SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what is my exposure to [A_REGION]?',
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'region\',\'<A_REGION>\',\'portfolio\')": "portfolio"}]',
'[{"get_portfolio(None,True,None)": "portfolio"}, {"factor_contribution(\'portfolio\',\'<DATES>\',\'factor\',\'volatility\',\'portfolio\')": "portfolio"}]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.8077 |
| cosine_accuracy@3 | 0.9786 |
| cosine_accuracy@5 | 0.9957 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8077 |
| cosine_precision@3 | 0.3262 |
| cosine_precision@5 | 0.1991 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.0224 |
| cosine_recall@3 | 0.0272 |
| cosine_recall@5 | 0.0277 |
| cosine_recall@10 | 0.0278 |
| cosine_ndcg@10 | 0.2023 |
| cosine_mrr@10 | 0.8913 |
| cosine_map@100 | 0.0248 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,541 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 4 tokens
- mean: 12.81 tokens
- max: 28 tokens
- min: 20 tokens
- mean: 75.45 tokens
- max: 269 tokens
- Samples:
sentence_0 sentence_1 [TICKER] vs peers based on [ATTRIBUTE][{"search('query', 'match_type', '')": "search_results"},{"compare([[''],'search_results'], [''], None)": "comparison_data"}]How will the rising UK stock index affect my portfolio?[{"get_portfolio(None,True,None)": "portfolio"}, {"stress_test('portfolio','ftse_100',None,'up')": "stress_test"}]How much did [A_SECTOR] sector move [DATES]?[{"get_attribute([''],['returns'],'')":"sector_returns"}] - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 10per_device_eval_batch_size: 10num_train_epochs: 6multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 10per_device_eval_batch_size: 10per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 6max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.0129 | 2 | - | 0.1052 |
| 0.0258 | 4 | - | 0.1064 |
| 0.0387 | 6 | - | 0.1079 |
| 0.0516 | 8 | - | 0.1090 |
| 0.0645 | 10 | - | 0.1117 |
| 0.0774 | 12 | - | 0.1142 |
| 0.0903 | 14 | - | 0.1166 |
| 0.1032 | 16 | - | 0.1181 |
| 0.1161 | 18 | - | 0.1204 |
| 0.1290 | 20 | - | 0.1236 |
| 0.1419 | 22 | - | 0.1259 |
| 0.1548 | 24 | - | 0.1284 |
| 0.1677 | 26 | - | 0.1325 |
| 0.1806 | 28 | - | 0.1338 |
| 0.1935 | 30 | - | 0.1362 |
| 0.2065 | 32 | - | 0.1373 |
| 0.2194 | 34 | - | 0.1412 |
| 0.2323 | 36 | - | 0.1425 |
| 0.2452 | 38 | - | 0.1444 |
| 0.2581 | 40 | - | 0.1470 |
| 0.2710 | 42 | - | 0.1492 |
| 0.2839 | 44 | - | 0.1495 |
| 0.2968 | 46 | - | 0.1503 |
| 0.3097 | 48 | - | 0.1519 |
| 0.3226 | 50 | - | 0.1538 |
