Add new SentenceTransformer model.
Browse files- README.md +110 -10
- config.json +1 -1
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -37,7 +37,7 @@ widget:
|
|
| 37 |
- 'search_query: 12 pomos sin tornillos'
|
| 38 |
- source_sentence: 'search_query: 傘 鬼滅の刃'
|
| 39 |
sentences:
|
| 40 |
-
- 'search_query:
|
| 41 |
- 'search_query: お札 を 折ら ない ミニ 財布'
|
| 42 |
- 'search_query: buffalo plaid earrings'
|
| 43 |
pipeline_tag: sentence-similarity
|
|
@@ -52,19 +52,19 @@ model-index:
|
|
| 52 |
type: triplet-esci
|
| 53 |
metrics:
|
| 54 |
- type: cosine_accuracy
|
| 55 |
-
value: 0.
|
| 56 |
name: Cosine Accuracy
|
| 57 |
- type: dot_accuracy
|
| 58 |
-
value: 0.
|
| 59 |
name: Dot Accuracy
|
| 60 |
- type: manhattan_accuracy
|
| 61 |
value: 0.657
|
| 62 |
name: Manhattan Accuracy
|
| 63 |
- type: euclidean_accuracy
|
| 64 |
-
value: 0.
|
| 65 |
name: Euclidean Accuracy
|
| 66 |
- type: max_accuracy
|
| 67 |
-
value: 0.
|
| 68 |
name: Max Accuracy
|
| 69 |
---
|
| 70 |
|
|
@@ -118,7 +118,7 @@ model = SentenceTransformer("sentence_transformers_model_id")
|
|
| 118 |
# Run inference
|
| 119 |
sentences = [
|
| 120 |
'search_query: 傘 鬼滅の刃',
|
| 121 |
-
'search_query:
|
| 122 |
'search_query: お札 を 折ら ない ミニ 財布',
|
| 123 |
]
|
| 124 |
embeddings = model.encode(sentences)
|
|
@@ -165,11 +165,11 @@ You can finetune this model on your own dataset.
|
|
| 165 |
|
| 166 |
| Metric | Value |
|
| 167 |
|:--------------------|:----------|
|
| 168 |
-
| **cosine_accuracy** | **0.
|
| 169 |
-
| dot_accuracy | 0.
|
| 170 |
| manhattan_accuracy | 0.657 |
|
| 171 |
-
| euclidean_accuracy | 0.
|
| 172 |
-
| max_accuracy | 0.
|
| 173 |
|
| 174 |
<!--
|
| 175 |
## Bias, Risks and Limitations
|
|
@@ -638,6 +638,106 @@ You can finetune this model on your own dataset.
|
|
| 638 |
| 2.184 | 54600 | 0.3678 | - | - |
|
| 639 |
| 2.192 | 54800 | 0.2965 | - | - |
|
| 640 |
| 2.2 | 55000 | 0.3691 | 3.8108 | 0.655 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 641 |
|
| 642 |
</details>
|
| 643 |
|
|
|
|
| 37 |
- 'search_query: 12 pomos sin tornillos'
|
| 38 |
- source_sentence: 'search_query: 傘 鬼滅の刃'
|
| 39 |
sentences:
|
| 40 |
+
- 'search_query: 充電器のコード'
|
| 41 |
- 'search_query: お札 を 折ら ない ミニ 財布'
|
| 42 |
- 'search_query: buffalo plaid earrings'
|
| 43 |
pipeline_tag: sentence-similarity
|
|
|
|
| 52 |
type: triplet-esci
|
| 53 |
metrics:
|
| 54 |
- type: cosine_accuracy
|
| 55 |
+
value: 0.658
|
| 56 |
name: Cosine Accuracy
|
| 57 |
- type: dot_accuracy
|
| 58 |
+
value: 0.342
|
| 59 |
name: Dot Accuracy
|
| 60 |
- type: manhattan_accuracy
|
| 61 |
value: 0.657
|
| 62 |
name: Manhattan Accuracy
|
| 63 |
- type: euclidean_accuracy
|
| 64 |
+
value: 0.657
|
| 65 |
name: Euclidean Accuracy
|
| 66 |
- type: max_accuracy
|
| 67 |
+
value: 0.658
|
| 68 |
name: Max Accuracy
|
| 69 |
---
|
| 70 |
|
|
|
|
| 118 |
# Run inference
|
| 119 |
sentences = [
|
| 120 |
'search_query: 傘 鬼滅の刃',
|
| 121 |
+
'search_query: 充電器のコード',
|
| 122 |
'search_query: お札 を 折ら ない ミニ 財布',
|
| 123 |
]
|
| 124 |
