FlashAttention support
Browse files- modeling_gptbert.py +484 -613
modeling_gptbert.py
CHANGED
|
@@ -3,13 +3,13 @@ from __future__ import annotations
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
from torch.nn import functional as F
|
| 6 |
-
from torch import _softmax_backward_data as _softmax_backward_data
|
| 7 |
|
| 8 |
-
from functools import partial
|
| 9 |
|
| 10 |
from .configuration_gptbert import GptBertConfig
|
| 11 |
from transformers.modeling_utils import PreTrainedModel
|
| 12 |
from transformers.activations import gelu_new
|
|
|
|
| 13 |
from transformers.modeling_outputs import (
|
| 14 |
MaskedLMOutput,
|
| 15 |
MultipleChoiceModelOutput,
|
|
@@ -22,111 +22,82 @@ from transformers.modeling_outputs import (
|
|
| 22 |
import math
|
| 23 |
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
try:
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
except ImportError:
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
z_loss: torch.Tensor | float | None = None,
|
| 40 |
-
**kwargs
|
| 41 |
-
):
|
| 42 |
-
self.logits: torch.Tensor | None
|
| 43 |
-
self.loss: torch.Tensor | float | None
|
| 44 |
-
self.perplexity: torch.Tensor | float | None
|
| 45 |
-
self.accuracy: float | None
|
| 46 |
-
self.z_loss: torch.Tensor | float | None
|
| 47 |
|
| 48 |
-
|
| 49 |
-
self.loss = loss
|
| 50 |
-
self.perplexity = perplexity
|
| 51 |
-
self.accuracy = accuracy
|
| 52 |
-
self.z_loss = z_loss
|
| 53 |
|
| 54 |
-
for attr, value in kwargs.items():
|
| 55 |
-
setattr(self, attr, value)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
class CastedLinear(nn.Linear):
|
| 59 |
|
|
|
|
| 60 |
def __init__(self, in_features, out_features, bias):
|
| 61 |
super().__init__(in_features, out_features, bias=bias)
|
| 62 |
|
| 63 |
-
def reset_parameters(self) -> None:
|
| 64 |
-
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 65 |
-
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 66 |
-
|
| 67 |
def forward(self, x):
|
| 68 |
return F.linear(x, self.weight.type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 69 |
|
| 70 |
|
| 71 |
class CastedLinearIn(nn.Linear):
|
| 72 |
-
|
| 73 |
def __init__(self, in_features, out_features, bias):
|
| 74 |
super().__init__(in_features, out_features, bias=bias)
|
| 75 |
self.scale = nn.Parameter(torch.ones(in_features))
|
| 76 |
|
| 77 |
-
def reset_parameters(self) -> None:
|
| 78 |
-
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 79 |
-
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 80 |
-
|
| 81 |
def forward(self, x):
|
| 82 |
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 83 |
|
| 84 |
|
| 85 |
-
class CastedLinearOut(nn.Linear):
|
| 86 |
-
|
| 87 |
-
def __init__(self, in_features, out_features, bias):
|
| 88 |
-
super().__init__(in_features, out_features, bias=bias)
|
| 89 |
-
self.scale = nn.Parameter(torch.ones(out_features))
|
| 90 |
-
|
| 91 |
-
def reset_parameters(self) -> None:
|
| 92 |
-
std: float = math.sqrt(2.0 / (self.in_features + self.out_features))
|
| 93 |
-
nn.init.trunc_normal_(self.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 94 |
-
|
| 95 |
-
def forward(self, x):
|
| 96 |
-
return F.linear(x, (self.scale.unsqueeze(1) * self.weight).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
class MultiCastedLinearOrtho(nn.Module):
|
| 100 |
-
|
| 101 |
-
def __init__(self, in_features, out_features, bias):
|
| 102 |
-
super().__init__()
|
| 103 |
-
self.in_features = in_features
|
| 104 |
-
self.out_features = out_features
|
| 105 |
-
|
| 106 |
-
self.weights = nn.ParameterList()
|
| 107 |
-
for out_feature in out_features:
|
| 108 |
-
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 109 |
-
|
| 110 |
-
if bias:
|
| 111 |
-
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 112 |
-
else:
|
| 113 |
-
self.bias = self.register_parameter("bias", None)
|
| 114 |
-
|
| 115 |
-
self.reset_parameters()
|
| 116 |
-
|
| 117 |
-
def reset_parameters(self) -> None:
|
| 118 |
-
for i, weight in enumerate(self.weights):
|
| 119 |
-
std: float = math.sqrt(2.0 / (self.in_features + self.out_features[i]))
|
| 120 |
-
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 121 |
-
|
| 122 |
-
def forward(self, x):
|
| 123 |
-
return F.linear(x, torch.cat([weight for weight in self.weights], dim=0).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
class MultiCastedLinearOrthoIn(nn.Module):
|
| 127 |
-
|
| 128 |
def __init__(self, in_features, out_features, bias):
|
| 129 |
super().__init__()
|
|
|
|
| 130 |
self.in_features = in_features
|
| 131 |
self.out_features = out_features
|
| 132 |
|
|
@@ -141,244 +112,217 @@ class MultiCastedLinearOrthoIn(nn.Module):
|
|
| 141 |
|
| 142 |
self.scale = nn.Parameter(torch.ones(in_features))
|
| 143 |
|
| 144 |
-
self.reset_parameters()
|
| 145 |
-
|
| 146 |
-
def reset_parameters(self) -> None:
|
| 147 |
-
for weight in self.weights:
|
| 148 |
-
std = 0.5 * (self.in_features ** -0.5)
|
| 149 |
-
bound = (3 ** 0.5) * std
|
| 150 |
-
with torch.no_grad():
|
| 151 |
-
weight.uniform_(-bound, bound)
|
| 152 |
-
|
| 153 |
def forward(self, x):
|
| 154 |
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 155 |
|
| 156 |
|
| 157 |
-
class MultiCastedLinearOrthoOut(nn.Module):
|
| 158 |
-
|
| 159 |
-
def __init__(self, in_features, out_features, bias):
|
| 160 |
-
super().__init__()
|
| 161 |
-
self.in_features = in_features
|
| 162 |
-
self.out_features = out_features
|
| 163 |
-
|
| 164 |
-
self.weights = nn.ParameterList()
|
| 165 |
-
for out_feature in out_features:
|
| 166 |
-
self.weights.append(nn.Parameter(torch.empty((out_feature, in_features))))
|
| 167 |
-
|
| 168 |
-
if bias:
|
| 169 |
-
self.bias = nn.Parameter(torch.zeros(sum(out_features)))
|
| 170 |
-
else:
|
| 171 |
-
self.bias = self.register_parameter("bias", None)
|
| 172 |
-
|
| 173 |
-
self.scale = nn.Parameter(torch.ones(sum(out_features)))
|
| 174 |
-
|
| 175 |
-
self.reset_parameters()
|
| 176 |
-
|
| 177 |
-
def reset_parameters(self) -> None:
|
| 178 |
-
for weight in self.weights:
|
| 179 |
-
std = 0.5 * (self.in_features ** -0.5)
|
| 180 |
-
bound = (3 ** 0.5) * std
|
| 181 |
-
with torch.no_grad():
|
| 182 |
-
weight.uniform_(-bound, bound)
|
| 183 |
-
|
| 184 |
-
def forward(self, x):
|
| 185 |
-
return F.linear(x, (self.scale.unsqueeze(1) * torch.cat([weight for weight in self.weights], dim=0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 186 |
-
|
| 187 |
-
|
| 188 |
class GeGLU(nn.Module):
|
| 189 |
def forward(self, x):
|
| 190 |
x, gate = x.chunk(2, dim=-1)
|
| 191 |
-
|
| 192 |
-
return x
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
class MaskedSoftmax(torch.autograd.Function):
|
| 196 |
-
@staticmethod
|
| 197 |
-
def forward(ctx, x: torch.Tensor, mask: torch.BoolTensor, dim: int) -> torch.Tensor:
|
| 198 |
-
ctx.dim: int
|
| 199 |
-
|
| 200 |
-
ctx.dim = dim
|
| 201 |
-
x.masked_fill_(mask, float('-inf'))
|
| 202 |
-
x = torch.softmax(x, ctx.dim)
|
| 203 |
-
x.masked_fill_(mask, 0.0)
|
| 204 |
-
ctx.save_for_backward(x)
|
| 205 |
-
return x
|
| 206 |
-
|
| 207 |
-
@staticmethod
|
| 208 |
-
def backward(ctx, grad_output: torch.Tensor) -> tuple[torch.Tensor, None, None]:
|
| 209 |
-
output: torch.Tensor
|
| 210 |
-
|
| 211 |
-
output, = ctx.saved_tensors
|
| 212 |
-
inputGrad: torch.Tensor = _softmax_backward_data(grad_output, output, ctx.dim, output.dtype)
|
| 213 |
-
return inputGrad, None, None
|
| 214 |
-
|
| 215 |
|
| 216 |
-
class Encoder(nn.Module):
|
| 217 |
|
| 218 |
-
|
|
|
|
| 219 |
super().__init__()
|
| 220 |
|
| 221 |
-
self.
|
| 222 |
-
|
| 223 |
-
self.
|
| 224 |
-
|
| 225 |
-
for i, layer in enumerate(self.layers):
|
| 226 |
-
for weight in layer.mlp.up_proj.weights:
|
| 227 |
-
weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
| 228 |
-
layer.mlp.down_proj.weight.data *= math.sqrt(1.0 / (2.0 * (i + 1)))
|
| 229 |
-
|
| 230 |
-
self.short_long_ratio = config.short_long_ratio
|
| 231 |
-
|
| 232 |
-
def set_window_length(self, config) -> None:
|
| 233 |
-
for i, layer in enumerate(self.layers):
|
| 234 |
-
if (i+1) % self.short_long_ratio == 0:
|
| 235 |
-
layer.set_window_length(config.window_length, config.not_flex)
|
| 236 |
-
else:
|
| 237 |
-
layer.set_window_length(256, config.not_flex)
|
| 238 |
-
|
| 239 |
-
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, mask: torch.Tensor | None = None) -> torch.Tensor:
|
| 240 |
-
hidden_layer: List[torch.Tensor]
|
| 241 |
-
attention_probs: List[torch.Tensor]
|
| 242 |
-
|
| 243 |
-
hidden_states = []
|
| 244 |
-
attention_probs = []
|
| 245 |
-
v1 = None
|
| 246 |
-
|
| 247 |
-
for layer in self.layers:
|
| 248 |
-
hidden_layer, v1, attention_p = layer(hidden_layer, embeddings, v1, mask)
|
| 249 |
-
hidden_states.append(hidden_layer)
|
| 250 |
-
attention_probs.append(attention_p)
|
| 251 |
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
| 253 |
|
|
|
|
| 254 |
|
| 255 |
-
class Layer(nn.Module):
|
| 256 |
|
| 257 |
-
|
|
|
|
| 258 |
super().__init__()
|
| 259 |
|
| 260 |
-
self.
|
| 261 |
-
self.
|
| 262 |
-
|
| 263 |
-
self.