| 0.3355 | 52 | - | 0.1545 |
| 0.3484 | 54 | - | 0.1541 |
| 0.3613 | 56 | - | 0.1550 |
| 0.3742 | 58 | - | 0.1561 |
| 0.3871 | 60 | - | 0.1560 |
| 0.4 | 62 | - | 0.1563 |
| 0.4129 | 64 | - | 0.1579 |
| 0.4258 | 66 | - | 0.1590 |
| 0.4387 | 68 | - | 0.1600 |
| 0.4516 | 70 | - | 0.1610 |
| 0.4645 | 72 | - | 0.1613 |
| 0.4774 | 74 | - | 0.1624 |
| 0.4903 | 76 | - | 0.1632 |
| 0.5032 | 78 | - | 0.1642 |
| 0.5161 | 80 | - | 0.1646 |
| 0.5290 | 82 | - | 0.1664 |
| 0.5419 | 84 | - | 0.1664 |
| 0.5548 | 86 | - | 0.1671 |
| 0.5677 | 88 | - | 0.1673 |
| 0.5806 | 90 | - | 0.1685 |
| 0.5935 | 92 | - | 0.1695 |
| 0.6065 | 94 | - | 0.1698 |
| 0.6194 | 96 | - | 0.1707 |
| 0.6323 | 98 | - | 0.1725 |
| 0.6452 | 100 | - | 0.1723 |
| 0.6581 | 102 | - | 0.1742 |
| 0.6710 | 104 | - | 0.1747 |
| 0.6839 | 106 | - | 0.1752 |
| 0.6968 | 108 | - | 0.1751 |
| 0.7097 | 110 | - | 0.1763 |
| 0.7226 | 112 | - | 0.1765 |
| 0.7355 | 114 | - | 0.1771 |
| 0.7484 | 116 | - | 0.1773 |
| 0.7613 | 118 | - | 0.1774 |
| 0.7742 | 120 | - | 0.1778 |
| 0.7871 | 122 | - | 0.1780 |
| 0.8 | 124 | - | 0.1781 |
| 0.8129 | 126 | - | 0.1776 |
| 0.8258 | 128 | - | 0.1768 |
| 0.8387 | 130 | - | 0.1774 |
| 0.8516 | 132 | - | 0.1783 |
| 0.8645 | 134 | - | 0.1787 |
| 0.8774 | 136 | - | 0.1800 |
| 0.8903 | 138 | - | 0.1806 |
| 0.9032 | 140 | - | 0.1811 |
| 0.9161 | 142 | - | 0.1815 |
| 0.9290 | 144 | - | 0.1814 |
| 0.9419 | 146 | - | 0.1822 |
| 0.9548 | 148 | - | 0.1821 |
| 0.9677 | 150 | - | 0.1830 |
| 0.9806 | 152 | - | 0.1828 |
| 0.9935 | 154 | - | 0.1841 |
| 1.0 | 155 | - | 0.1844 |
| 1.0065 | 156 | - | 0.1850 |
| 1.0194 | 158 | - | 0.1853 |
| 1.0323 | 160 | - | 0.1857 |
| 1.0452 | 162 | - | 0.1861 |
| 1.0581 | 164 | - | 0.1864 |
| 1.0710 | 166 | - | 0.1864 |
| 1.0839 | 168 | - | 0.1872 |
| 1.0968 | 170 | - | 0.1870 |
| 1.1097 | 172 | - | 0.1865 |
| 1.1226 | 174 | - | 0.1862 |
| 1.1355 | 176 | - | 0.1855 |
| 1.1484 | 178 | - | 0.1853 |
| 1.1613 | 180 | - | 0.1847 |
| 1.1742 | 182 | - | 0.1843 |
| 1.1871 | 184 | - | 0.1836 |
| 1.2 | 186 | - | 0.1827 |
| 1.2129 | 188 | - | 0.1825 |
| 1.2258 | 190 | - | 0.1832 |
| 1.2387 | 192 | - | 0.1835 |
| 1.2516 | 194 | - | 0.1852 |
| 1.2645 | 196 | - | 0.1869 |
| 1.2774 | 198 | - | 0.1873 |
| 1.2903 | 200 | - | 0.1870 |
| 1.3032 | 202 | - | 0.1871 |
| 1.3161 | 204 | - | 0.1872 |
| 1.3290 | 206 | - | 0.1884 |
| 1.3419 | 208 | - | 0.1888 |
| 1.3548 | 210 | - | 0.1884 |
| 1.3677 | 212 | - | 0.1882 |
| 1.3806 | 214 | - | 0.1889 |
| 1.3935 | 216 | - | 0.1897 |
| 1.4065 | 218 | - | 0.1897 |
| 1.4194 | 220 | - | 0.1903 |
