Create LightningViTRegressor.py
Browse files- LightningViTRegressor.py +56 -0
LightningViTRegressor.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lightning.pytorch as pl
|
| 2 |
+
import torchmetrics
|
| 3 |
+
from torch.optim import AdamW
|
| 4 |
+
from transformers import ViTForImageClassification
|
| 5 |
+
from torch import nn
|
| 6 |
+
from transformers.optimization import get_scheduler
|
| 7 |
+
|
| 8 |
+
class LightningViTRegressor(pl.LightningModule):
|
| 9 |
+
def __init__(self):
|
| 10 |
+
super().__init__()
|
| 11 |
+
self.model = ViTForImageClassification.from_pretrained(
|
| 12 |
+
"google/vit-base-patch16-224-in21k",
|
| 13 |
+
num_labels=1,
|
| 14 |
+
)
|
| 15 |
+
self.mse = torchmetrics.MeanSquaredError()
|
| 16 |
+
self.mae = torchmetrics.MeanAbsoluteError()
|
| 17 |
+
self.r2_score = torchmetrics.R2Score()
|
| 18 |
+
|
| 19 |
+
def common_step(self, step_type, batch, batch_idx):
|
| 20 |
+
x,y = batch
|
| 21 |
+
x = self.model(x)
|
| 22 |
+
x = x.logits
|
| 23 |
+
loss = nn.functional.mse_loss(x,y)
|
| 24 |
+
mean_squared_error = self.mse(x,y)
|
| 25 |
+
mean_absolute_error = self.mae(x,y)
|
| 26 |
+
r2_score = self.r2_score(x,y)
|
| 27 |
+
to_log = {step_type + "_loss": loss,
|
| 28 |
+
step_type + "_mse": mean_squared_error,
|
| 29 |
+
step_type + "_mae": mean_absolute_error,
|
| 30 |
+
step_type + '_r2_score': r2_score} # add more items if needed
|
| 31 |
+
self.log_dict(to_log)
|
| 32 |
+
return loss
|
| 33 |
+
|
| 34 |
+
def training_step(self, batch, batch_idx):
|
| 35 |
+
loss = self.common_step("train", batch, batch_idx)
|
| 36 |
+
return loss
|
| 37 |
+
|
| 38 |
+
def validation_step(self, batch, batch_idx):
|
| 39 |
+
loss = self.common_step("val", batch, batch_idx)
|
| 40 |
+
return loss
|
| 41 |
+
|
| 42 |
+
def test_step(self, batch, batch_idx):
|
| 43 |
+
loss = self.common_step("test", batch, batch_idx)
|
| 44 |
+
return loss
|
| 45 |
+
|
| 46 |
+
# def configure_optimizers(self):
|
| 47 |
+
# optimizer = optim.Adam(self.parameters(), lr = 1e-5)
|
| 48 |
+
# return optimizer
|
| 49 |
+
|
| 50 |
+
def configure_optimizers(self):
|
| 51 |
+
# optimizer = AdamW(optimizer_grouped_params, lr=self.hparams.lr, betas=(0.9, 0.999), eps=1e-7)
|
| 52 |
+
optimizer = AdamW(self.parameters(), lr = 1e-5)
|
| 53 |
+
# Configure learning rate scheduler.
|
| 54 |
+
scheduler = get_scheduler(name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=self.trainer.estimated_stepping_batches)
|
| 55 |
+
scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1}
|
| 56 |
+
return [optimizer], [scheduler]
|