mavleo96 commited on
Commit
fcb9f11
·
verified ·
1 Parent(s): fcb444a

Add final trained PPO agent on LunarLander-v2

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 262.43 +/- 18.65
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f978c4ed440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f978c4ed4e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f978c4ed580>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f978c4ed620>", "_build": "<function ActorCriticPolicy._build at 0x7f978c4ed6c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f978c4ed760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f978c4ed800>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f978c4ed8a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f978c4ed940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f978c4ed9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f978c4eda80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f978c4edb20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f978c443180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1750554068011381318, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAACaH3U9qIaePfaUM71BWye+6RwhPRho0LwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF66cH4XXRSMAWyUTegDjAF0lEdAoXxMyeqaPXV9lChoBkdAbgBCj1wo9mgHTUwBaAhHQKF+axN7Bwd1fZQoaAZHQG9vzcynDSBoB008AWgIR0Chf3ExREWqdX2UKGgGR0Bw8tfCyhSMaAdNGwFoCEdAoYBgLofSyHV9lChoBkdAcIYKMvRJE2gHTQwBaAhHQKGBN+lTFVF1fZQoaAZHQGyx/+S8rZtoB003AWgIR0ChguVC5VfedX2UKGgGR0BuMSUC7sfJaAdNOwFoCEdAoYPwYBNmDnV9lChoBkdAcgUslb/wRWgHTRMBaAhHQKGE4VdonKJ1fZQoaAZHQHFVsCHRCyBoB01LAWgIR0Chho9UsFt9dX2UKGgGR0Byown5SFXaaAdNGgFoCEdAoYd0d3jdYXV9lChoBkdAcZWrOJLuhWgHTUYBaAhHQKGIkbBGhEl1fZQoaAZHQHHCJEtuk1xoB00AAWgIR0ChiWapYLb6dX2UKGgGR0ByLIogFHJ+aAdNCgFoCEdAoYrcp7TlT3V9lChoBkdAbBSSLZSNwWgHTVABaAhHQKGMAZpBX0Z1fZQoaAZHQGO2imuTzNFoB03oA2gIR0ChkKlUZNwjdX2UKGgGR0BrhVs+FDfFaAdNLAFoCEdAoZHDrVvuPXV9lChoBkdAcVNrHU+cIGgHTUMBaAhHQKGT4CPIXCV1fZQoaAZHQHEVaOHWSU1oB00cAWgIR0ChlSVPFefJdX2UKGgGR0Bu1MSCe2/jaAdNNwFoCEdAoZZLrcCYC3V9lChoBkdAcDllvZRKpWgHTVUBaAhHQKGYAbBoEjh1fZQoaAZHQFHBfYSQHRloB0vMaAhHQKGYqLtu1nd1fZQoaAZHQHCkvBSDRMNoB004AWgIR0ChmbJqZc9odX2UKGgGR0BwjDa8Hv+gaAdNFAFoCEdAoZqZNEgGKXV9lChoBkdAcQubTMJQcmgHTRcBaAhHQKGcKMaS9uh1fZQoaAZHQHCJrHdXT3JoB01hAWgIR0ChnVd6Tnq3dX2UKGgGR0Bybc0dilSCaAdNNQFoCEdAoZ5e5avA5HV9lChoBkdAXqICQtBfKWgHTegDaAhHQKGjklP8AJd1fZQoaAZHQHMJAW8AaNxoB00gAWgIR0ChpH3T/hl2dX2UKGgGR0BwRi/GlyimaAdNRQFoCEdAoaY0K7ZnMHV9lChoBkdAcKCr4WUKRmgHTTYBaAhHQKGnQCOmzjZ1fZQoaAZHQG7aeBxxT85oB003AWgIR0ChqEuKO1fFdX2UKGgGR0BxUjNKRMewaAdNOQFoCEdAoaoWLgn+h3V9lChoBkdAcfJxYaHbh2gHTRIBaAhHQKGrQjEehf11fZQoaAZHQG53jKgZjx1oB007AWgIR0ChrJ8iOeasdX2UKGgGR0BxPuNp/PPcaAdNKwFoCEdAoa561TisGXV9lChoBkdAboBwhnrY5GgHTTEBaAhHQKGvgWN3np11fZQoaAZHQHJCqJEYwZhoB00iAWgIR0ChsHGJFb3XdX2UKGgGR0BtrWQEIPbxaAdNIgFoCEdAobFjPSlWO3V9lChoBkdAcTOaoddVvWgHTRgBaAhHQKGy6HhS9/V1fZQoaAZHQG/T2SU1Q69oB00pAWgIR0Chs+dq1w5vdX2UKGgGR0BxqKAvtdAxaAdNOwFoCEdAobTiM98qnXV9lChoBkdAcBrRfWtlqmgHTRwBaAhHQKG2c4gA6uJ1fZQoaAZHQHCVFnqVyFRoB01EAWgIR0Cht5DS5RTCdX2UKGgGR0ByMlSR8twraAdNBAFoCEdAobh0STQmeHV9lChoBkdAZZYv1UVBU2gHTegDaAhHQKG84YjSofl1fZQoaAZHQHAI7B42S+xoB00mAWgIR0ChvdOhsZYQdX2UKGgGR0BuVlVo6CDmaAdNRwFoCEdAob+P4EfT1HV9lChoBkdAcB2U21lXimgHTUQBaAhHQKHArG5tm+V1fZQoaAZHQG9oNi6QNkRoB01NAWgIR0ChwdzHS4OMdX2UKGgGR0Bwm63b212JaAdNTwFoCEdAocQEb961LXV9lChoBkdAcmaH5aePJmgHTW4BaAhHQKHFuILw4Kh1fZQoaAZHQHDiocWCVbBoB00sAWgIR0Chxrx0U47zdX2UKGgGR0BxTL4i5d4WaAdNNwFoCEdAochRoEjgRHV9lChoBkdAbsDz8xbjcWgHTS8BaAhHQKHJWZML4N91fZQoaAZHQHCZYGMXJo1oB004AWgIR0ChynfmLcbjdX2UKGgGR0Br2m7cwg1WaAdNPAFoCEdAocwsD4gzQHV9lChoBkdAcMYJL/S6UmgHTUYBaAhHQKHNPXZGrjp1fZQoaAZHQHGaHokiUxFoB01GAWgIR0ChzlYs/Y8MdX2UKGgGR0BuSrXxvvSdaAdNNwFoCEdAoc/6Ww/xD3V9lChoBkdAcD+aMrEtNGgHTSsBaAhHQKHQ9nHvMKV1fZQoaAZHQGx0AAQxvehoB00xAWgIR0Ch0fz0HyEtdX2UKGgGR0BxgaOPvKEGaAdNGAFoCEdAodLoIF/x2HV9lChoBkdAcB672L5yl2gHTSABaAhHQKHUZjAi3Xt1fZQoaAZHQG3UyU9pyp9oB00/AWgIR0Ch1XkGzKLbdX2UKGgGR0BvOW+AVfu1aAdNPAFoCEdAodaC7ulXR3V9lChoBkdAbuPyp71Iy2gHTVEBaAhHQKHYSKHfuTl1fZQoaAZHQHDkjdLxqfxoB01fAWgIR0Ch2XGbCrLhdX2UKGgGR0BxaJtdiUgTaAdNEgFoCEdAodqZfOUt7XV9lChoBkdAcX13Ux20RmgHTWoBaAhHQKHc8ZR8+id1fZQoaAZHQHD8P99+gDloB01GAWgIR0Ch3jJhOP/8dX2UKGgGR0Bw4IH7gsK9aAdNUwFoCEdAod9O1twaSHV9lChoBkdAcKh8PWhAW2gHTYwBaAhHQKHhWRIz3yt1fZQoaAZHQHHhA1vVEuxoB00lAWgIR0Ch4lDU/fO2dX2UKGgGR0Bx+yHuZ1FIaAdNJgFoCEdAoeNT+NtIkXV9lChoBkdAbreRWcSXdGgHTVQBaAhHQKHlDgG8mKJ1fZQoaAZHQHGoeNYKYzBoB00wAWgIR0Ch5gj3dsSCdX2UKGgGR0ByFnx6OYICaAdNLwFoCEdAoeb7Pnjhk3V9lChoBkdAcVBvE0iyIGgHTUIBaAhHQKHoDkHUtqZ1fZQoaAZHQG42mNrCWNZoB01DAWgIR0Ch6cX7tRekdX2UKGgGR0BwsECjk+5faAdNNAFoCEdAoerWTNdJKHV9lChoBkdAbUVpaA4GU2gHTT8BaAhHQKHr6hsZYPp1fZQoaAZHQHJ/Dyvs7dVoB00jAWgIR0Ch7XmyX2M9dX2UKGgGR0Bsp6CvovBaaAdNQAFoCEdAoe6KQgcLjXV9lChoBkdAcVnurZJ04mgHTUQBaAhHQKHvnhLoOhF1fZQoaAZHQHFrlLOAy2xoB00lAWgIR0Ch8Tv3rUsndX2UKGgGR0Bxah94NZvDaAdNSAFoCEdAofKh5ooNNXV9lChoBkdAcC/OIInjQ2gHTUYBaAhHQKHz/uk1uR91fZQoaAZHQHANpxiobXJoB01BAWgIR0Ch9jAdfb9IdX2UKGgGR0BwwKCDmKZVaAdNOAFoCEdAofc9TWGyonV9lChoBkdAcw/vq1PWQWgHTScBaAhHQKH4Qi/O+qR1fZQoaAZHQG2BSjQAuI1oB01HAWgIR0Ch+VTAeq7zdX2UKGgGR0BuZamKqGUOaAdNagFoCEdAofsjJIUah3V9lChoBkdAb5q32mHgxmgHTTMBaAhHQKH8JUgjhUB1fZQoaAZHQGyCn2ys0YVoB01PAWgIR0Ch/UrR8c+8dX2UKGgGR0BwidRtP558aAdNWgFoCEdAof8ZD/lyR3V9lChoBkdAb6IRV6u4gGgHTUUBaAhHQKIANgG8mKJ1fZQoaAZHQHIGrKaG5+ZoB01LAWgIR0CiAWSckMTfdX2UKGgGR0Bxkeom5UcXaAdNOQFoCEdAogMclVtGeHV9lChoBkdAcK4DE3sHB2gHTTwBaAhHQKIENfTCtRx1fZQoaAZHQG5iqJl8PWhoB00kAWgIR0CiBTXZGrjpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.13", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72fe263e8dbbee0fa2be659bab2f5d3b8cedebbd0db70c190a4cbf5399787b78
3
+ size 147472
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f978c4ed440>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f978c4ed4e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f978c4ed580>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f978c4ed620>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f978c4ed6c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f978c4ed760>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f978c4ed800>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f978c4ed8a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f978c4ed940>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f978c4ed9e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f978c4eda80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f978c4edb20>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f978c443180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1750554068011381318,
30
+ "learning_rate": 0.001,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAACaH3U9qIaePfaUM71BWye+6RwhPRho0LwAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF66cH4XXRSMAWyUTegDjAF0lEdAoXxMyeqaPXV9lChoBkdAbgBCj1wo9mgHTUwBaAhHQKF+axN7Bwd1fZQoaAZHQG9vzcynDSBoB008AWgIR0Chf3ExREWqdX2UKGgGR0Bw8tfCyhSMaAdNGwFoCEdAoYBgLofSyHV9lChoBkdAcIYKMvRJE2gHTQwBaAhHQKGBN+lTFVF1fZQoaAZHQGyx/+S8