ## Benchmark Results - gsm8k (200 questions) Output throughput: 224.168 token/s Accept length: 3.538 - mtbench (80 questions) Output throughput: 241.5 token/s Accept length: 3.019 ## Usage You can use this Eagle3 draft model in [SGLang](https://github.com/sgl-project/sglang) with the following command: ```bash python3 -m sglang.launch_server \ --model \ --speculative-algorithm EAGLE3 \ --speculative-draft-model-path \ --speculative-num-steps 5 \ --speculative-eagle-topk 8 \ --speculative-num-draft-tokens 32 \ --mem-fraction-static 0.75 \ --tp 8 \ --enable-ep-moe \ --context-length 8192 \ --trust-remote-code \ --host 0.0.0.0 \ --port 30000 \ --dtype bfloat16 ```