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
attention_p: torch.Tensor
|
| 273 |
-
|
| 274 |
-
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
| 275 |
-
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 276 |
-
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 277 |
-
|
| 278 |
-
attention_output, v1, attention_p = self.attention(attention_output, qk_layer, v1, mask)
|
| 279 |
-
mlp_layer = mlp_layer + attention_output
|
| 280 |
-
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 281 |
-
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 282 |
-
|
| 283 |
-
return output, v1, attention_p
|
| 284 |
-
|
| 285 |
|
| 286 |
-
class Embedding(nn.Module):
|
| 287 |
|
| 288 |
-
|
|
|
|
| 289 |
super().__init__()
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
self.
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
|
|
|
| 304 |
|
| 305 |
-
self.initialize(config.hidden_size, config.vocab_size)
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
-
std = math.sqrt(2.0 / (hidden_size + vocab_size))
|
| 312 |
-
nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
-
return
|
| 322 |
|
| 323 |
|
| 324 |
-
|
|
|
|
|
|
|
| 325 |
|
| 326 |
-
def __init__(self, config, embedding_weights: nn.Parameter) -> None:
|
| 327 |
-
super().__init__()
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
|
|
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
self.emb2vocab = CastedLinearIn(config.hidden_size, config.vocab_size, bias=True)
|
| 338 |
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
def initialize(self, hidden_size: int, vocab_size: int, embedding_weights: nn.Parameter) -> None:
|
| 343 |
-
proj_std: float = math.sqrt(2.0 / (hidden_size + 4*hidden_size))
|
| 344 |
|
| 345 |
-
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 346 |
-
self.emb2vocab.weight = embedding_weights
|
| 347 |
-
self.emb2vocab.bias.zero_()
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
def
|
| 359 |
-
|
| 360 |
|
| 361 |
-
|
| 362 |
-
output: torch.Tensor
|
| 363 |
|
| 364 |
-
|
| 365 |
-
|
| 366 |
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
-
|
|
|
|
| 372 |
|
| 373 |
|
| 374 |
class SelfAttention(nn.Module):
|
| 375 |
-
|
| 376 |
-
def __init__(self, config, layer_idx) -> None:
|
| 377 |
super().__init__()
|
| 378 |
-
|
| 379 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
self.num_attention_heads = config.num_attention_heads
|
| 381 |
-
self.num_kv_heads = config.
|
| 382 |
self.hidden_size = config.hidden_size
|
| 383 |
|
| 384 |
self.q_out_dim = self.d_qk * self.num_attention_heads
|
|
@@ -389,256 +333,228 @@ class SelfAttention(nn.Module):
|
|
| 389 |
self.v_proj = CastedLinearIn(self.hidden_size, self.v_out_dim, bias=False)
|
| 390 |
self.out_proj = CastedLinearIn(self.d_v*self.num_attention_heads, self.hidden_size, bias=False)
|
| 391 |
|
| 392 |
-
self.pre_v_norm = nn.LayerNorm(config.hidden_size, eps=config.
|
| 393 |
-
self.pre_qk_norm = nn.LayerNorm(config.hidden_size, eps=config.
|
| 394 |
-
self.inter_norm = nn.LayerNorm(self.d_v * self.num_attention_heads, eps=config.
|
| 395 |
-
self.q_norm = nn.LayerNorm(
|
| 396 |
-
self.k_norm = nn.LayerNorm(
|
| 397 |
-
self.k_scale = nn.Parameter(torch.ones(self.num_kv_heads,
|
| 398 |
-
self.q_scale = nn.Parameter(torch.ones(self.num_attention_heads,
|
| 399 |
-
|
| 400 |
-
self.dropout = nn.Dropout(config.attention_output_dropout_p)
|
| 401 |
|
| 402 |
-
|
| 403 |
|
| 404 |
-
|
| 405 |
-
self.scale: float = 1.0 / math.sqrt(self.d_qk)
|
| 406 |
|
| 407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
|
|
|
|
| 409 |
self.lambdas = nn.Parameter(torch.tensor([0.5]))
|
| 410 |
|
| 411 |
-
self.initialize()
|
| 412 |
-
|
| 413 |
self.sequence_length = config.max_sequence_length
|
| 414 |
self.is_causal = config.is_decoder
|
| 415 |
-
self.
|
| 416 |
-
|
| 417 |
-
@torch.no_grad()
|
| 418 |
-
def initialize(self) -> None:
|
| 419 |
-
std: float = math.sqrt(2.0 / (self.hidden_size + 4*self.hidden_size))
|
| 420 |
-
for weight in self.qk_proj.weights:
|
| 421 |
-
nn.init.trunc_normal_(weight, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 422 |
-
nn.init.trunc_normal_(self.v_proj.weight, mean=0.0, std=std, a=2*std, b=2*std)
|
| 423 |
-
self.out_proj.weight.data.zero_()
|
| 424 |
-
|
| 425 |
-
def set_window_length(self, window_length: int, not_flex: bool) -> None:
|
| 426 |
-
self.window_length: int = window_length
|
| 427 |
-
if not not_flex:
|
| 428 |
-
self.block_mask = self.create_block_mask(window_length)
|
| 429 |
|
| 430 |
-
def
|
| 431 |
-
|
| 432 |
|
| 433 |
-
def
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
def create_block_mask(self, window_length: int) -> torch.Tensor:
|
| 437 |
if self.is_causal:
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
1, 1, self.sequence_length, self.sequence_length, device=self.k_scale.device
|
| 441 |
-
)
|
| 442 |
else:
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
)
|
| 447 |
-
|
| 448 |
-
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 449 |
-
attention_scores: torch.Tensor
|
| 450 |
-
attention_probabilities: torch.Tensor
|
| 451 |
-
batch_size: int
|
| 452 |
-
query_length: int
|
| 453 |
-
key_length: int
|
| 454 |
|
|
|
|
|
|
|
| 455 |
batch_size, _, query_length, _ = query.size()
|
| 456 |
_, _, key_length, _ = key.size()
|
| 457 |
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
else:
|
| 466 |
-
|
|
|
|
| 467 |
|
| 468 |
-
|
| 469 |
-
|
| 470 |
|
| 471 |
-
|
| 472 |
-
|
| 473 |
|
| 474 |
-
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
-
|
|
|
|
|
|
|
| 478 |
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
|
| 483 |
-
|
| 484 |
-
|
| 485 |
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
value = value.reshape(key_length, batch_size, self.num_kv_heads, self.d_qk).permute(1, 2, 0, 3) # shape: [B, H, T, D]
|
| 493 |
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
else:
|
| 506 |
-
def document_score_mod(score, b, _, q_idx, kv_idx):
|
| 507 |
-
return torch.where(doc_ids[q_idx] == doc_ids[kv_idx], score, -float("inf"))
|
| 508 |
-
|
| 509 |
-
if self.is_causal:
|
| 510 |
-
block_mask = create_block_mask(
|
| 511 |
-
partial(self.causal_mask_mode, self.window_length),
|
| 512 |
-
1, 1, query_length, key_length, device=self.k_scale.device
|
| 513 |
-
)
|
| 514 |
else:
|
| 515 |
-
|
| 516 |
-
partial(self.bidirectional_mask_mode, self.window_length),
|
| 517 |
-
1, 1, query_length, key_length, device=self.k_scale.device
|
| 518 |
-
)
|
| 519 |
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
)
|
| 523 |
-
attention_probabilities = None
|
| 524 |
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
output = self.out_proj(output)
|
| 528 |
|
| 529 |
-
|
|
|
|
|
|
|
| 530 |
|
|
|
|
| 531 |
|
| 532 |
-
class FeedForward(nn.Module):
|
| 533 |
|
| 534 |
-
|
|
|
|
| 535 |
super().__init__()
|
| 536 |
-
|
| 537 |
-
self.up_proj: CastedLinear
|
| 538 |
-
self.down_proj: CastedLinear
|
| 539 |
-
self.pre_norm: nn.LayerNorm
|
| 540 |
-
self.inter_norm: nn.LayerNorm
|
| 541 |
-
self.activation: GeGLU
|
| 542 |
-
self.dropout: nn.Dropout
|
| 543 |
-
|
| 544 |
-
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.feed_forward_pre_norm_eps, elementwise_affine=config.feed_forward_pre_norm_affine)
|
| 545 |
self.up_proj = MultiCastedLinearOrthoIn(config.hidden_size, [config.intermediate_size, config.intermediate_size], bias=False)
|
| 546 |
self.activation = GeGLU()
|
| 547 |
-
self.inter_norm = nn.LayerNorm(config.intermediate_size, eps=config.
|
| 548 |
self.down_proj = CastedLinearIn(config.intermediate_size, config.hidden_size, bias=False)
|
| 549 |
-
self.dropout = nn.Dropout(config.