| 1.4323 | 222 | - | 0.1901 |
| 1.4452 | 224 | - | 0.1896 |
| 1.4581 | 226 | - | 0.1890 |
| 1.4710 | 228 | - | 0.1892 |
| 1.4839 | 230 | - | 0.1899 |
| 1.4968 | 232 | - | 0.1906 |
| 1.5097 | 234 | - | 0.1908 |
| 1.5226 | 236 | - | 0.1908 |
| 1.5355 | 238 | - | 0.1914 |
| 1.5484 | 240 | - | 0.1918 |
| 1.5613 | 242 | - | 0.1922 |
| 1.5742 | 244 | - | 0.1926 |
| 1.5871 | 246 | - | 0.1925 |
| 1.6 | 248 | - | 0.1934 |
| 1.6129 | 250 | - | 0.1935 |
| 1.6258 | 252 | - | 0.1930 |
| 1.6387 | 254 | - | 0.1924 |
| 1.6516 | 256 | - | 0.1938 |
| 1.6645 | 258 | - | 0.1941 |
| 1.6774 | 260 | - | 0.1944 |
| 1.6903 | 262 | - | 0.1941 |
| 1.7032 | 264 | - | 0.1934 |
| 1.7161 | 266 | - | 0.1937 |
| 1.7290 | 268 | - | 0.1933 |
| 1.7419 | 270 | - | 0.1936 |
| 1.7548 | 272 | - | 0.1933 |
| 1.7677 | 274 | - | 0.1937 |
| 1.7806 | 276 | - | 0.1925 |
| 1.7935 | 278 | - | 0.1935 |
| 1.8065 | 280 | - | 0.1937 |
| 1.8194 | 282 | - | 0.1932 |
| 1.8323 | 284 | - | 0.1942 |
| 1.8452 | 286 | - | 0.1935 |
| 1.8581 | 288 | - | 0.1929 |
| 1.8710 | 290 | - | 0.1929 |
| 1.8839 | 292 | - | 0.1934 |
| 1.8968 | 294 | - | 0.1934 |
| 1.9097 | 296 | - | 0.1929 |
| 1.9226 | 298 | - | 0.1929 |
| 1.9355 | 300 | - | 0.1927 |
| 1.9484 | 302 | - | 0.1927 |
| 1.9613 | 304 | - | 0.1929 |
| 1.9742 | 306 | - | 0.1933 |
| 1.9871 | 308 | - | 0.1940 |
| 2.0 | 310 | - | 0.1948 |
| 2.0129 | 312 | - | 0.1955 |
| 2.0258 | 314 | - | 0.1955 |
| 2.0387 | 316 | - | 0.1959 |
| 2.0516 | 318 | - | 0.1963 |
| 2.0645 | 320 | - | 0.1963 |
| 2.0774 | 322 | - | 0.1957 |
| 2.0903 | 324 | - | 0.1960 |
| 2.1032 | 326 | - | 0.1961 |
| 2.1161 | 328 | - | 0.1969 |
| 2.1290 | 330 | - | 0.1969 |
| 2.1419 | 332 | - | 0.1966 |
| 2.1548 | 334 | - | 0.1967 |
| 2.1677 | 336 | - | 0.1967 |
| 2.1806 | 338 | - | 0.1969 |
| 2.1935 | 340 | - | 0.1965 |
| 2.2065 | 342 | - | 0.1967 |
| 2.2194 | 344 | - | 0.1971 |
| 2.2323 | 346 | - | 0.1972 |
| 2.2452 | 348 | - | 0.1972 |
| 2.2581 | 350 | - | 0.1970 |
| 2.2710 | 352 | - | 0.1971 |
| 2.2839 | 354 | - | 0.1961 |
| 2.2968 | 356 | - | 0.1967 |
| 2.3097 | 358 | - | 0.1972 |
| 2.3226 | 360 | - | 0.1980 |
| 2.3355 | 362 | - | 0.1980 |
| 2.3484 | 364 | - | 0.1979 |
| 2.3613 | 366 | - | 0.1994 |
| 2.3742 | 368 | - | 0.1980 |
| 2.3871 | 370 | - | 0.1980 |
| 2.4 | 372 | - | 0.1977 |
| 2.4129 | 374 | - | 0.1984 |
| 2.4258 | 376 | - | 0.1988 |
| 2.4387 | 378 | - | 0.1991 |
| 2.4516 | 380 | - | 0.1992 |
| 2.4645 | 382 | - | 0.1989 |
| 2.4774 | 384 | - | 0.1989 |
| 2.4903 | 386 | - | 0.1989 |
| 2.5032 | 388 | - | 0.1986 |
| 2.5161 | 390 | - | 0.1983 |
| 2.5290 | 392 | - | 0.1985 |
