Commit
·
84fdf13
1
Parent(s):
1f047e6
more epochs
Browse files- .ipynb_checkpoints/train-checkpoint.ipynb +296 -0
- confusion_matrix_normalized.png +0 -0
- results.png +0 -0
- train.ipynb +0 -0
.ipynb_checkpoints/train-checkpoint.ipynb
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "6a013a36-e156-4212-8ade-5fee79e33680",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"Install dependencies"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "acabbaee-35be-452b-8573-4d0974fa6340",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"!pip3 install torch torchvision torchaudio\n",
|
| 19 |
+
"!pip3 install matplotlib\n",
|
| 20 |
+
"!pip3 install ultralytics roboflow"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": null,
|
| 26 |
+
"id": "fb8218b5-61c9-4fe3-b5c6-1643beb39e28",
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"import torch\n",
|
| 31 |
+
"from ultralytics import YOLO\n",
|
| 32 |
+
"from pathlib import Path\n",
|
| 33 |
+
"import os\n",
|
| 34 |
+
"import json\n",
|
| 35 |
+
"import yaml\n",
|
| 36 |
+
"import pandas as pd\n",
|
| 37 |
+
"import matplotlib.pyplot as plt\n",
|
| 38 |
+
"import matplotlib.image as mpimg"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"id": "4bccbb25",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"\n",
|
| 49 |
+
"device = \"cuda:0\" if torch.cuda.is_available() else \"cpu\"\n",
|
| 50 |
+
"\n",
|
| 51 |
+
"print(f\"Using device: {device} ({'GPU' if device != 'cpu' else 'CPU'})\")\n"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"cell_type": "code",
|
| 56 |
+
"execution_count": null,
|
| 57 |
+
"metadata": {},
|
| 58 |
+
"outputs": [],
|
| 59 |
+
"source": [
|
| 60 |
+
"\n",
|
| 61 |
+
"CONFIG = {\n",
|
| 62 |
+
" 'model': 'yolo11m.pt', # Choose model size: n, s, m, l, x\n",
|
| 63 |
+
" 'data': 'datasets/Hardhat-or-Hat.v1-without-hat.yolov11/data.yaml', \n",
|
| 64 |
+
" 'epochs': 35,\n",
|
| 65 |
+
" 'batch': 2 if device != 'cpu' else 4, # Adjust batch \n",
|
| 66 |
+
" 'imgsz': 640,\n",
|
| 67 |
+
" 'patience': 5,\n",
|
| 68 |
+
" 'device': device, \n",
|
| 69 |
+
"}\n",
|
| 70 |
+
"os.environ[\"PYTORCH_CUDA_ALLOC_CONF\"] = \"expandable_segments:True\"\n"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": null,
|
| 76 |
+
"id": "d349b982",
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"\n",
|
| 81 |
+
"save_dir = Path('runs/detect')\n",
|
| 82 |
+
"save_dir.mkdir(parents=True, exist_ok=True)\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"this_path = os.getcwd()\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"os.environ['ULTRALYTICS_CONFIG_DIR'] = this_path\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"data_file = f'{this_path}/{CONFIG['data']}'\n",
|
| 89 |
+
"with open(data_file, 'r') as f:\n",
|
| 90 |
+
" data = yaml.safe_load(f)\n",
|
| 91 |
+
" \n",
|
| 92 |
+
"\n",
|
| 93 |
+
"data['train'] = f'{this_path}/{CONFIG['data'].rsplit('/', 1)[0]}/train/images'\n",
|
| 94 |
+
"data['val'] = f'{this_path}/{CONFIG['data'].rsplit('/', 1)[0]}/valid/images'\n",
|
| 95 |
+
"data['test'] = f'{this_path}/{CONFIG['data'].rsplit('/', 1)[0]}/test/images'\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"with open(data_file, 'w') as f:\n",
|
| 98 |
+
" yaml.safe_dump(data, f)\n"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "code",
|
| 103 |
+
"execution_count": null,
|
| 104 |
+
"id": "4f831042",
|
| 105 |
+
"metadata": {},
|
| 106 |
+
"outputs": [],
|
| 107 |
+
"source": [
|
| 108 |
+
"\n",
|
| 109 |
+
"model = YOLO(CONFIG['model'])"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "code",