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
self.down_proj.weight.data.zero_()
|
| 560 |
-
|
| 561 |
-
def up_project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 562 |
-
hidden_layer = self.pre_norm(hidden_layer)
|
| 563 |
-
return self.up_proj(hidden_layer)
|
| 564 |
-
|
| 565 |
-
def activate(self, projection: torch.Tensor) -> torch.Tensor:
|
| 566 |
-
activated_projection: torch.Tensor
|
| 567 |
-
|
| 568 |
-
activated_projection = self.activation(projection)
|
| 569 |
-
activated_projection = self.inter_norm(activated_projection.float()).type_as(projection)
|
| 570 |
-
|
| 571 |
-
return activated_projection
|
| 572 |
|
| 573 |
-
def down_project(self, activated_projection: torch.Tensor) -> torch.Tensor:
|
| 574 |
-
output: torch.Tensor
|
| 575 |
|
| 576 |
-
|
|
|
|
|
|
|
| 577 |
|
| 578 |
-
|
|
|
|
|
|
|
| 579 |
|
| 580 |
-
def
|
| 581 |
-
|
| 582 |
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
|
|
|
| 586 |
|
| 587 |
-
|
|
|
|
|
|
|
|
|
|
| 588 |
|
|
|
|
| 589 |
|
| 590 |
-
class RotaryPositionalEmbeddings(nn.Module):
|
| 591 |
|
| 592 |
-
|
|
|
|
| 593 |
super().__init__()
|
|
|
|
|
|
|
| 594 |
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
head_size: int
|
| 602 |
-
max_seq_len: int
|
| 603 |
-
inv_freq: torch.Tensor
|
| 604 |
-
pos: torch.Tensor
|
| 605 |
-
embedding: torch.Tensor
|
| 606 |
-
|
| 607 |
-
head_size = config.d_qk
|
| 608 |
-
assert head_size % 2 == 0
|
| 609 |
-
max_seq_len = config.max_sequence_length
|
| 610 |
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
| 616 |
-
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
| 617 |
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
out: torch.Tensor
|
| 624 |
|
| 625 |
-
|
|
|
|
| 626 |
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
cos_matrix = self.cos_matrix[:, None, :seq_len, :]
|
| 630 |
-
sin_matrix = self.sin_matrix[:, None, :seq_len, :]
|
| 631 |
-
|
| 632 |
-
x_rotate_half = torch.cat(
|
| 633 |
-
[
|
| 634 |
-
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
| 635 |
-
hidden_layer[:, :, :, :x.size(-1) // 2]
|
| 636 |
-
],
|
| 637 |
-
dim=-1
|
| 638 |
-
)
|
| 639 |
-
|
| 640 |
-
out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
|
| 641 |
-
return out.type_as(x)
|
| 642 |
|
| 643 |
|
| 644 |
#
|
|
@@ -647,15 +563,15 @@ class RotaryPositionalEmbeddings(nn.Module):
|
|
| 647 |
|
| 648 |
class GptBertPreTrainedModel(PreTrainedModel):
|
| 649 |
config_class = GptBertConfig
|
| 650 |
-
supports_gradient_checkpointing =
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
|
| 655 |
def _init_weights(self, module):
|
| 656 |
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 657 |
|
| 658 |
-
if isinstance(module, nn.Linear):
|
| 659 |
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 660 |
if module.bias is not None:
|
| 661 |
module.bias.data.zero_()
|
|
@@ -667,16 +583,17 @@ class GptBertPreTrainedModel(PreTrainedModel):
|
|
| 667 |
|
| 668 |
|
| 669 |
class GptBertModel(GptBertPreTrainedModel):
|
| 670 |
-
|
| 671 |
-
def __init__(self, config, add_mlm_layer=False, **kwargs):
|
| 672 |
super().__init__(config, **kwargs)
|
| 673 |
self.config = config
|
| 674 |
self.hidden_size = config.hidden_size
|
| 675 |
|
| 676 |
self.embedding = Embedding(config)
|
| 677 |
self.encoder = Encoder(config)
|
| 678 |
-
self.classifier =
|
| 679 |
self.set_window_length(config)
|
|
|
|
|
|
|
| 680 |
|
| 681 |
def set_window_length(self, config) -> None:
|
| 682 |
self.encoder.set_window_length(config)
|
|
@@ -690,8 +607,9 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 690 |
def get_contextualized_embeddings(
|
| 691 |
self,
|
| 692 |
input_ids: Optional[torch.Tensor] = None,
|
| 693 |
-
attention_mask: Optional[torch.Tensor] = None
|
| 694 |
-
|
|
|
|
| 695 |
if input_ids is not None:
|
| 696 |
input_shape = input_ids.size()
|
| 697 |
else:
|
|
@@ -700,35 +618,55 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 700 |
batch_size, seq_length = input_shape
|
| 701 |
device = input_ids.device
|
| 702 |
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
attention_mask =
|
| 707 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 708 |
if len(attention_mask.size()) == 2:
|
| 709 |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 710 |
elif len(attention_mask.size()) == 3:
|
| 711 |
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 712 |
|
| 713 |
-
|
| 714 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
|
| 716 |
-
|
| 717 |
-
contextualized_embeddings, attention_probs = self.encoder(static_embeddings, static_embeddings, attention_mask)
|
| 718 |
-
contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
|
| 719 |
-
last_layer = contextualized_embeddings[-1]
|
| 720 |
-
contextualized_embeddings = [contextualized_embeddings[0]] + [
|
| 721 |
-
contextualized_embeddings[i] - contextualized_embeddings[i - 1]
|
| 722 |
-
for i in range(1, len(contextualized_embeddings))
|
| 723 |
-
]
|
| 724 |
-
return last_layer, contextualized_embeddings, attention_probs
|
| 725 |
|
| 726 |
def forward(
|
| 727 |
self,
|
| 728 |
input_ids: Optional[torch.Tensor] = None,
|
| 729 |
attention_mask: Optional[torch.Tensor] = None,
|
| 730 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 731 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 732 |
output_hidden_states: Optional[bool] = None,
|
| 733 |
output_attentions: Optional[bool] = None,
|
| 734 |
return_dict: Optional[bool] = None,
|
|
@@ -736,26 +674,24 @@ class GptBertModel(GptBertPreTrainedModel):
|
|
| 736 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 737 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 738 |
|
| 739 |
-
sequence_output, contextualized_embeddings
|
| 740 |
|
| 741 |
if not return_dict:
|
| 742 |
return (
|
| 743 |
sequence_output,
|
| 744 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 745 |
-
*([attention_probs] if output_attentions else [])
|
| 746 |
)
|
| 747 |
|
| 748 |
return BaseModelOutput(
|
| 749 |
last_hidden_state=sequence_output,
|
| 750 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 751 |
-
attentions=attention_probs if output_attentions else None
|
| 752 |
)
|
| 753 |
|
| 754 |
|
| 755 |
class GptBertForMaskedLM(GptBertModel):
|
| 756 |
-
|
| 757 |
|
| 758 |
-
def __init__(self, config, **kwargs):
|
| 759 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 760 |
|
| 761 |
def get_output_embeddings(self):
|
|
@@ -768,17 +704,14 @@ class GptBertForMaskedLM(GptBertModel):
|
|
| 768 |
self,
|
| 769 |
input_ids: Optional[torch.Tensor] = None,
|
| 770 |
attention_mask: Optional[torch.Tensor] = None,
|
| 771 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 772 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 773 |
output_hidden_states: Optional[bool] = None,
|
| 774 |
-
output_attentions: Optional[bool] = None,
|
| 775 |
return_dict: Optional[bool] = None,
|
| 776 |
labels: Optional[torch.LongTensor] = None,
|
| 777 |
**kwargs
|
| 778 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 779 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 780 |
|
| 781 |
-
sequence_output, contextualized_embeddings
|
| 782 |
subword_prediction = self.classifier(sequence_output)
|
| 783 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 784 |
|
|
@@ -788,78 +721,28 @@ class GptBertForMaskedLM(GptBertModel):
|
|
| 788 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 789 |
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 790 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 791 |
if not return_dict:
|
| 792 |
output = (
|
| 793 |
subword_prediction,
|
| 794 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 795 |
-
*([attention_probs] if output_attentions else [])
|
| 796 |
)
|
| 797 |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 798 |
|
| 799 |
return MaskedLMOutput(
|
| 800 |
loss=masked_lm_loss,
|
| 801 |
logits=subword_prediction,
|
| 802 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 803 |
-
attentions=attention_probs if output_attentions else None
|
| 804 |
)
|
| 805 |
|
| 806 |
|
| 807 |
-
class Classifier(nn.Module):
|
| 808 |
-
def __init__(self, config, num_labels: int):
|
| 809 |
-
super().__init__()
|
| 810 |
-
|
| 811 |
-
drop_out = getattr(config, "cls_dropout", None)
|
| 812 |
-
drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
|
| 813 |
-
|
| 814 |
-
self.projection: CastedLinear
|
| 815 |
-
self.emb2vocab: CastedLinear
|
| 816 |
-
self.pre_norm: nn.LayerNorm
|
| 817 |
-
self.post_norm: nn.LayerNorm
|
| 818 |
-
|
| 819 |
-
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_pre_norm_eps, elementwise_affine=config.classifier_pre_norm_affine)
|
| 820 |
-
self.projection = CastedLinear(config.hidden_size, config.hidden_size, bias=False)
|
| 821 |
-
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.classifier_post_norm_eps, elementwise_affine=config.classifier_post_norm_affine)
|
| 822 |
-
self.emb2vocab = CastedLinear(config.hidden_size, num_labels, bias=True)
|
| 823 |
-
self.dropout = nn.Dropout(drop_out)
|
| 824 |
-
|
| 825 |
-
self.initialize(config.hidden_size, config.intermediate_size, num_labels)
|
| 826 |
-
|
| 827 |
-
@torch.no_grad()
|
| 828 |
-
def initialize(self, hidden_size: int, intermediate_size: int, vocab_size: int) -> None:
|
| 829 |
-
proj_std: float = math.sqrt(2.0 / (hidden_size + intermediate_size))
|
| 830 |
-
|
| 831 |
-
nn.init.trunc_normal_(self.projection.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 832 |
-
nn.init.trunc_normal_(self.emb2vocab.weight, mean=0.0, std=proj_std, a=-2*proj_std, b=2*proj_std)
|
| 833 |
-
self.emb2vocab.bias.zero_()
|
| 834 |
-
|
| 835 |
-
def project(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 836 |
-
projection: torch.Tensor
|
| 837 |
-
|
| 838 |
-
projection = self.pre_norm(hidden_layer)
|
| 839 |
-
projection = self.dropout(projection)
|
| 840 |
-
projection = self.projection(projection)
|
| 841 |
-
projection = gelu_new(projection)
|
| 842 |
-
projection = self.post_norm(projection)
|
| 843 |
-
|
| 844 |
-
return projection
|
| 845 |
-
|
| 846 |
-
def calculate_output(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 847 |
-
return self.emb2vocab(hidden_layer)
|
| 848 |
-
|
| 849 |
-
def forward(self, hidden_layer: torch.Tensor) -> torch.Tensor:
|
| 850 |
-
output: torch.Tensor
|
| 851 |
-
projection: torch.Tensor
|
| 852 |
-
|
| 853 |
-
projection = self.project(hidden_layer)
|
| 854 |
-
output = self.calculate_output(projection)
|
| 855 |
-
|
| 856 |
-
return output
|
| 857 |
-
|
| 858 |
-
|
| 859 |
class GptBertForCausalLM(GptBertModel):
|
| 860 |
-
|
| 861 |
|
| 862 |
-
def __init__(self, config, **kwargs):
|
| 863 |
config.is_decoder = True
|
| 864 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 865 |
|
|
@@ -904,29 +787,27 @@ class GptBertForCausalLM(GptBertModel):
|
|
| 904 |
assert past_key_values is None, "past_key_values is not supported for now"
|
| 905 |
assert not use_cache, "use_cache is not supported for now"
|
| 906 |
|
| 907 |
-
sequence_output, contextualized_embeddings
|
| 908 |
subword_prediction = self.classifier(sequence_output)
|
| 909 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 910 |
|
| 911 |
-
|
| 912 |
if labels is not None:
|
| 913 |
labels_flatten = labels[:, 1:].flatten()
|
| 914 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 915 |
-
|
| 916 |
|
| 917 |
if not return_dict:
|
| 918 |
output = (
|
| 919 |
subword_prediction,
|
| 920 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 921 |
-
*([attention_probs] if output_attentions else [])
|
| 922 |
)
|
| 923 |
-
return ((
|
| 924 |
|
| 925 |
return CausalLMOutput(
|
| 926 |
-
loss=
|
| 927 |
logits=subword_prediction,
|
| 928 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 929 |
-
attentions=attention_probs if output_attentions else None
|
| 930 |
)
|
| 931 |
|
| 932 |
def prepare_inputs_for_generation(
|
|
@@ -982,21 +863,20 @@ class GptBertForCausalLM(GptBertModel):
|
|
| 982 |
|
| 983 |
|
| 984 |
class GptBertForSequenceClassification(GptBertModel):
|
| 985 |
-
|
|
|
|
| 986 |
|
| 987 |
-
def __init__(self, config, **kwargs):
|
| 988 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 989 |
|
| 990 |
self.num_labels = config.num_labels
|
| 991 |
-
self.