embeddings = model.encode(sentences)
|
|
|
|
| 165 |
|
| 166 |
| Metric | Value |
|
| 167 |
|:--------------------|:----------|
|
| 168 |
+
| **cosine_accuracy** | **0.658** |
|
| 169 |
+
| dot_accuracy | 0.342 |
|
| 170 |
| manhattan_accuracy | 0.657 |
|
| 171 |
+
| euclidean_accuracy | 0.657 |
|
| 172 |
+
| max_accuracy | 0.658 |
|
| 173 |
|
| 174 |
<!--
|
| 175 |
## Bias, Risks and Limitations
|
|
|
|
| 638 |
| 2.184 | 54600 | 0.3678 | - | - |
|
| 639 |
| 2.192 | 54800 | 0.2965 | - | - |
|
| 640 |
| 2.2 | 55000 | 0.3691 | 3.8108 | 0.655 |
|
| 641 |
+
| 2.208 | 55200 | 0.2739 | - | - |
|
| 642 |
+
| 2.216 | 55400 | 0.3283 | - | - |
|
| 643 |
+
| 2.224 | 55600 | 0.2133 | - | - |
|
| 644 |
+
| 2.232 | 55800 | 0.2582 | - | - |
|
| 645 |
+
| 2.24 | 56000 | 0.3234 | 3.7370 | 0.665 |
|
| 646 |
+
| 2.248 | 56200 | 0.2702 | - | - |
|
| 647 |
+
| 2.2560 | 56400 | 0.2713 | - | - |
|
| 648 |
+
| 2.2640 | 56600 | 0.2988 | - | - |
|
| 649 |
+
| 2.2720 | 56800 | 0.2338 | - | - |
|
| 650 |
+
| 2.2800 | 57000 | 0.183 | 3.7459 | 0.658 |
|
| 651 |
+
| 2.288 | 57200 | 0.2517 | - | - |
|
| 652 |
+
| 2.296 | 57400 | 0.2585 | - | - |
|
| 653 |
+
| 2.304 | 57600 | 0.2113 | - | - |
|
| 654 |
+
| 2.312 | 57800 | 0.1935 | - | - |
|
| 655 |
+
| 2.32 | 58000 | 0.2307 | 3.7409 | 0.661 |
|
| 656 |
+
| 2.328 | 58200 | 0.2353 | - | - |
|
| 657 |
+
| 2.336 | 58400 | 0.2099 | - | - |
|
| 658 |
+
| 2.344 | 58600 | 0.2823 | - | - |
|
| 659 |
+
| 2.352 | 58800 | 0.2071 | - | - |
|
| 660 |
+
| 2.36 | 59000 | 0.1928 | 3.7614 | 0.65 |
|
| 661 |
+
| 2.368 | 59200 | 0.1616 | - | - |
|
| 662 |
+
| 2.376 | 59400 | 0.1727 | - | - |
|
| 663 |
+
| 2.384 | 59600 | 0.1745 | - | - |
|
| 664 |
+
| 2.392 | 59800 | 0.1736 | - | - |
|
| 665 |
+
| 2.4 | 60000 | 0.2186 | 3.7309 | 0.659 |
|
| 666 |
+
| 2.408 | 60200 | 0.1637 | - | - |
|
| 667 |
+
| 2.416 | 60400 | 0.1957 | - | - |
|
| 668 |
+
| 2.424 | 60600 | 0.1512 | - | - |
|
| 669 |
+
| 2.432 | 60800 | 0.2133 | - | - |
|
| 670 |
+
| 2.44 | 61000 | 0.2122 | 3.7318 | 0.658 |
|
| 671 |
+
| 2.448 | 61200 | 0.1876 | - | - |
|
| 672 |
+
| 2.456 | 61400 | 0.2201 | - | - |
|
| 673 |
+
| 2.464 | 61600 | 0.1581 | - | - |
|
| 674 |
+
| 2.472 | 61800 | 0.1856 | - | - |
|
| 675 |
+
| 2.48 | 62000 | 0.1426 | 3.7491 | 0.657 |
|
| 676 |
+
| 2.488 | 62200 | 0.1769 | - | - |
|
| 677 |
+
| 2.496 | 62400 | 0.1706 | - | - |
|
| 678 |
+
| 2.504 | 62600 | 0.2492 | - | - |
|
| 679 |
+
| 2.512 | 62800 | 0.2026 | - | - |
|
| 680 |
+
| 2.52 | 63000 | 0.1612 | 3.7638 | 0.66 |
|
| 681 |
+
| 2.528 | 63200 | 0.21 | - | - |
|
| 682 |
+
| 2.536 | 63400 | 0.1183 | - | - |
|
| 683 |
+
| 2.544 | 63600 | 0.2244 | - | - |
|
| 684 |
+
| 2.552 | 63800 | 0.1503 | - | - |
|
| 685 |
+
| 2.56 | 64000 | 0.1581 | 3.7668 | 0.661 |
|
| 686 |
+
| 2.568 | 64200 | 0.1887 | - | - |
|
| 687 |
+
| 2.576 | 64400 | 0.1873 | - | - |
|
| 688 |
+
| 2.584 | 64600 | 0.1939 | - | - |
|
| 689 |
+
| 2.592 | 64800 | 0.2089 | - | - |
|
| 690 |
+
| 2.6 | 65000 | 0.1839 | 3.7631 | 0.657 |
|
| 691 |
+
| 2.608 | 65200 | 0.1508 | - | - |