|
| 114 |
+
"execution_count": null,
|
| 115 |
+
"id": "20208cb5",
|
| 116 |
+
"metadata": {},
|
| 117 |
+
"outputs": [],
|
| 118 |
+
"source": [
|
| 119 |
+
"\n",
|
| 120 |
+
"results = model.train(\n",
|
| 121 |
+
" data=CONFIG['data'],\n",
|
| 122 |
+
" epochs=CONFIG['epochs'],\n",
|
| 123 |
+
" batch=CONFIG['batch'],\n",
|
| 124 |
+
" imgsz=CONFIG['imgsz'],\n",
|
| 125 |
+
" patience=CONFIG['patience'],\n",
|
| 126 |
+
" device=CONFIG['device'],\n",
|
| 127 |
+
" \n",
|
| 128 |
+
" verbose=True,\n",
|
| 129 |
+
" \n",
|
| 130 |
+
" optimizer='SGD',\n",
|
| 131 |
+
" lr0=0.001,\n",
|
| 132 |
+
" lrf=0.01,\n",
|
| 133 |
+
" momentum=0.9,\n",
|
| 134 |
+
" weight_decay=0.0005,\n",
|
| 135 |
+
" warmup_epochs=3,\n",
|
| 136 |
+
" warmup_bias_lr=0.01,\n",
|
| 137 |
+
" warmup_momentum=0.8,\n",
|
| 138 |
+
" amp=False,\n",
|
| 139 |
+
" \n",
|
| 140 |
+
" # Augmentations\n",
|
| 141 |
+
" augment=True,\n",
|
| 142 |
+
" hsv_h=0.015, # Image HSV-Hue augmentationc\n",
|
| 143 |
+
" hsv_s=0.7, # Image HSV-Saturation augmentation\n",
|
| 144 |
+
" hsv_v=0.4, # Image HSV-Value augmentation\n",
|
| 145 |
+
" degrees=10, # Image rotation (+/- deg)\n",
|
| 146 |
+
" translate=0.1, # Image translation (+/- fraction)\n",
|
| 147 |
+
" scale=0.3, # Image scale (+/- gain)\n",
|
| 148 |
+
" shear=0.0, # Image shear (+/- deg)\n",
|
| 149 |
+
" perspective=0.0, # Image perspective\n",
|
| 150 |
+
" flipud=0.1, # Image flip up-down\n",
|
| 151 |
+
" fliplr=0.1, # Image flip left-right\n",
|
| 152 |
+
" mosaic=1.0, # Image mosaic\n",
|
| 153 |
+
" mixup=0.0, # Image mixup\n",
|
| 154 |
+
" \n",
|
| 155 |
+
")\n"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": null,
|
| 161 |
+
"id": "06211243",
|
| 162 |
+
"metadata": {},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"\n",
|
| 166 |
+
"file_path = f\"{str(results.save_dir)}\" \n",
|
| 167 |
+
"results_csv_path = f\"{file_path}/results.csv\" "
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
{
|
| 171 |
+
"cell_type": "code",
|
| 172 |
+
"execution_count": null,
|
| 173 |
+
"id": "e67532ea",
|
| 174 |
+
"metadata": {},
|
| 175 |
+
"outputs": [],
|
| 176 |
+
"source": [
|
| 177 |
+
"\n",
|
| 178 |
+
"try:\n",
|
| 179 |
+
" result_metrics = pd.read_csv(results_csv_path)\n",
|
| 180 |
+
"except FileNotFoundError:\n",
|
| 181 |
+
" print(f\"File not found: {results_csv_path}\")\n",
|
| 182 |
+
" exit()\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"\n",
|
| 185 |
+
"metrics = {\n",
|
| 186 |
+
" \"Train Box Loss\": \"train/box_loss\",\n",
|
| 187 |
+
" \"Train Class Loss\": \"train/cls_loss\",\n",
|
| 188 |
+
" \"Train DFL Loss\": \"train/dfl_loss\",\n",
|
| 189 |
+
" \"Validation Box Loss\": \"val/box_loss\",\n",
|
| 190 |
+
" \"Validation Class Loss\": \"val/cls_loss\",\n",
|
| 191 |
+
" \"Validation DFL Loss\": \"val/dfl_loss\",\n",
|
| 192 |
+
" \"Precision (B)\": \"metrics/precision(B)\",\n",
|
| 193 |
+
" \"Recall (B)\": \"metrics/recall(B)\",\n",
|
| 194 |
+
" \"[email protected] (B)\": \"metrics/mAP50(B)\",\n",
|
| 195 |
+
" \"[email protected]:0.95 (B)\": \"metrics/mAP50-95(B)\",\n",
|
| 196 |
+
"}\n",
|
| 197 |
+
"\n",
|
| 198 |
+
"%matplotlib inline\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"available_metrics = {name: col for name, col in metrics.items() if col in result_metrics.columns}\n",
|
| 201 |
+
"missing_metrics = [name for name in metrics if name not in available_metrics]\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"if missing_metrics:\n",
|
| 204 |
+