|
|
|
|
| 992 |
|
| 993 |
def forward(
|
| 994 |
self,
|
| 995 |
input_ids: Optional[torch.Tensor] = None,
|
| 996 |
attention_mask: Optional[torch.Tensor] = None,
|
| 997 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 998 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 999 |
-
output_attentions: Optional[bool] = None,
|
| 1000 |
output_hidden_states: Optional[bool] = None,
|
| 1001 |
return_dict: Optional[bool] = None,
|
| 1002 |
labels: Optional[torch.LongTensor] = None,
|
|
@@ -1004,8 +884,8 @@ class GptBertForSequenceClassification(GptBertModel):
|
|
| 1004 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1005 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1006 |
|
| 1007 |
-
sequence_output, contextualized_embeddings
|
| 1008 |
-
logits = self.
|
| 1009 |
|
| 1010 |
loss = None
|
| 1011 |
if labels is not None:
|
|
@@ -1033,35 +913,32 @@ class GptBertForSequenceClassification(GptBertModel):
|
|
| 1033 |
if not return_dict:
|
| 1034 |
output = (
|
| 1035 |
logits,
|
| 1036 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1037 |
-
*([attention_probs] if output_attentions else [])
|
| 1038 |
)
|
| 1039 |
return ((loss,) + output) if loss is not None else output
|
| 1040 |
|
| 1041 |
return SequenceClassifierOutput(
|
| 1042 |
loss=loss,
|
| 1043 |
logits=logits,
|
| 1044 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1045 |
-
attentions=attention_probs if output_attentions else None
|
| 1046 |
)
|
| 1047 |
|
| 1048 |
|
| 1049 |
class GptBertForTokenClassification(GptBertModel):
|
| 1050 |
-
|
|
|
|
| 1051 |
|
| 1052 |
-
def __init__(self, config, **kwargs):
|
| 1053 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1054 |
|
| 1055 |
self.num_labels = config.num_labels
|
| 1056 |
-
self.
|
|
|
|
| 1057 |
|
| 1058 |
def forward(
|
| 1059 |
self,
|
| 1060 |
input_ids: Optional[torch.Tensor] = None,
|
| 1061 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1062 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1063 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1064 |
-
output_attentions: Optional[bool] = None,
|
| 1065 |
output_hidden_states: Optional[bool] = None,
|
| 1066 |
return_dict: Optional[bool] = None,
|
| 1067 |
labels: Optional[torch.LongTensor] = None,
|
|
@@ -1069,8 +946,8 @@ class GptBertForTokenClassification(GptBertModel):
|
|
| 1069 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1070 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1071 |
|
| 1072 |
-
sequence_output, contextualized_embeddings
|
| 1073 |
-
logits = self.
|
| 1074 |
|
| 1075 |
loss = None
|
| 1076 |
if labels is not None:
|
|
@@ -1094,21 +971,20 @@ class GptBertForTokenClassification(GptBertModel):
|
|
| 1094 |
|
| 1095 |
|
| 1096 |
class GptBertForQuestionAnswering(GptBertModel):
|
| 1097 |
-
|
| 1098 |
-
|
| 1099 |
-
|
|
|
|
| 1100 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1101 |
|
| 1102 |
self.num_labels = config.num_labels
|
| 1103 |
-
self.
|
|
|
|
| 1104 |
|
| 1105 |
def forward(
|
| 1106 |
self,
|
| 1107 |
input_ids: Optional[torch.Tensor] = None,
|
| 1108 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1109 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1110 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1111 |
-
output_attentions: Optional[bool] = None,
|
| 1112 |
output_hidden_states: Optional[bool] = None,
|
| 1113 |
return_dict: Optional[bool] = None,
|
| 1114 |
start_positions: Optional[torch.Tensor] = None,
|
|
@@ -1117,8 +993,8 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1117 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1118 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1119 |
|
| 1120 |
-
sequence_output, contextualized_embeddings
|
| 1121 |
-
logits = self.
|
| 1122 |
|
| 1123 |
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1124 |
start_logits = start_logits.squeeze(-1).contiguous()
|
|
@@ -1146,8 +1022,7 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1146 |
output = (
|
| 1147 |
start_logits,
|
| 1148 |
end_logits,
|
| 1149 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1150 |
-
*([attention_probs] if output_attentions else [])
|
| 1151 |
)
|
| 1152 |
return ((total_loss,) + output) if total_loss is not None else output
|
| 1153 |
|
|
@@ -1155,28 +1030,26 @@ class GptBertForQuestionAnswering(GptBertModel):
|
|
| 1155 |
loss=total_loss,
|
| 1156 |
start_logits=start_logits,
|
| 1157 |
end_logits=end_logits,
|
| 1158 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1159 |
-
attentions=attention_probs if output_attentions else None
|
| 1160 |
)
|
| 1161 |
|
| 1162 |
|
| 1163 |
class GptBertForMultipleChoice(GptBertModel):
|
| 1164 |
-
|
|
|
|
| 1165 |
|
| 1166 |
-
def __init__(self, config, **kwargs):
|
| 1167 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1168 |
|
| 1169 |
self.num_labels = getattr(config, "num_labels", 2)
|
| 1170 |
-
self.
|
|
|
|
| 1171 |
|
| 1172 |
def forward(
|
| 1173 |
self,
|
| 1174 |
input_ids: Optional[torch.Tensor] = None,
|
| 1175 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1176 |
-
token_type_ids: Optional[torch.Tensor] = None,
|
| 1177 |
-
position_ids: Optional[torch.Tensor] = None,
|
| 1178 |
labels: Optional[torch.Tensor] = None,
|
| 1179 |
-
output_attentions: Optional[bool] = None,
|
| 1180 |
output_hidden_states: Optional[bool] = None,
|
| 1181 |
return_dict: Optional[bool] = None,
|
| 1182 |
**kwargs
|
|
@@ -1187,8 +1060,8 @@ class GptBertForMultipleChoice(GptBertModel):
|
|
| 1187 |
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 1188 |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1189 |
|
| 1190 |
-
sequence_output, contextualized_embeddings
|
| 1191 |
-
logits = self.
|
| 1192 |
reshaped_logits = logits.view(-1, num_choices)
|
| 1193 |
|
| 1194 |
loss = None
|
|
@@ -1199,14 +1072,12 @@ class GptBertForMultipleChoice(GptBertModel):
|
|
| 1199 |
if not return_dict:
|
| 1200 |
output = (
|
| 1201 |
reshaped_logits,
|
| 1202 |
-
*([contextualized_embeddings] if output_hidden_states else [])
|
| 1203 |
-
*([attention_probs] if output_attentions else [])
|
| 1204 |
)
|
| 1205 |
return ((loss,) + output) if loss is not None else output
|
| 1206 |
|
| 1207 |
return MultipleChoiceModelOutput(
|
| 1208 |
loss=loss,
|
| 1209 |
logits=reshaped_logits,
|
| 1210 |
-
hidden_states=contextualized_embeddings if output_hidden_states else None
|
| 1211 |
-
attentions=attention_probs if output_attentions else None
|
| 1212 |
)
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
from torch.nn import functional as F
|
|
|
|
| 6 |
|
| 7 |
+
from functools import partial, lru_cache
|
| 8 |
|
| 9 |
from .configuration_gptbert import GptBertConfig
|
| 10 |
from transformers.modeling_utils import PreTrainedModel
|
| 11 |
from transformers.activations import gelu_new
|
| 12 |
+
from transformers.utils import is_flash_attn_2_available, logging
|
| 13 |
from transformers.modeling_outputs import (
|
| 14 |
MaskedLMOutput,
|
| 15 |
MultipleChoiceModelOutput,
|
|
|
|
| 22 |
import math
|
| 23 |
from typing import TYPE_CHECKING, Optional, Union, Tuple, List
|
| 24 |
|
| 25 |
+
logger = logging.get_logger(__name__)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Workaround for transformers < 4.36.0 check_imports issue
|
| 29 |
+
# See: https://github.com/huggingface/transformers/issues/28459
|
| 30 |
try:
|
| 31 |
+
if is_flash_attn_2_available():
|
| 32 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
|
| 33 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
| 34 |
+
from flash_attn.ops.triton.rotary import apply_rotary
|
| 35 |
+
else:
|
| 36 |
+
flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
|
| 37 |
+
logger.warning_once(
|
| 38 |
+
"NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
|
| 39 |
+
)
|
| 40 |
except ImportError:
|
| 41 |
+
flash_attn_varlen_qkvpacked_func, RotaryEmbedding, apply_rotary = None, object, None
|
| 42 |
+
logger.warning_once(
|
| 43 |
+
"NorBERT4 støtter FlashAttention, men det er ikke funnet i miljøet ditt. Du bør vurdere å oppdatere miljøet ditt for å få raskere og mindre minnekrevende behandling."