|
| 692 |
+
| 2.616 | 65400 | 0.1247 | - | - |
|
| 693 |
+
| 2.624 | 65600 | 0.1457 | - | - |
|
| 694 |
+
| 2.632 | 65800 | 0.1267 | - | - |
|
| 695 |
+
| 2.64 | 66000 | 0.1327 | 3.7712 | 0.656 |
|
| 696 |
+
| 2.648 | 66200 | 0.1295 | - | - |
|
| 697 |
+
| 2.656 | 66400 | 0.1222 | - | - |
|
| 698 |
+
| 2.664 | 66600 | 0.1227 | - | - |
|
| 699 |
+
| 2.672 | 66800 | 0.1445 | - | - |
|
| 700 |
+
| 2.68 | 67000 | 0.1107 | 3.7753 | 0.659 |
|
| 701 |
+
| 2.6880 | 67200 | 0.1173 | - | - |
|
| 702 |
+
| 2.6960 | 67400 | 0.1743 | - | - |
|
| 703 |
+
| 2.7040 | 67600 | 0.1521 | - | - |
|
| 704 |
+
| 2.7120 | 67800 | 0.1516 | - | - |
|
| 705 |
+
| 2.7200 | 68000 | 0.1537 | 3.7786 | 0.658 |
|
| 706 |
+
| 2.7280 | 68200 | 0.108 | - | - |
|
| 707 |
+
| 2.7360 | 68400 | 0.1636 | - | - |
|
| 708 |
+
| 2.7440 | 68600 | 0.146 | - | - |
|
| 709 |
+
| 2.752 | 68800 | 0.1342 | - | - |
|
| 710 |
+
| 2.76 | 69000 | 0.0997 | 3.7753 | 0.658 |
|
| 711 |
+
| 2.768 | 69200 | 0.0952 | - | - |
|
| 712 |
+
| 2.776 | 69400 | 0.1372 | - | - |
|
| 713 |
+
| 2.784 | 69600 | 0.1558 | - | - |
|
| 714 |
+
| 2.792 | 69800 | 0.1352 | - | - |
|
| 715 |
+
| 2.8 | 70000 | 0.1723 | 3.7772 | 0.656 |
|
| 716 |
+
| 2.808 | 70200 | 0.1253 | - | - |
|
| 717 |
+
| 2.816 | 70400 | 0.1756 | - | - |
|
| 718 |
+
| 2.824 | 70600 | 0.1477 | - | - |
|
| 719 |
+
| 2.832 | 70800 | 0.1305 | - | - |
|
| 720 |
+
| 2.84 | 71000 | 0.1292 | 3.7787 | 0.656 |
|
| 721 |
+
| 2.848 | 71200 | 0.0797 | - | - |
|
| 722 |
+
| 2.856 | 71400 | 0.0955 | - | - |
|
| 723 |
+
| 2.864 | 71600 | 0.1214 | - | - |
|
| 724 |
+
| 2.872 | 71800 | 0.1704 | - | - |
|
| 725 |
+
| 2.88 | 72000 | 0.1291 | 3.7794 | 0.658 |
|
| 726 |
+
| 2.888 | 72200 | 0.0839 | - | - |
|
| 727 |
+
| 2.896 | 72400 | 0.1142 | - | - |
|
| 728 |
+
| 2.904 | 72600 | 0.0836 | - | - |
|
| 729 |
+
| 2.912 | 72800 | 0.1011 | - | - |
|
| 730 |
+
| 2.92 | 73000 | 0.153 | 3.7803 | 0.66 |
|
| 731 |
+
| 2.928 | 73200 | 0.0975 | - | - |
|
| 732 |
+
| 2.936 | 73400 | 0.1276 | - | - |
|
| 733 |
+
| 2.944 | 73600 | 0.0993 | - | - |
|
| 734 |
+
| 2.952 | 73800 | 0.1419 | - | - |
|
| 735 |
+
| 2.96 | 74000 | 0.1414 | 3.7807 | 0.658 |
|
| 736 |
+
| 2.968 | 74200 | 0.1105 | - | - |
|
| 737 |
+
| 2.976 | 74400 | 0.1085 | - | - |
|
| 738 |
+
| 2.984 | 74600 | 0.1281 | - | - |
|
| 739 |
+
| 2.992 | 74800 | 0.1057 | - | - |
|
| 740 |
+
| 3.0 | 75000 | 0.1197 | 3.7807 | 0.658 |
|
| 741 |
|
| 742 |
</details>
|
| 743 |
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "models/nomic-embed-text-esci/checkpoint-
|
| 3 |
"activation_function": "swiglu",
|
| 4 |
"architectures": [
|
| 5 |
"NomicBertModel"
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "models/nomic-embed-text-esci/checkpoint-75000",
|
| 3 |
"activation_function": "swiglu",
|
| 4 |
"architectures": [
|
| 5 |
"NomicBertModel"
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 546938168
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff8a9331c4fe4be2be01610969d1ba1816b10402a95b939d6d2390fb0395d2f4
|
| 3 |
size 546938168
|