| 2.5419 | 394 | - | 0.1990 |
| 2.5548 | 396 | - | 0.1989 |
| 2.5677 | 398 | - | 0.1993 |
| 2.5806 | 400 | - | 0.1989 |
| 2.5935 | 402 | - | 0.1986 |
| 2.6065 | 404 | - | 0.1986 |
| 2.6194 | 406 | - | 0.1982 |
| 2.6323 | 408 | - | 0.1979 |
| 2.6452 | 410 | - | 0.1978 |
| 2.6581 | 412 | - | 0.1977 |
| 2.6710 | 414 | - | 0.1980 |
| 2.6839 | 416 | - | 0.1980 |
| 2.6968 | 418 | - | 0.1979 |
| 2.7097 | 420 | - | 0.1976 |
| 2.7226 | 422 | - | 0.1980 |
| 2.7355 | 424 | - | 0.1980 |
| 2.7484 | 426 | - | 0.1984 |
| 2.7613 | 428 | - | 0.1983 |
| 2.7742 | 430 | - | 0.1991 |
| 2.7871 | 432 | - | 0.1996 |
| 2.8 | 434 | - | 0.1996 |
| 2.8129 | 436 | - | 0.1991 |
| 2.8258 | 438 | - | 0.1984 |
| 2.8387 | 440 | - | 0.1987 |
| 2.8516 | 442 | - | 0.1994 |
| 2.8645 | 444 | - | 0.1995 |
| 2.8774 | 446 | - | 0.1997 |
| 2.8903 | 448 | - | 0.1993 |
| 2.9032 | 450 | - | 0.2000 |
| 2.9161 | 452 | - | 0.2004 |
| 2.9290 | 454 | - | 0.2006 |
| 2.9419 | 456 | - | 0.2012 |
| 2.9548 | 458 | - | 0.2010 |
| 2.9677 | 460 | - | 0.2000 |
| 2.9806 | 462 | - | 0.2000 |
| 2.9935 | 464 | - | 0.2004 |
| 3.0 | 465 | - | 0.2003 |
| 3.0065 | 466 | - | 0.2003 |
| 3.0194 | 468 | - | 0.2001 |
| 3.0323 | 470 | - | 0.2001 |
| 3.0452 | 472 | - | 0.2003 |
| 3.0581 | 474 | - | 0.2000 |
| 3.0710 | 476 | - | 0.1999 |
| 3.0839 | 478 | - | 0.1997 |
| 3.0968 | 480 | - | 0.2004 |
| 3.1097 | 482 | - | 0.2008 |
| 3.1226 | 484 | - | 0.2005 |
| 3.1355 | 486 | - | 0.2005 |
| 3.1484 | 488 | - | 0.2007 |
| 3.1613 | 490 | - | 0.2008 |
| 3.1742 | 492 | - | 0.2008 |
| 3.1871 | 494 | - | 0.2008 |
| 3.2 | 496 | - | 0.2006 |
| 3.2129 | 498 | - | 0.2007 |
| 3.2258 | 500 | 0.3472 | 0.2007 |
| 3.2387 | 502 | - | 0.2007 |
| 3.2516 | 504 | - | 0.2007 |
| 3.2645 | 506 | - | 0.2010 |
| 3.2774 | 508 | - | 0.2014 |
| 3.2903 | 510 | - | 0.2010 |
| 3.3032 | 512 | - | 0.2006 |
| 3.3161 | 514 | - | 0.2007 |
| 3.3290 | 516 | - | 0.2007 |
| 3.3419 | 518 | - | 0.2003 |
| 3.3548 | 520 | - | 0.2002 |
| 3.3677 | 522 | - | 0.2002 |
| 3.3806 | 524 | - | 0.2000 |
| 3.3935 | 526 | - | 0.1997 |
| 3.4065 | 528 | - | 0.1997 |
| 3.4194 | 530 | - | 0.1997 |
| 3.4323 | 532 | - | 0.1997 |
| 3.4452 | 534 | - | 0.1993 |
| 3.4581 | 536 | - | 0.1993 |
| 3.4710 | 538 | - | 0.1993 |
| 3.4839 | 540 | - | 0.1991 |
| 3.4968 | 542 | - | 0.1991 |
| 3.5097 | 544 | - | 0.1991 |
| 3.5226 | 546 | - | 0.1991 |
| 3.5355 | 548 | - | 0.1992 |
| 3.5484 | 550 | - | 0.1991 |
| 3.5613 | 552 | - | 0.1991 |
| 3.5742 | 554 | - | 0.1986 |
| 3.5871 | 556 | - | 0.1986 |
| 3.6 | 558 | - | 0.1985 |
| 3.6129 | 560 | - | 0.1992 |