|
| 44 |
+
)
|
| 45 |
|
| 46 |
|
| 47 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 48 |
+
@torch.compiler.disable()
|
| 49 |
+
def _unpad_input(input_ids: torch.Tensor, attention_mask: torch.Tensor):
|
| 50 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 51 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 52 |
+
max_seqlen_in_batch = int(seqlens_in_batch.max().item())
|
| 53 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 54 |
|
| 55 |
+
if input_ids.dim() == 2:
|
| 56 |
+
unpadded_inputs = input_ids.flatten()[indices]
|
| 57 |
+
else:
|
| 58 |
+
batch_size, sequence_length, *rest = input_ids.shape
|
| 59 |
+
shape = batch_size * sequence_length
|
| 60 |
+
unpadded_inputs = input_ids.view(shape, *rest)[indices]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
return unpadded_inputs, indices, cu_seqlens, max_seqlen_in_batch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 66 |
+
def _pad_output(input_ids: torch.Tensor, indices: torch.Tensor, batch_size: int, sequence_length: int) -> torch.Tensor:
|
| 67 |
+
if input_ids.dim() == 1:
|
| 68 |
+
output = torch.zeros(batch_size * sequence_length, dtype=input_ids.dtype, device=input_ids.device)
|
| 69 |
+
output[indices] = input_ids
|
| 70 |
+
padded_inputs = output.view(batch_size, sequence_length)
|
| 71 |
+
else:
|
| 72 |
+
_, *rest = input_ids.shape
|
| 73 |
+
output = torch.zeros(batch_size * sequence_length, *rest, dtype=input_ids.dtype, device=input_ids.device)
|
| 74 |
+
output[indices] = input_ids
|
| 75 |
+
padded_inputs = output.view(batch_size, sequence_length, *rest)
|
| 76 |
+
|
| 77 |
+
return padded_inputs
|
| 78 |
|
|
|
|
| 79 |
|
| 80 |
+
class CastedLinear(nn.Linear):
|
| 81 |
def __init__(self, in_features, out_features, bias):
|
| 82 |
super().__init__(in_features, out_features, bias=bias)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def forward(self, x):
|
| 85 |
return F.linear(x, self.weight.type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 86 |
|
| 87 |
|
| 88 |
class CastedLinearIn(nn.Linear):
|
|
|
|
| 89 |
def __init__(self, in_features, out_features, bias):
|
| 90 |
super().__init__(in_features, out_features, bias=bias)
|
| 91 |
self.scale = nn.Parameter(torch.ones(in_features))
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def forward(self, x):
|
| 94 |
return F.linear(x, (self.weight * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 95 |
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
class MultiCastedLinearOrthoIn(nn.Module):
|
|
|
|
| 98 |
def __init__(self, in_features, out_features, bias):
|
| 99 |
super().__init__()
|
| 100 |
+
|
| 101 |
self.in_features = in_features
|
| 102 |
self.out_features = out_features
|
| 103 |
|
|
|
|
| 112 |
|
| 113 |
self.scale = nn.Parameter(torch.ones(in_features))
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
def forward(self, x):
|
| 116 |
return F.linear(x, (torch.cat([weight for weight in self.weights], dim=0) * (self.scale + 1.0).unsqueeze(0)).type_as(x), bias=self.bias.type_as(x) if self.bias is not None else None)
|
| 117 |
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
class GeGLU(nn.Module):
|
| 120 |
def forward(self, x):
|
| 121 |
x, gate = x.chunk(2, dim=-1)
|
| 122 |
+
return x * gelu_new(gate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
|
|
|
| 124 |
|
| 125 |
+
class Embedding(nn.Module):
|
| 126 |
+
def __init__(self, config: GptBertConfig):
|
| 127 |
super().__init__()
|
| 128 |
|
| 129 |
+
self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 130 |
+
self.word_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
|
| 131 |
+
self.word_scale = nn.Parameter(torch.zeros(config.hidden_size))
|
| 132 |
+
self.dropout = nn.Dropout(config.embedding_dropout)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
def forward(self, input_ids: torch.Tensor):
|
| 135 |
+
word_embedding = self.word_embedding(input_ids)
|
| 136 |
+
word_embedding = self.word_norm(word_embedding)
|
| 137 |
+
word_embedding = word_embedding * (self.word_scale + 1.0)
|
| 138 |
|
| 139 |
+
return self.dropout(word_embedding)
|
| 140 |
|
|
|
|
| 141 |
|
| 142 |
+
class LMClassifier(nn.Module):
|
| 143 |
+
def __init__(self, config: GptBertConfig, n_labels: int):
|
| 144 |
super().__init__()
|
| 145 |
|
| 146 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 147 |
+
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
| 148 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 149 |
+
self.emb2vocab = CastedLinearIn(config.hidden_size, n_labels, bias=True)
|
| 150 |
+
|
| 151 |
+
def forward(self, x: torch.Tensor):
|
| 152 |
+
x = self.pre_norm(x.float()).type_as(x)
|
| 153 |
+
x = self.projection(x)
|
| 154 |
+
x = gelu_new(x)
|
| 155 |
+
x = self.post_norm(x.float()).type_as(x)
|
| 156 |
+
x = self.emb2vocab(x)
|
| 157 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
|
|
|
| 159 |
|
| 160 |
+
class Classifier(nn.Module):
|
| 161 |
+
def __init__(self, config: GptBertConfig, n_labels: int):
|
| 162 |
super().__init__()
|
| 163 |
|
| 164 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 165 |
+
self.projection = CastedLinearIn(config.hidden_size, config.hidden_size, bias=False)
|
| 166 |
+
self.post_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 167 |
+
self.dropout = nn.Dropout(config.classifier_dropout)
|
| 168 |
+
self.output_projection = CastedLinearIn(config.hidden_size, n_labels, bias=True)
|
| 169 |
+
|
| 170 |
+
def forward(self, x: torch.Tensor):
|
| 171 |
+
x = self.pre_norm(x.float()).type_as(x)
|
| 172 |
+
x = self.projection(x)
|
| 173 |
+
x = gelu_new(x)
|
| 174 |
+
x = self.post_norm(x.float()).type_as(x)
|
| 175 |
+
x = self.dropout(x)
|
| 176 |
+
x = self.output_projection(x)
|
| 177 |
+
return x
|
| 178 |
|
|
|
|
| 179 |
|
| 180 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 181 |
+
def flash_attention_forward(qkv: torch.Tensor, rotary_emb: UnpaddedRotaryEmbedding, cu_seqlens: torch.Tensor, max_seqlen: int, causal: bool, local_attention: Tuple[int, int], dropout_p: float, deterministic: bool, target_dtype: torch.dtype = torch.bfloat16, **_kwargs):
|
| 182 |
+
qkv = rotary_emb(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
| 183 |
+
|
| 184 |
+
convert_dtype = qkv.dtype not in (torch.float16, torch.bfloat16)
|
| 185 |
+
if convert_dtype:
|
| 186 |
+
# FA2 implementation only supports fp16 and bf16. If FA2 is supported,
|
| 187 |
+
# bfloat16 must be supported as of FA2 2.5.7. (Turing GPUs not supported)
|
| 188 |
+
orig_dtype = qkv.dtype
|
| 189 |
+
qkv = qkv.to(target_dtype)
|
| 190 |
+
|
| 191 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
| 192 |
+
qkv,
|
| 193 |
+
cu_seqlens=cu_seqlens,
|
| 194 |
+
max_seqlen=max_seqlen,
|
| 195 |
+
dropout_p=dropout_p,
|
| 196 |
+
deterministic=deterministic,
|
| 197 |
+
window_size=local_attention,
|
| 198 |
+
causal=False
|
| 199 |
+
)
|
| 200 |
+
attn = attn.to(orig_dtype) # type: ignore
|
| 201 |
+
else:
|
| 202 |
+
attn = flash_attn_varlen_qkvpacked_func(
|
| 203 |
+
qkv,
|
| 204 |
+
cu_seqlens=cu_seqlens,
|
| 205 |
+
max_seqlen=max_seqlen,
|
| 206 |
+
dropout_p=dropout_p,
|
| 207 |
+
deterministic=deterministic,
|
| 208 |
+
window_size=local_attention,
|
| 209 |
+
causal=False
|
| 210 |
+
)
|
| 211 |
+
return attn
|
| 212 |
|
|
|
|
|
|
|
| 213 |
|
| 214 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 215 |
+
class ApplyRotaryEmbUnpad(torch.autograd.Function):
|
| 216 |
+
@staticmethod
|
| 217 |
+
def forward(ctx, qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 218 |
+
# (total_nnz, 3, nheads, headdim)
|
| 219 |
+
qkv = qkv.contiguous()
|
| 220 |
+
total_nnz, _three, _nheads, headdim = qkv.shape
|
| 221 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 222 |
+
# we get the same tensor
|
| 223 |
+
# qk = rearrange(qkv[:, :2], "b_s t h d -> b_s (t h) d")
|
| 224 |
+
qk = qkv[:, :2].view(total_nnz, -1, headdim)
|
| 225 |
+
apply_rotary(qk, cos, sin, seqlen_offsets=0, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, interleaved=False, inplace=True)
|
| 226 |
+
|
| 227 |
+
ctx.save_for_backward(cos, sin, cu_seqlens)
|
| 228 |
+
ctx.max_seqlen = max_seqlen
|
| 229 |
+
return qkv
|
| 230 |
|
| 231 |
+
@staticmethod
|
| 232 |
+
def backward(ctx, do):
|
| 233 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 234 |
+
do = do.contiguous()
|
| 235 |
+
total_nnz, _three, _nheads, headdim = do.shape
|
| 236 |
+
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads) dimensions,
|
| 237 |
+
# we get the same tensor
|
| 238 |
+
dqk = do[:, :2].view(total_nnz, -1, headdim)
|
| 239 |
+
apply_rotary(
|
| 240 |
+
dqk,
|
| 241 |
+
cos,
|
| 242 |
+
sin,
|
