--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.43 +/- 18.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import PPO from huggingface_sb3 import load_from_hub import gym # Define model repo_id and filename repo_id = "mavleo96/rl-bots" # Change this to the actual repo if different filename = "ppo-LunarLander-v2.zip" # Load the model from the Hugging Face Hub model = load_from_hub(repo_id, filename, model_class=PPO) # Create the environment env = gym.make("LunarLander-v2") # Run a few episodes obs = env.reset() for _ in range(1000): action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset() env.close() ```