| 3.6258 | 562 | - | 0.1995 |
| 3.6387 | 564 | - | 0.1992 |
| 3.6516 | 566 | - | 0.1992 |
| 3.6645 | 568 | - | 0.1989 |
| 3.6774 | 570 | - | 0.1989 |
| 3.6903 | 572 | - | 0.1989 |
| 3.7032 | 574 | - | 0.1988 |
| 3.7161 | 576 | - | 0.1992 |
| 3.7290 | 578 | - | 0.1992 |
| 3.7419 | 580 | - | 0.1997 |
| 3.7548 | 582 | - | 0.1997 |
| 3.7677 | 584 | - | 0.1988 |
| 3.7806 | 586 | - | 0.1992 |
| 3.7935 | 588 | - | 0.1999 |
| 3.8065 | 590 | - | 0.1992 |
| 3.8194 | 592 | - | 0.1992 |
| 3.8323 | 594 | - | 0.1995 |
| 3.8452 | 596 | - | 0.1992 |
| 3.8581 | 598 | - | 0.1992 |
| 3.8710 | 600 | - | 0.1996 |
| 3.8839 | 602 | - | 0.1991 |
| 3.8968 | 604 | - | 0.1991 |
| 3.9097 | 606 | - | 0.1991 |
| 3.9226 | 608 | - | 0.1987 |
| 3.9355 | 610 | - | 0.1995 |
| 3.9484 | 612 | - | 0.1999 |
| 3.9613 | 614 | - | 0.2000 |
| 3.9742 | 616 | - | 0.2000 |
| 3.9871 | 618 | - | 0.2000 |
| 4.0 | 620 | - | 0.2006 |
| 4.0129 | 622 | - | 0.2006 |
| 4.0258 | 624 | - | 0.2006 |
| 4.0387 | 626 | - | 0.2006 |
| 4.0516 | 628 | - | 0.2006 |
| 4.0645 | 630 | - | 0.2006 |
| 4.0774 | 632 | - | 0.2006 |
| 4.0903 | 634 | - | 0.2010 |
| 4.1032 | 636 | - | 0.2010 |
| 4.1161 | 638 | - | 0.2013 |
| 4.1290 | 640 | - | 0.2011 |
| 4.1419 | 642 | - | 0.2011 |
| 4.1548 | 644 | - | 0.2012 |
| 4.1677 | 646 | - | 0.2012 |
| 4.1806 | 648 | - | 0.2012 |
| 4.1935 | 650 | - | 0.2009 |
| 4.2065 | 652 | - | 0.2005 |
| 4.2194 | 654 | - | 0.2005 |
| 4.2323 | 656 | - | 0.2009 |
| 4.2452 | 658 | - | 0.2009 |
| 4.2581 | 660 | - | 0.2009 |
| 4.2710 | 662 | - | 0.2005 |
| 4.2839 | 664 | - | 0.1997 |
| 4.2968 | 666 | - | 0.1998 |
| 4.3097 | 668 | - | 0.2005 |
| 4.3226 | 670 | - | 0.2008 |
| 4.3355 | 672 | - | 0.2010 |
| 4.3484 | 674 | - | 0.2011 |
| 4.3613 | 676 | - | 0.2011 |
| 4.3742 | 678 | - | 0.2008 |
| 4.3871 | 680 | - | 0.2004 |
| 4.4 | 682 | - | 0.2004 |
| 4.4129 | 684 | - | 0.2008 |
| 4.4258 | 686 | - | 0.2010 |
| 4.4387 | 688 | - | 0.2013 |
| 4.4516 | 690 | - | 0.2013 |
| 4.4645 | 692 | - | 0.2015 |
| 4.4774 | 694 | - | 0.2012 |
| 4.4903 | 696 | - | 0.2012 |
| 4.5032 | 698 | - | 0.2009 |
| 4.5161 | 700 | - | 0.2010 |
| 4.5290 | 702 | - | 0.2010 |
| 4.5419 | 704 | - | 0.2010 |
| 4.5548 | 706 | - | 0.2010 |
| 4.5677 | 708 | - | 0.2009 |
| 4.5806 | 710 | - | 0.2009 |
| 4.5935 | 712 | - | 0.2009 |
| 4.6065 | 714 | - | 0.2009 |
| 4.6194 | 716 | - | 0.2012 |
| 4.6323 | 718 | - | 0.2005 |
| 4.6452 | 720 | - | 0.2007 |
| 4.6581 | 722 | - | 0.2017 |
| 4.6710 | 724 | - | 0.2017 |
| 4.6839 | 726 | - | 0.2013 |
| 4.6968 | 728 | - | 0.2010 |
| 4.7097 | 730 | - | 0.2010 |