| 243 |
+
seqlen_offsets=0,
|
| 244 |
+
cu_seqlens=cu_seqlens,
|
| 245 |
+
max_seqlen=ctx.max_seqlen,
|
| 246 |
+
interleaved=False,
|
| 247 |
+
inplace=True,
|
| 248 |
+
conjugate=True,
|
| 249 |
+
)
|
| 250 |
|
| 251 |
+
return do, None, None, None, None, None, None
|
| 252 |
|
| 253 |
|
| 254 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 255 |
+
def apply_rotary_unpadded(qkv, cos, sin, cu_seqlens: Optional[torch.Tensor] = None, max_seqlen: Optional[int] = None):
|
| 256 |
+
return ApplyRotaryEmbUnpad.apply(qkv, cos, sin, cu_seqlens, max_seqlen)
|
| 257 |
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
# from https://github.com/huggingface/transformers/blob/main/src/transformers/models/modernbert/modeling_modernbert.py
|
| 260 |
+
class UnpaddedRotaryEmbedding(RotaryEmbedding):
|
| 261 |
+
def __init__(self, dim: int, base: float = 10000.0, max_seqlen: Optional[int] = None):
|
| 262 |
+
super().__init__(dim=dim, base=base, pos_idx_in_fp32=True, device=None, interleaved=False)
|
| 263 |
+
self.max_seqlen = max_seqlen
|
| 264 |
|
| 265 |
+
def forward(self, qkv: torch.Tensor, cu_seqlens: torch.Tensor, max_seqlen: Optional[int] = None) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
| 266 |
+
if max_seqlen is not None:
|
| 267 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
|
|
|
| 268 |
|
| 269 |
+
qkv = apply_rotary_unpadded(
|
| 270 |
+
qkv,
|
| 271 |
+
self._cos_cached,
|
| 272 |
+
self._sin_cached,
|
| 273 |
+
cu_seqlens=cu_seqlens,
|
| 274 |
+
max_seqlen=max_seqlen,
|
| 275 |
+
)
|
| 276 |
|
| 277 |
+
return qkv
|
|
|
|
|
|
|
| 278 |
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
+
class RotaryPositionalEmbeddings(nn.Module):
|
| 281 |
+
def __init__(self, config, theta: int):
|
| 282 |
+
super().__init__()
|
| 283 |
|
| 284 |
+
head_size = config.query_key_head_size
|
| 285 |
+
assert head_size % 2 == 0
|
| 286 |
+
max_seq_len = config.max_sequence_length
|
| 287 |
|
| 288 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, head_size, 2, dtype=torch.float32) / head_size))
|
| 289 |
+
pos = torch.arange(max_seq_len, dtype=torch.float32)
|
| 290 |
+
embedding = torch.einsum('n, d -> nd', pos, inv_freq)
|
| 291 |
+
embedding = torch.cat([embedding, embedding], dim=-1).unsqueeze(0)
|
| 292 |
+
self.register_buffer("cos_matrix", embedding.cos(), persistent=False)
|
| 293 |
+
self.register_buffer("sin_matrix", embedding.sin(), persistent=False)
|
| 294 |
|
| 295 |
+
def forward(self, x: torch.Tensor):
|
| 296 |
+
hidden_layer = x.float()
|
| 297 |
|
| 298 |
+
seq_len = x.shape[2]
|
|
|
|
| 299 |
|
| 300 |
+
cos_matrix = self.cos_matrix[:, None, :seq_len, :]
|
| 301 |
+
sin_matrix = self.sin_matrix[:, None, :seq_len, :]
|
| 302 |
|
| 303 |
+
x_rotate_half = torch.cat(
|
| 304 |
+
[
|
| 305 |
+
-hidden_layer[:, :, :, x.size(-1) // 2:],
|
| 306 |
+
hidden_layer[:, :, :, :x.size(-1) // 2]
|
| 307 |
+
],
|
| 308 |
+
dim=-1
|
| 309 |
+
)
|
| 310 |
|
| 311 |
+
out = hidden_layer * cos_matrix + x_rotate_half * sin_matrix
|
| 312 |
+
return out.type_as(x)
|
| 313 |
|
| 314 |
|
| 315 |
class SelfAttention(nn.Module):
|
| 316 |
+
def __init__(self, config: GptBertConfig, layer_idx: int):
|
|
|
|
| 317 |
super().__init__()
|
| 318 |
+
|
| 319 |
+
self.config = config
|
| 320 |
+
self.layer_idx = layer_idx
|
| 321 |
+
|
| 322 |
+
self.d_qk = config.query_key_head_size
|
| 323 |
+
self.d_v = config.value_head_size
|
| 324 |
self.num_attention_heads = config.num_attention_heads
|
| 325 |
+
self.num_kv_heads = config.num_attention_heads
|
| 326 |
self.hidden_size = config.hidden_size
|
| 327 |
|
| 328 |
self.q_out_dim = self.d_qk * self.num_attention_heads
|
|
|
|
| 333 |
self.v_proj = CastedLinearIn(self.hidden_size, self.v_out_dim, bias=False)
|
| 334 |
self.out_proj = CastedLinearIn(self.d_v*self.num_attention_heads, self.hidden_size, bias=False)
|
| 335 |
|
| 336 |
+
self.pre_v_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 337 |
+
self.pre_qk_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 338 |
+
self.inter_norm = nn.LayerNorm(self.d_v * self.num_attention_heads, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 339 |
+
self.q_norm = nn.LayerNorm(self.d_qk, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
|
| 340 |
+
self.k_norm = nn.LayerNorm(self.d_qk, eps=config.layer_norm_eps, elementwise_affine=False, bias=False)
|
| 341 |
+
self.k_scale = nn.Parameter(torch.ones(self.num_kv_heads, self.d_qk))
|
| 342 |
+
self.q_scale = nn.Parameter(torch.ones(self.num_attention_heads, self.d_qk))
|
|
|
|
|
|
|
| 343 |
|
| 344 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 345 |
|
| 346 |
+
theta = 160_000 if (layer_idx + 1) % config.local_global_ratio == 0 else 10_000
|
|
|
|
| 347 |
|
| 348 |
+
# Initialize rotary embeddings based on whether FlashAttention is available
|
| 349 |
+
if is_flash_attn_2_available():
|
| 350 |
+
self.rope_embedding = UnpaddedRotaryEmbedding(dim=self.d_qk, base=theta, max_seqlen=config.max_sequence_length)
|
| 351 |
+
else:
|
| 352 |
+
self.rope_embedding = RotaryPositionalEmbeddings(config, theta)
|
| 353 |
|
| 354 |
+
self.scale = 1.0 / math.sqrt(self.d_qk)
|
| 355 |
self.lambdas = nn.Parameter(torch.tensor([0.5]))
|
| 356 |
|
|
|
|
|
|
|
| 357 |
self.sequence_length = config.max_sequence_length
|
| 358 |
self.is_causal = config.is_decoder
|
| 359 |
+
self.window_length = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
+
def set_window_length(self, window_length: int):
|
| 362 |
+
self.window_length = window_length
|
| 363 |
|
| 364 |
+
def _get_window_mask(self, query_length: int, key_length: int, device: torch.device):
|
| 365 |
+
"""Create and cache window attention mask."""
|
|
|
|
|
|
|
| 366 |
if self.is_causal:
|
| 367 |
+
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 368 |
+
mask = mask.tril().triu(diagonal=-self.window_length)
|
|
|
|
|
|
|
| 369 |
else:
|
| 370 |
+
mask = torch.ones(query_length, key_length, dtype=torch.bool, device=device)
|
| 371 |
+
mask = mask.tril(diagonal=self.window_length).triu(diagonal=-self.window_length)
|
| 372 |
+
return mask.view(1, 1, query_length, key_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 373 |
|
| 374 |
+
def attention_operation(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, padding_mask: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 375 |
+
"""Standard attention computation with masking."""
|
| 376 |
batch_size, _, query_length, _ = query.size()
|
| 377 |
_, _, key_length, _ = key.size()
|
| 378 |
|
| 379 |
+
# Use cached window mask
|
| 380 |
+
with torch.no_grad():
|
| 381 |
+
window_mask = self._get_window_mask(query_length, key_length, query.device)
|
| 382 |
+
if padding_mask is not None:
|
| 383 |
+
attention_mask = padding_mask & window_mask
|
| 384 |
+
else:
|
| 385 |
+
attention_mask = window_mask
|
| 386 |
+
|
| 387 |
+
output = F.scaled_dot_product_attention(
|
| 388 |
+
query=query,
|
| 389 |
+
key=key,
|
| 390 |
+
value=value,
|
| 391 |
+
attn_mask=attention_mask,
|
| 392 |
+
dropout_p=self.config.attention_dropout if self.training else 0.0,
|
| 393 |
+
is_causal=self.is_causal
|
| 394 |
+
)
|
| 395 |
+
return output
|
| 396 |
+
|
| 397 |
+
def forward(self, hidden_layer: torch.Tensor, qk_layer: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 398 |
+
# Get original shape info
|
| 399 |
+
if is_flash_attn_2_available():
|
| 400 |
+
# Unpadded case
|
| 401 |
+
indices, cu_seqlens, max_seqlen = padding_info
|
| 402 |
+
total_seqlen = hidden_layer.size(0)
|
| 403 |
+
batch_size = cu_seqlens.size(0) - 1
|
| 404 |
else:
|
| 405 |
+
# Padded case
|
| 406 |
+
batch_size, seq_length = hidden_layer.size(0), hidden_layer.size(1)
|
| 407 |
|
| 408 |
+
hidden_layer = self.pre_v_norm(hidden_layer.float()).type_as(hidden_layer)
|
| 409 |
+
qk_layer = self.pre_qk_norm(qk_layer.float()).type_as(qk_layer)
|
| 410 |
|
| 411 |
+
query, key = self.qk_proj(qk_layer).tensor_split([self.q_out_dim], dim=-1)
|
| 412 |
+
value = self.v_proj(hidden_layer)
|
| 413 |
|
| 414 |
+
if is_flash_attn_2_available():
|
| 415 |
+
# Reshape for FlashAttention: (total_seqlen, num_heads, head_dim)
|
| 416 |
+
query = query.view(total_seqlen, self.num_attention_heads, self.d_qk)
|
| 417 |
+
key = key.view(total_seqlen, self.num_kv_heads, self.d_qk)
|
| 418 |
+
value = value.view(total_seqlen, self.num_kv_heads, self.d_v)
|
| 419 |
|
| 420 |
+
# Apply layer norm and scaling
|
| 421 |
+
query = ((self.q_scale + 1.0).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
|
| 422 |
+
key = ((self.k_scale + 1.0).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
| 423 |
|
| 424 |
+
if v1 is None:
|
| 425 |
+