rZtoB003AWgIR0ChguVC5VfedX2UKGgGR0BuMSUC7sfJaAdNOwFoCEdAoYPwYBNmDnV9lChoBkdAcgUslb/wRWgHTRMBaAhHQKGE4VdonKJ1fZQoaAZHQHFVsCHRCyBoB01LAWgIR0Chho9UsFt9dX2UKGgGR0Byown5SFXaaAdNGgFoCEdAoYd0d3jdYXV9lChoBkdAcZWrOJLuhWgHTUYBaAhHQKGIkbBGhEl1fZQoaAZHQHHCJEtuk1xoB00AAWgIR0ChiWapYLb6dX2UKGgGR0ByLIogFHJ+aAdNCgFoCEdAoYrcp7TlT3V9lChoBkdAbBSSLZSNwWgHTVABaAhHQKGMAZpBX0Z1fZQoaAZHQGO2imuTzNFoB03oA2gIR0ChkKlUZNwjdX2UKGgGR0BrhVs+FDfFaAdNLAFoCEdAoZHDrVvuPXV9lChoBkdAcVNrHU+cIGgHTUMBaAhHQKGT4CPIXCV1fZQoaAZHQHEVaOHWSU1oB00cAWgIR0ChlSVPFefJdX2UKGgGR0Bu1MSCe2/jaAdNNwFoCEdAoZZLrcCYC3V9lChoBkdAcDllvZRKpWgHTVUBaAhHQKGYAbBoEjh1fZQoaAZHQFHBfYSQHRloB0vMaAhHQKGYqLtu1nd1fZQoaAZHQHCkvBSDRMNoB004AWgIR0ChmbJqZc9odX2UKGgGR0BwjDa8Hv+gaAdNFAFoCEdAoZqZNEgGKXV9lChoBkdAcQubTMJQcmgHTRcBaAhHQKGcKMaS9uh1fZQoaAZHQHCJrHdXT3JoB01hAWgIR0ChnVd6Tnq3dX2UKGgGR0Bybc0dilSCaAdNNQFoCEdAoZ5e5avA5HV9lChoBkdAXqICQtBfKWgHTegDaAhHQKGjklP8AJd1fZQoaAZHQHMJAW8AaNxoB00gAWgIR0ChpH3T/hl2dX2UKGgGR0BwRi/GlyimaAdNRQFoCEdAoaY0K7ZnMHV9lChoBkdAcKCr4WUKRmgHTTYBaAhHQKGnQCOmzjZ1fZQoaAZHQG7aeBxxT85oB003AWgIR0ChqEuKO1fFdX2UKGgGR0BxUjNKRMewaAdNOQFoCEdAoaoWLgn+h3V9lChoBkdAcfJxYaHbh2gHTRIBaAhHQKGrQjEehf11fZQoaAZHQG53jKgZjx1oB007AWgIR0ChrJ8iOeasdX2UKGgGR0BxPuNp/PPcaAdNKwFoCEdAoa561TisGXV9lChoBkdAboBwhnrY5GgHTTEBaAhHQKGvgWN3np11fZQoaAZHQHJCqJEYwZhoB00iAWgIR0ChsHGJFb3XdX2UKGgGR0BtrWQEIPbxaAdNIgFoCEdAobFjPSlWO3V9lChoBkdAcTOaoddVvWgHTRgBaAhHQKGy6HhS9/V1fZQoaAZHQG/T2SU1Q69oB00pAWgIR0Chs+dq1w5vdX2UKGgGR0BxqKAvtdAxaAdNOwFoCEdAobTiM98qnXV9lChoBkdAcBrRfWtlqmgHTRwBaAhHQKG2c4gA6uJ1fZQoaAZHQHCVFnqVyFRoB01EAWgIR0Cht5DS5RTCdX2UKGgGR0ByMlSR8twraAdNBAFoCEdAobh0STQmeHV9lChoBkdAZZYv1UVBU2gHTegDaAhHQKG84YjSofl1fZQoaAZHQHAI7B42S+xoB00mAWgIR0ChvdOhsZYQdX2UKGgGR0BuVlVo6CDmaAdNRwFoCEdAob+P4EfT1HV9lChoBkdAcB2U21lXimgHTUQBaAhHQKHArG5tm+V1fZQoaAZHQG9oNi6QNkRoB01NAWgIR0ChwdzHS4OMdX2UKGgGR0Bwm63b212JaAdNTwFoCEdAocQEb961LXV9lChoBkdAcmaH5aePJmgHTW4BaAhHQKHFuILw4Kh1fZQoaAZHQHDiocWCVbBoB00sAWgIR0Chxrx0U47zdX2UKGgGR0BxTL4i5d4WaAdNNwFoCEdAochRoEjgRHV9lChoBkdAbsDz8xbjcWgHTS8BaAhHQKHJWZML4N91fZQoaAZHQHCZYGMXJo1oB004AWgIR0ChynfmLcbjdX2UKGgGR0Br2m7cwg1WaAdNPAFoCEdAocwsD4gzQHV9lChoBkdAcMYJL/S6UmgHTUYBaAhHQKHNPXZGrjp1fZQoaAZHQHGaHokiUxFoB01GAWgIR0ChzlYs/Y8MdX2UKGgGR0BuSrXxvvSdaAdNNwFoCEdAoc/6Ww/xD3V9lChoBkdAcD+aMrEtNGgHTSsBaAhHQKHQ9nHvMKV1fZQoaAZHQGx0AAQxvehoB00xAWgIR0Ch0fz0HyEtdX2UKGgGR0BxgaOPvKEGaAdNGAFoCEdAodLoIF/x2HV9lChoBkdAcB672L5yl2gHTSABaAhHQKHUZjAi3Xt1fZQoaAZHQG3UyU9pyp9oB00/AWgIR0Ch1XkGzKLbdX2UKGgGR0BvOW+AVfu1aAdNPAFoCEdAodaC7ulXR3V9lChoBkdAbuPyp71Iy2gHTVEBaAhHQKHYSKHfuTl1fZQoaAZHQHDkjdLxqfxoB01fAWgIR0Ch2XGbCrLhdX2UKGgGR0BxaJtdiUgTaAdNEgFoCEdAodqZfOUt7XV9lChoBkdAcX13Ux20RmgHTWoBaAhHQKHc8ZR8+id1fZQoaAZHQHD8P99+gDloB01GAWgIR0Ch3jJhOP/8dX2UKGgGR0Bw4IH7gsK9aAdNUwFoCEdAod9O1twaSHV9lChoBkdAcKh8PWhAW2gHTYwBaAhHQKHhWRIz3yt1fZQoaAZHQHHhA1vVEuxoB00lAWgIR0Ch4lDU/fO2dX2UKGgGR0Bx+yHuZ1FIaAdNJgFoCEdAoeNT+NtIkXV9lChoBkdAbreRWcSXdGgHTVQBaAhHQKHlDgG8mKJ1fZQoaAZHQHGoeNYKYzBoB00wAWgIR0Ch5gj3dsSCdX2UKGgGR0ByFnx6OYICaAdNLwFoCEdAoeb7Pnjhk3V9lChoBkdAcVBvE0iyIGgHTUIBaAhHQKHoDkHUtqZ1fZQoaAZHQG42mNrCWNZoB01DAWgIR0Ch6cX7tRekdX2UKGgGR0BwsECjk+5faAdNNAFoCEdAoerWTNdJKHV9lChoBkdAbUVpaA4GU2gHTT8BaAhHQKHr6hsZYPp1fZQoaAZHQHJ/Dyvs7dVoB00jAWgIR0Ch7XmyX2M9dX2UKGgGR0Bsp6CvovBaaAdNQAFoCEdAoe6KQgcLjXV9lChoBkdAcVnurZJ04mgHTUQBaAhHQKHvnhLoOhF1fZQoaAZHQHFrlLOAy2xoB00lAWgIR0Ch8Tv3rUsndX2UKGgGR0Bxah94NZvDaAdNSAFoCEdAofKh5ooNNXV9lChoBkdAcC/OIInjQ2gHTUYBaAhHQKHz/uk1uR91fZQoaAZHQHANpxiobXJoB01BAWgIR0Ch9jAdfb9IdX2UKGgGR0BwwKCDmKZVaAdNOAFoCEdAofc9TWGyonV9lChoBkdAcw/vq1PWQWgHTScBaAhHQKH4Qi/O+qR1fZQoaAZHQG2BSjQAuI1oB01HAWgIR0Ch+VTAeq7zdX2UKGgGR0BuZamKqGUOaAdNagFoCEdAofsjJIUah3V9lChoBkdAb5q32mHgxmgHTTMBaAhHQKH8JUgjhUB1fZQoaAZHQGyCn2ys0YVoB01PAWgIR0Ch/UrR8c+8dX2UKGgGR0BwidRtP558aAdNWgFoCEdAof8ZD/lyR3V9lChoBkdAb6IRV6u4gGgHTUUBaAhHQKIANgG8mKJ1fZQoaAZHQHIGrKaG5+ZoB01LAWgIR0CiAWSckMTfdX2UKGgGR0Bxkeom5UcXaAdNOQFoCEdAogMclVtGeHV9lChoBkdAcK4DE3sHB2gHTTwBaAhHQKIENfTCtRx1fZQoaAZHQG5iqJl8PWhoB00kAWgIR0CiBTXZGrjpdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP1BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f42ece9f7e72bd13f8b7769e94cac45ac790932daea233f49951b476b1cd67b0
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa815f1338db9ccd11fe6d4e13b94a28afaf0c1067c2abdfb72961e869994b52
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.13
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76db4520f3d2a1680c6ef6d48619a6becdf44e2674ad797d1b4cdea3c94c15c2
3
+ size 149310
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 262.4318873, "std_reward": 18.650172545882814, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-06-22T01:48:44.436851"}