| 4.7226 | 732 | - | 0.2010 |
| 4.7355 | 734 | - | 0.2010 |
| 4.7484 | 736 | - | 0.2007 |
| 4.7613 | 738 | - | 0.2012 |
| 4.7742 | 740 | - | 0.2012 |
| 4.7871 | 742 | - | 0.2011 |
| 4.8 | 744 | - | 0.2011 |
| 4.8129 | 746 | - | 0.2011 |
| 4.8258 | 748 | - | 0.2011 |
| 4.8387 | 750 | - | 0.2008 |
| 4.8516 | 752 | - | 0.2008 |
| 4.8645 | 754 | - | 0.2008 |
| 4.8774 | 756 | - | 0.2008 |
| 4.8903 | 758 | - | 0.2008 |
| 4.9032 | 760 | - | 0.2008 |
| 4.9161 | 762 | - | 0.2008 |
| 4.9290 | 764 | - | 0.2012 |
| 4.9419 | 766 | - | 0.2012 |
| 4.9548 | 768 | - | 0.2015 |
| 4.9677 | 770 | - | 0.2015 |
| 4.9806 | 772 | - | 0.2020 |
| 4.9935 | 774 | - | 0.2017 |
| 5.0 | 775 | - | 0.2017 |
| 5.0065 | 776 | - | 0.2017 |
| 5.0194 | 778 | - | 0.2013 |
| 5.0323 | 780 | - | 0.2013 |
| 5.0452 | 782 | - | 0.2013 |
| 5.0581 | 784 | - | 0.2013 |
| 5.0710 | 786 | - | 0.2012 |
| 5.0839 | 788 | - | 0.2012 |
| 5.0968 | 790 | - | 0.2012 |
| 5.1097 | 792 | - | 0.2012 |
| 5.1226 | 794 | - | 0.2012 |
| 5.1355 | 796 | - | 0.2012 |
| 5.1484 | 798 | - | 0.2012 |
| 5.1613 | 800 | - | 0.2012 |
| 5.1742 | 802 | - | 0.2012 |
| 5.1871 | 804 | - | 0.2012 |
| 5.2 | 806 | - | 0.2012 |
| 5.2129 | 808 | - | 0.2015 |
| 5.2258 | 810 | - | 0.2015 |
| 5.2387 | 812 | - | 0.2019 |
| 5.2516 | 814 | - | 0.2019 |
| 5.2645 | 816 | - | 0.2015 |
| 5.2774 | 818 | - | 0.2015 |
| 5.2903 | 820 | - | 0.2019 |
| 5.3032 | 822 | - | 0.2019 |
| 5.3161 | 824 | - | 0.2019 |
| 5.3290 | 826 | - | 0.2019 |
| 5.3419 | 828 | - | 0.2015 |
| 5.3548 | 830 | - | 0.2015 |
| 5.3677 | 832 | - | 0.2012 |
| 5.3806 | 834 | - | 0.2012 |
| 5.3935 | 836 | - | 0.2012 |
| 5.4065 | 838 | - | 0.2009 |
| 5.4194 | 840 | - | 0.2009 |
| 5.4323 | 842 | - | 0.2012 |
| 5.4452 | 844 | - | 0.2015 |
| 5.4581 | 846 | - | 0.2015 |
| 5.4710 | 848 | - | 0.2019 |
| 5.4839 | 850 | - | 0.2018 |
| 5.4968 | 852 | - | 0.2019 |
| 5.5097 | 854 | - | 0.2019 |
| 5.5226 | 856 | - | 0.2019 |
| 5.5355 | 858 | - | 0.2023 |
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0
- Accelerate: 1.5.2
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Model tree for magnifi/bge-small-en-v1-5-ft-orc_fold2
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.808
- Cosine Accuracy@3 on Unknownself-reported0.979
- Cosine Accuracy@5 on Unknownself-reported0.996
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.808
- Cosine Precision@3 on Unknownself-reported0.326
- Cosine Precision@5 on Unknownself-reported0.199
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.022
- Cosine Recall@3 on Unknownself-reported0.027