v1 = value
|
| 426 |
+
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
| 427 |
|
| 428 |
+
# Prepare qkv for FlashAttention
|
| 429 |
+
qkv = torch.stack([query, key, value], dim=1) # (total_seqlen, 3, num_heads, head_dim)
|
| 430 |
|
| 431 |
+
# Determine window size for local attention
|
| 432 |
+
if self.window_length is not None and self.window_length > 0:
|
| 433 |
+
if self.is_causal:
|
| 434 |
+
local_attention = (self.window_length - 1, 0)
|
| 435 |
+
else:
|
| 436 |
+
local_attention = (self.window_length - 1, self.window_length - 1)
|
| 437 |
+
else:
|
| 438 |
+
local_attention = (-1, -1)
|
| 439 |
+
|
| 440 |
+
# Apply FlashAttention
|
| 441 |
+
output = flash_attention_forward(
|
| 442 |
+
qkv,
|
| 443 |
+
self.rope_embedding,
|
| 444 |
+
cu_seqlens,
|
| 445 |
+
max_seqlen,
|
| 446 |
+
self.is_causal,
|
| 447 |
+
local_attention,
|
| 448 |
+
self.config.attention_dropout if self.training else 0.0,
|
| 449 |
+
self.config.deterministic_flash_attn
|
| 450 |
+
)
|
| 451 |
|
| 452 |
+
# Reshape output back
|
| 453 |
+
output = output.view(total_seqlen, self.d_v * self.num_attention_heads)
|
|
|
|
| 454 |
|
| 455 |
+
else:
|
| 456 |
+
# Standard attention path
|
| 457 |
+
query_length = query.size(1)
|
| 458 |
+
key_length = key.size(1)
|
| 459 |
|
| 460 |
+
query = query.reshape(batch_size, query_length, self.num_attention_heads, self.d_qk).transpose(1, 2)
|
| 461 |
+
key = key.reshape(batch_size, key_length, self.num_kv_heads, self.d_qk).transpose(1, 2)
|
| 462 |
+
value = value.reshape(batch_size, key_length, self.num_kv_heads, self.d_v).transpose(1, 2)
|
| 463 |
|
| 464 |
+
query = ((self.q_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.q_norm(query.float())).type_as(query)
|
| 465 |
+
key = ((self.k_scale + 1.0).unsqueeze(1).unsqueeze(0) * self.k_norm(key.float())).type_as(key)
|
| 466 |
|
| 467 |
+
if v1 is None:
|
| 468 |
+
v1 = value
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
else:
|
| 470 |
+
value = (1 - self.lambdas[0]) * value + self.lambdas[0] * v1
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
+
# Apply rotary embeddings
|
| 473 |
+
query = self.rope_embedding(query)
|
| 474 |
+
key = self.rope_embedding(key)
|
|
|
|
| 475 |
|
| 476 |
+
output = self.attention_operation(query, key, value, padding_info)
|
| 477 |
+
output = output.transpose(1, 2).flatten(2, 3) # shape: [B, T, H*D]
|
|
|
|
| 478 |
|
| 479 |
+
output = self.inter_norm(output.float()).type_as(output)
|
| 480 |
+
output = self.out_proj(output)
|
| 481 |
+
output = self.dropout(output)
|
| 482 |
|
| 483 |
+
return output, v1
|
| 484 |
|
|
|
|
| 485 |
|
| 486 |
+
class FeedForward(nn.Module):
|
| 487 |
+
def __init__(self, config: GptBertConfig):
|
| 488 |
super().__init__()
|
| 489 |
+
self.pre_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
self.up_proj = MultiCastedLinearOrthoIn(config.hidden_size, [config.intermediate_size, config.intermediate_size], bias=False)
|
| 491 |
self.activation = GeGLU()
|
| 492 |
+
self.inter_norm = nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False)
|
| 493 |
self.down_proj = CastedLinearIn(config.intermediate_size, config.hidden_size, bias=False)
|
| 494 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
| 495 |
+
|
| 496 |
+
def forward(self, x: torch.Tensor):
|
| 497 |
+
x = self.pre_norm(x.float()).type_as(x)
|
| 498 |
+
x = self.up_proj(x)
|
| 499 |
+
x = self.activation(x)
|
| 500 |
+
x = self.inter_norm(x.float()).type_as(x)
|
| 501 |
+
x = self.down_proj(x)
|
| 502 |
+
x = self.dropout(x)
|
| 503 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
|
|
|
|
|
|
|
| 505 |
|
| 506 |
+
class Layer(nn.Module):
|
| 507 |
+
def __init__(self, config: GptBertConfig, layer_idx: int):
|
| 508 |
+
super().__init__()
|
| 509 |
|
| 510 |
+
self.attention = SelfAttention(config, layer_idx)
|
| 511 |
+
self.mlp = FeedForward(config)
|
| 512 |
+
self.lambdas = nn.Parameter(torch.tensor([0., 0., 1., 0., 1., 0.]))
|
| 513 |
|
| 514 |
+
def set_window_length(self, window_length: int):
|
| 515 |
+
self.attention.set_window_length(window_length)
|
| 516 |
|
| 517 |
+
def forward(self, hidden_layer: torch.Tensor, embeddings: torch.Tensor, v1: torch.Tensor | None, padding_info):
|
| 518 |
+
attention_output = (1 - self.lambdas[0]) * hidden_layer + self.lambdas[0] * embeddings
|
| 519 |
+
qk_layer = (1 - self.lambdas[1]) * hidden_layer + self.lambdas[1] * embeddings
|
| 520 |
+
mlp_layer = F.softplus(self.lambdas[2]) * ((1 - self.lambdas[3]) * hidden_layer + self.lambdas[3] * embeddings)
|
| 521 |
|
| 522 |
+
attention_output, v1 = self.attention(attention_output, qk_layer, v1, padding_info)
|
| 523 |
+
mlp_layer = mlp_layer + attention_output
|
| 524 |
+
hidden_layer = F.softplus(self.lambdas[4]) * ((1 - self.lambdas[5]) * hidden_layer + self.lambdas[5] * embeddings)
|
| 525 |
+
output = hidden_layer + attention_output + self.mlp(mlp_layer)
|
| 526 |
|
| 527 |
+
return output, v1
|
| 528 |
|
|
|
|
| 529 |
|
| 530 |
+
class Encoder(nn.Module):
|
| 531 |
+
def __init__(self, config: GptBertConfig):
|
| 532 |
super().__init__()
|
| 533 |
+
self.layers = nn.ModuleList([Layer(config, i) for i in range(config.num_layers)])
|
| 534 |
+
self.local_global_ratio = config.local_global_ratio
|
| 535 |
|
| 536 |
+
def set_window_length(self, config: GptBertConfig):
|
| 537 |
+
for i, layer in enumerate(self.layers):
|
| 538 |
+
if (i + 1) % self.local_global_ratio == 0:
|
| 539 |
+
layer.set_window_length(config.global_window_length)
|
| 540 |
+
else:
|
| 541 |
+
layer.set_window_length(config.local_window_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
+
def forward(self, hidden_layer: torch.Tensor, padding_info, output_hidden_states=False, checkpoint_activations=False):
|
| 544 |
+
hidden_layers = [hidden_layer] if output_hidden_states else None
|
| 545 |
+
v1 = None
|
| 546 |
+
embeddings = hidden_layer
|
|
|
|
|
|
|
| 547 |
|
| 548 |
+
for layer in self.layers:
|
| 549 |
+
if checkpoint_activations:
|
| 550 |
+
hidden_layer, v1 = torch.utils.checkpoint.checkpoint(layer, hidden_layer, embeddings, v1, padding_info, use_reentrant=True)
|
| 551 |
+
else:
|
| 552 |
+
hidden_layer, v1 = layer(hidden_layer, embeddings, v1, padding_info)
|
|
|
|
| 553 |
|
| 554 |
+
if output_hidden_states:
|
| 555 |
+
hidden_layers.append(hidden_layer)
|
| 556 |
|
| 557 |
+
return hidden_layer, hidden_layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
|
| 559 |
|
| 560 |
#
|
|
|
|
| 563 |
|
| 564 |
class GptBertPreTrainedModel(PreTrainedModel):
|
| 565 |
config_class = GptBertConfig
|
| 566 |
+
supports_gradient_checkpointing = True
|
| 567 |
+
_supports_flash_attn_2 = True
|
| 568 |
+
_supports_sdpa = True
|
| 569 |
+
_supports_flex_attn = False
|
| 570 |
|
| 571 |
def _init_weights(self, module):
|
| 572 |
std = math.sqrt(2.0 / (5.0 * self.hidden_size))
|
| 573 |
|
| 574 |
+
if isinstance(module, nn.Linear) or isinstance(module, CastedLinearIn):
|
| 575 |
nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
|
| 576 |
if module.bias is not None:
|
| 577 |
module.bias.data.zero_()
|
|
|
|
| 583 |
|
| 584 |
|
| 585 |
class GptBertModel(GptBertPreTrainedModel):
|
| 586 |
+
def __init__(self, config: GptBertConfig, add_mlm_layer=False, **kwargs):
|
|
|
|
| 587 |
super().__init__(config, **kwargs)
|
| 588 |
self.config = config
|
| 589 |
self.hidden_size = config.hidden_size
|
| 590 |
|
| 591 |
self.embedding = Embedding(config)
|
| 592 |
self.encoder = Encoder(config)
|
| 593 |
+
self.classifier = LMClassifier(config, config.vocab_size) if add_mlm_layer else None
|
| 594 |
self.set_window_length(config)
|
| 595 |
+
self.gradient_checkpointing = False
|
| 596 |
+
self.post_init()
|
| 597 |
|
| 598 |
def set_window_length(self, config) -> None:
|
| 599 |
self.encoder.set_window_length(config)
|
|
|
|
| 607 |
def get_contextualized_embeddings(
|
| 608 |
self,
|
| 609 |
input_ids: Optional[torch.Tensor] = None,
|
| 610 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 611 |
+
output_hidden_states: Optional[bool] = None
|
| 612 |
+
):
|
| 613 |
if input_ids is not None:
|
| 614 |
input_shape = input_ids.size()
|
| 615 |
else:
|
|
|
|
| 618 |
batch_size, seq_length = input_shape
|
| 619 |
device = input_ids.device
|
| 620 |
|
| 621 |
+
if attention_mask is None:
|
| 622 |
+
attention_mask = torch.ones(batch_size, seq_length, dtype=torch.bool, device=device)
|
| 623 |
+
else:
|
| 624 |
+
attention_mask = attention_mask.bool()
|
| 625 |
|
| 626 |
+
if is_flash_attn_2_available():
|
| 627 |
+
if len(attention_mask.size()) != 2:
|
| 628 |
+
raise ValueError("Bare `attention_mask` med to dimensjoner støttes nå for FlashAttention.")