" print(f\"Missing metrics: {', '.join(missing_metrics)}\")\n",
|
| 205 |
+
"else:\n",
|
| 206 |
+
" print(\"All expected metrics are present.\")\n",
|
| 207 |
+
"\n",
|
| 208 |
+
"for metric_name, col in available_metrics.items():\n",
|
| 209 |
+
" plt.figure()\n",
|
| 210 |
+
" plt.plot(result_metrics[\"epoch\"], result_metrics[col], label=metric_name)\n",
|
| 211 |
+
" plt.title(metric_name)\n",
|
| 212 |
+
" plt.xlabel(\"Epoch\")\n",
|
| 213 |
+
" plt.ylabel(metric_name)\n",
|
| 214 |
+
" plt.legend()\n",
|
| 215 |
+
" plt.grid()\n",
|
| 216 |
+
" plt.show()\n",
|
| 217 |
+
"\n",
|
| 218 |
+
"final_epoch = result_metrics.iloc[-1]\n",
|
| 219 |
+
"final_metrics = {name: final_epoch[col] for name, col in available_metrics.items()}\n",
|
| 220 |
+
"\n",
|
| 221 |
+
"print(\"\\nFinal Metrics Summary (Last Epoch):\")\n",
|
| 222 |
+
"for name, value in final_metrics.items():\n",
|
| 223 |
+
" print(f\"{name}: {value:.4f}\")\n",
|
| 224 |
+
"\n",
|
| 225 |
+
"print(\"\\nImprovement Trends:\")\n",
|
| 226 |
+
"for metric_name, col in available_metrics.items():\n",
|
| 227 |
+
" initial = result_metrics[col].iloc[0]\n",
|
| 228 |
+
" final = result_metrics[col].iloc[-1]\n",
|
| 229 |
+
" trend = \"improved\" if final < initial else \"worsened\"\n",
|
| 230 |
+
" print(f\"{metric_name}: {trend} (Initial: {initial:.4f}, Final: {final:.4f})\")\n"
|
| 231 |
+
]
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"cell_type": "code",
|
| 235 |
+
"execution_count": null,
|
| 236 |
+
"id": "cd2fb43f",
|
| 237 |
+
"metadata": {},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"img = mpimg.imread(f\"{file_path}/confusion_matrix_normalized.png\") \n",
|
| 243 |
+
"plt.imshow(img)\n",
|
| 244 |
+
"plt.axis('off') \n",
|
| 245 |
+
"plt.show()\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"img = mpimg.imread(f\"{file_path}/F1_curve.png\") \n",
|
| 248 |
+
"plt.imshow(img)\n",
|
| 249 |
+
"plt.axis('off') \n",
|
| 250 |
+
"plt.show()\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"img = mpimg.imread(f\"{file_path}/P_curve.png\") \n",
|
| 253 |
+
"plt.imshow(img)\n",
|
| 254 |
+
"plt.axis('off') \n",
|
| 255 |
+
"plt.show()\n",
|
| 256 |
+
"\n",
|
| 257 |
+
"img = mpimg.imread(f\"{file_path}/R_curve.png\") \n",
|
| 258 |
+
"plt.imshow(img)\n",
|
| 259 |
+
"plt.axis('off') \n",
|
| 260 |
+
"plt.show()\n",
|
| 261 |
+
"\n",
|
| 262 |
+
"img = mpimg.imread(f\"{file_path}/PR_curve.png\") \n",
|
| 263 |
+
"plt.imshow(img)\n",
|
| 264 |
+
"plt.axis('off') \n",
|
| 265 |
+
"plt.show()\n",
|
| 266 |
+
"\n",
|
| 267 |
+
"img = mpimg.imread(f\"{file_path}/results.png\") \n",
|
| 268 |
+
"plt.imshow(img)\n",
|
| 269 |
+
"plt.axis('off') \n",
|
| 270 |
+
"plt.show()\n",
|
| 271 |
+
"\n"
|
| 272 |
+
]
|
| 273 |
+
}
|
| 274 |
+
],
|
| 275 |
+
"metadata": {
|
| 276 |
+
"kernelspec": {
|
| 277 |
+
"display_name": "Python 3",
|
| 278 |
+
"language": "python",
|
| 279 |
+
"name": "python3"
|
| 280 |
+
},
|
| 281 |
+
"language_info": {
|
| 282 |
+
"codemirror_mode": {
|
| 283 |
+
"name": "ipython",
|
| 284 |
+
"version": 3
|
| 285 |
+
},
|
| 286 |
+
"file_extension": ".py",
|
| 287 |
+
"mimetype": "text/x-python",
|
| 288 |
+
"name": "python",
|
| 289 |
+
"nbconvert_exporter": "python",
|
| 290 |
+
"pygments_lexer": "ipython3",
|
| 291 |
+
"version": "3.12.7"
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"nbformat": 4,
|
| 295 |
+
"nbformat_minor": 5
|
| 296 |
+
}
|
confusion_matrix_normalized.png
CHANGED
|
|
results.png
CHANGED
|
|
train.ipynb
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|