|
| 629 |
+
with torch.no_grad():
|
| 630 |
+
input_ids, indices, cu_seqlens, max_seqlen_in_batch = _unpad_input(input_ids, attention_mask)
|
| 631 |
+
padding_info = (indices, cu_seqlens, max_seqlen_in_batch)
|
| 632 |
+
else:
|
| 633 |
if len(attention_mask.size()) == 2:
|
| 634 |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 635 |
elif len(attention_mask.size()) == 3:
|
| 636 |
attention_mask = attention_mask.unsqueeze(1)
|
| 637 |
+
padding_info = attention_mask
|
| 638 |
+
|
| 639 |
+
static_embeddings = self.embedding(input_ids)
|
| 640 |
+
|
| 641 |
+
original_dtype = static_embeddings.dtype
|
| 642 |
+
if torch.cuda.is_available() and torch.cuda.is_bf16_supported() and static_embeddings.dtype == torch.float32:
|
| 643 |
+
static_embeddings = static_embeddings.bfloat16()
|
| 644 |
+
|
| 645 |
+
last_layer, contextualized_embeddings = self.encoder(
|
| 646 |
+
static_embeddings,
|
| 647 |
+
padding_info,
|
| 648 |
+
output_hidden_states=output_hidden_states,
|
| 649 |
+
checkpoint_activations=self.gradient_checkpointing and self.training
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
last_layer = last_layer.to(original_dtype)
|
| 653 |
+
if output_hidden_states:
|
| 654 |
+
contextualized_embeddings = [layer.to(original_dtype) for layer in contextualized_embeddings]
|
| 655 |
|
| 656 |
+
# Pad output if using FlashAttention
|
| 657 |
+
if is_flash_attn_2_available():
|
| 658 |
+
last_layer = _pad_output(last_layer, indices, batch_size, seq_length)
|
| 659 |
+
if output_hidden_states:
|
| 660 |
+
contextualized_embeddings = [_pad_output(layer, indices, batch_size, seq_length) for layer in contextualized_embeddings]
|
| 661 |
+
else:
|
| 662 |
+
contextualized_embeddings = None
|
| 663 |
|
| 664 |
+
return last_layer, contextualized_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
|
| 666 |
def forward(
|
| 667 |
self,
|
| 668 |
input_ids: Optional[torch.Tensor] = None,
|
| 669 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 670 |
output_hidden_states: Optional[bool] = None,
|
| 671 |
output_attentions: Optional[bool] = None,
|
| 672 |
return_dict: Optional[bool] = None,
|
|
|
|
| 674 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 675 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 676 |
|
| 677 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 678 |
|
| 679 |
if not return_dict:
|
| 680 |
return (
|
| 681 |
sequence_output,
|
| 682 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 683 |
)
|
| 684 |
|
| 685 |
return BaseModelOutput(
|
| 686 |
last_hidden_state=sequence_output,
|
| 687 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 688 |
)
|
| 689 |
|
| 690 |
|
| 691 |
class GptBertForMaskedLM(GptBertModel):
|
| 692 |
+
_tied_weights_keys = ["classifier.emb2vocab.weight"]
|
| 693 |
|
| 694 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 695 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 696 |
|
| 697 |
def get_output_embeddings(self):
|
|
|
|
| 704 |
self,
|
| 705 |
input_ids: Optional[torch.Tensor] = None,
|
| 706 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 707 |
output_hidden_states: Optional[bool] = None,
|
|
|
|
| 708 |
return_dict: Optional[bool] = None,
|
| 709 |
labels: Optional[torch.LongTensor] = None,
|
| 710 |
**kwargs
|
| 711 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 712 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 713 |
|
| 714 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 715 |
subword_prediction = self.classifier(sequence_output)
|
| 716 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 717 |
|
|
|
|
| 721 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 722 |
masked_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 723 |
|
| 724 |
+
bos_logits = torch.zeros(subword_prediction.size(0), 1, self.config.vocab_size, dtype=subword_prediction.dtype, device=subword_prediction.device)
|
| 725 |
+
bos_logits[:, :, self.config.bos_token_id] = 1.0
|
| 726 |
+
subword_prediction = torch.cat([bos_logits, subword_prediction[:, :-1]], dim=1)
|
| 727 |
+
|
| 728 |
if not return_dict:
|
| 729 |
output = (
|
| 730 |
subword_prediction,
|
| 731 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 732 |
)
|
| 733 |
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 734 |
|
| 735 |
return MaskedLMOutput(
|
| 736 |
loss=masked_lm_loss,
|
| 737 |
logits=subword_prediction,
|
| 738 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 739 |
)
|
| 740 |
|
| 741 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 742 |
class GptBertForCausalLM(GptBertModel):
|
| 743 |
+
_tied_weights_keys = ["classifier.emb2vocab.weight"]
|
| 744 |
|
| 745 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 746 |
config.is_decoder = True
|
| 747 |
super().__init__(config, add_mlm_layer=True, **kwargs)
|
| 748 |
|
|
|
|
| 787 |
assert past_key_values is None, "past_key_values is not supported for now"
|
| 788 |
assert not use_cache, "use_cache is not supported for now"
|
| 789 |
|
| 790 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 791 |
subword_prediction = self.classifier(sequence_output)
|
| 792 |
subword_prediction = 30 * torch.sigmoid(subword_prediction / 7.5)
|
| 793 |
|
| 794 |
+
causal_lm_loss = None
|
| 795 |
if labels is not None:
|
| 796 |
labels_flatten = labels[:, 1:].flatten()
|
| 797 |
subword_prediction_flatten = subword_prediction[:, :-1].flatten(0, 1)
|
| 798 |
+
causal_lm_loss = F.cross_entropy(subword_prediction_flatten, labels_flatten)
|
| 799 |
|
| 800 |
if not return_dict:
|
| 801 |
output = (
|
| 802 |
subword_prediction,
|
| 803 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 804 |
)
|
| 805 |
+
return ((causal_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 806 |
|
| 807 |
return CausalLMOutput(
|
| 808 |
+
loss=causal_lm_loss,
|
| 809 |
logits=subword_prediction,
|
| 810 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 811 |
)
|
| 812 |
|
| 813 |
def prepare_inputs_for_generation(
|
|
|
|
| 863 |
|
| 864 |
|
| 865 |
class GptBertForSequenceClassification(GptBertModel):
|
| 866 |
+
_keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 867 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 868 |
|
| 869 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 870 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 871 |
|
| 872 |
self.num_labels = config.num_labels
|
| 873 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 874 |
+
self.post_init()
|
| 875 |
|
| 876 |
def forward(
|
| 877 |
self,
|
| 878 |
input_ids: Optional[torch.Tensor] = None,
|
| 879 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 880 |
output_hidden_states: Optional[bool] = None,
|
| 881 |
return_dict: Optional[bool] = None,
|
| 882 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 884 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 885 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 886 |
|
| 887 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 888 |
+
logits = self.classifier(sequence_output[:, 0, :])
|
| 889 |
|
| 890 |
loss = None
|
| 891 |
if labels is not None:
|
|
|
|
| 913 |
if not return_dict:
|
| 914 |
output = (
|
| 915 |
logits,
|
| 916 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 917 |
)
|
| 918 |
return ((loss,) + output) if loss is not None else output
|
| 919 |
|
| 920 |
return SequenceClassifierOutput(
|
| 921 |
loss=loss,
|
| 922 |
logits=logits,
|
| 923 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 924 |
)
|
| 925 |
|
| 926 |
|
| 927 |
class GptBertForTokenClassification(GptBertModel):
|
| 928 |
+
_keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 929 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 930 |
|
| 931 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 932 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 933 |
|
| 934 |
self.num_labels = config.num_labels
|
| 935 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 936 |
+
self.post_init()
|
| 937 |
|
| 938 |
def forward(
|
| 939 |
self,
|
| 940 |
input_ids: Optional[torch.Tensor] = None,
|
| 941 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 942 |
output_hidden_states: Optional[bool] = None,
|
| 943 |
return_dict: Optional[bool] = None,
|
| 944 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 946 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 947 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 948 |
|
| 949 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 950 |
+
logits = self.classifier(sequence_output)
|
| 951 |
|
| 952 |
loss = None
|
| 953 |
if labels is not None:
|
|
|
|
| 971 |
|
| 972 |
|
| 973 |
class GptBertForQuestionAnswering(GptBertModel):
|
| 974 |
+
_keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 975 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 976 |
+
|
| 977 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 978 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 979 |
|
| 980 |
self.num_labels = config.num_labels
|
| 981 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 982 |
+
self.post_init()
|
| 983 |
|
| 984 |
def forward(
|
| 985 |
self,
|
| 986 |
input_ids: Optional[torch.Tensor] = None,
|
| 987 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
|
|
|
| 988 |
output_hidden_states: Optional[bool] = None,
|
| 989 |
return_dict: Optional[bool] = None,
|
| 990 |
start_positions: Optional[torch.Tensor] = None,
|
|
|
|
| 993 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 994 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 995 |
|
| 996 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(input_ids, attention_mask, output_hidden_states)
|
| 997 |
+
logits = self.classifier(sequence_output)
|
| 998 |
|
| 999 |
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1000 |
start_logits = start_logits.squeeze(-1).contiguous()
|
|
|
|
| 1022 |
output = (
|
| 1023 |
start_logits,
|
| 1024 |
end_logits,
|
| 1025 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 1026 |
)
|
| 1027 |
return ((total_loss,) + output) if total_loss is not None else output
|
| 1028 |
|
|
|
|
| 1030 |
loss=total_loss,
|
| 1031 |
start_logits=start_logits,
|
| 1032 |
end_logits=end_logits,
|
| 1033 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 1034 |
)
|
| 1035 |
|
| 1036 |
|
| 1037 |
class GptBertForMultipleChoice(GptBertModel):
|
| 1038 |
+
_keys_to_ignore_on_load_missing = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 1039 |
+
_keys_to_ignore_on_load_unexpected = ["classifier.emb2vocab.weight", "classifier.emb2vocab.bias"]
|
| 1040 |
|
| 1041 |
+
def __init__(self, config: GptBertConfig, **kwargs):
|
| 1042 |
super().__init__(config, add_mlm_layer=False, **kwargs)
|
| 1043 |
|
| 1044 |
self.num_labels = getattr(config, "num_labels", 2)
|
| 1045 |
+
self.classifier = Classifier(config, self.num_labels)
|
| 1046 |
+
self.post_init()
|
| 1047 |
|
| 1048 |
def forward(
|
| 1049 |
self,
|
| 1050 |
input_ids: Optional[torch.Tensor] = None,
|
| 1051 |
attention_mask: Optional[torch.Tensor] = None,
|
|
|
|
|
|
|
| 1052 |
labels: Optional[torch.Tensor] = None,
|
|
|
|
| 1053 |
output_hidden_states: Optional[bool] = None,
|
| 1054 |
return_dict: Optional[bool] = None,
|
| 1055 |
**kwargs
|
|
|
|
| 1060 |
flat_input_ids = input_ids.view(-1, input_ids.size(-1))
|
| 1061 |
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1062 |
|
| 1063 |
+
sequence_output, contextualized_embeddings = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask, output_hidden_states)
|
| 1064 |
+
logits = self.classifier(sequence_output)
|
| 1065 |
reshaped_logits = logits.view(-1, num_choices)
|
| 1066 |
|
| 1067 |
loss = None
|
|
|
|
| 1072 |
if not return_dict:
|
| 1073 |
output = (
|
| 1074 |
reshaped_logits,
|
| 1075 |
+
*([contextualized_embeddings] if output_hidden_states else [])
|
|
|
|
| 1076 |
)
|
| 1077 |
return ((loss,) + output) if loss is not None else output
|
| 1078 |
|
| 1079 |
return MultipleChoiceModelOutput(
|
| 1080 |
loss=loss,
|
| 1081 |
logits=reshaped_logits,
|
| 1082 |
+
hidden_states=contextualized_embeddings if output_hidden_states else None
|
|
|
|
| 1083 |
)
|