File size: 25,285 Bytes
d7aa21c 4fdbc12 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 93cac63 4fdbc12 d7aa21c 4fdbc12 d7aa21c baecc67 fc17653 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c 10b2bb7 d7aa21c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
from pathlib import Path
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.whisper.modeling_whisper import (
_compute_mask_indices,
)
try:
from .asr_config import ASRConfig
from .moe_projector import MoEAudioProjector
from .residual_projector import ResidualAudioProjector
from .swiglu_projector import AudioProjector
from .shared_moe_projector import SharedMoEAudioProjector
except ImportError:
from asr_config import ASRConfig # type: ignore[no-redef]
from moe_projector import MoEAudioProjector # type: ignore[no-redef]
from residual_projector import ResidualAudioProjector # type: ignore[no-redef]
from swiglu_projector import AudioProjector # type: ignore[no-redef]
from shared_moe_projector import SharedMoEAudioProjector # type: ignore[no-redef]
# Map projector type names to classes
PROJECTOR_CLASSES = {
"swiglu": AudioProjector,
"residual": ResidualAudioProjector,
"moe": MoEAudioProjector,
"shared_moe": SharedMoEAudioProjector,
}
class ASRModel(PreTrainedModel):
"""Audio-to-text model combining an audio encoder, projector, and language model."""
config_class = ASRConfig
base_model_prefix = "model"
main_input_name = "input_features"
_supports_flash_attn_2 = True
supports_gradient_checkpointing = False # Frozen encoder/LLM don't benefit; projector is small
_is_loading_from_pretrained: bool = False
_pretrained_model_path: Optional[str] = None
TASK_PROMPTS = {
"transcribe": "Transcribe: <audio>",
"continue": "Continue: <audio>",
"describe": "Describe: <audio>",
"emotion": "Emotion: <audio>",
}
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
"""Load model from pretrained, handling device placement correctly."""
from safetensors.torch import load_file
from transformers.utils.hub import cached_file
config = kwargs.pop("config", None)
if config is None:
config = ASRConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
# Set flag to avoid device_map="auto" in sub-model loaders
cls._is_loading_from_pretrained = True
cls._pretrained_model_path = pretrained_model_name_or_path
try:
model = cls(config, **kwargs)
# Load projector weights from safetensors
subfolder = kwargs.get("subfolder")
revision = kwargs.get("revision")
cache_kwargs = {}
if subfolder:
cache_kwargs["subfolder"] = subfolder
if revision:
cache_kwargs["revision"] = revision
model_file = cached_file(
pretrained_model_name_or_path,
"model.safetensors",
_raise_exceptions_for_missing_entries=False,
**cache_kwargs,
)
if model_file is not None:
state_dict = load_file(model_file)
model.load_state_dict(state_dict, strict=False)
return model
finally:
cls._is_loading_from_pretrained = False
cls._pretrained_model_path = None
def __init__(self, config: ASRConfig, **kwargs):
super().__init__(config)
self.system_prompt = config.system_prompt
target_dtype = getattr(torch, config.model_dtype)
# Audio encoder (frozen)
self.audio_tower = self._load_audio_encoder(config, target_dtype)
# Language model (frozen)
self.language_model = self._load_language_model(config, target_dtype)
self.generation_config = self.language_model.generation_config
# Initialize tokenizer and special tokens
self._init_tokenizer(config)
# Feature extractor for audio preprocessing
self.feature_extractor = self._create_feature_extractor(config)
# Audio projector (trainable)
self.projector = self._create_projector(config, target_dtype)
# For model parallelism
self._no_split_modules = getattr(self.language_model, "_no_split_modules", [])
def _create_feature_extractor(self, config: ASRConfig):
"""Create the appropriate feature extractor for the audio encoder."""
from transformers import AutoFeatureExtractor
return AutoFeatureExtractor.from_pretrained(config.audio_model_id)
@classmethod
def _load_audio_encoder(cls, config: ASRConfig, dtype: torch.dtype) -> nn.Module:
"""Load and freeze the audio encoder."""
encoder_kwargs = {
"attn_implementation": config.attn_implementation,
"low_cpu_mem_usage": True,
"dtype": dtype,
}
if "whisper" in config.audio_model_id.lower():
from transformers import WhisperModel
full_model = WhisperModel.from_pretrained(config.audio_model_id, **encoder_kwargs)
encoder = full_model.encoder
del full_model
else:
encoder = AutoModel.from_pretrained(config.audio_model_id, **encoder_kwargs)
encoder.requires_grad_(False)
encoder.eval()
return encoder
@classmethod
def _load_language_model(cls, config: ASRConfig, dtype: torch.dtype) -> PreTrainedModel:
"""Load and freeze the language model."""
decoder_kwargs = {
"attn_implementation": config.attn_implementation,
"trust_remote_code": True,
"tie_word_embeddings": True,
"low_cpu_mem_usage": True,
"dtype": dtype,
}
decoder = AutoModelForCausalLM.from_pretrained(config.text_model_id, **decoder_kwargs)
decoder.config.use_cache = getattr(config, "use_cache", True)
decoder.requires_grad_(False)
decoder.eval()
return decoder
def _create_projector(self, config: ASRConfig, dtype: torch.dtype) -> nn.Module:
"""Create the trainable audio projector."""
# Auto-detect dimensions if not specified
if config.encoder_dim is None:
enc_cfg = self.audio_tower.config
config.encoder_dim = getattr(enc_cfg, "hidden_size", None) or getattr(
enc_cfg, "d_model", None
)
if config.encoder_dim is None:
raise ValueError("Could not auto-detect encoder_dim. Please specify in config.")
if config.llm_dim is None:
dec_cfg = self.language_model.config
config.llm_dim = getattr(dec_cfg, "hidden_size", None) or getattr(
dec_cfg, "d_model", None
)
if config.llm_dim is None:
raise ValueError("Could not auto-detect llm_dim. Please specify in config.")
# Select projector type based on config
projector_type = getattr(config, "projector_type", "moe")
projector_class = PROJECTOR_CLASSES.get(projector_type)
if projector_class is None:
raise ValueError(
f"Unknown projector_type: {projector_type}. "
f"Valid options: {list(PROJECTOR_CLASSES.keys())}"
)
projector = projector_class(config)
# Move projector to same device as language model (important when using quantization)
device = next(self.language_model.parameters()).device
return projector.to(device=device, dtype=dtype)
def _init_tokenizer(self, config: ASRConfig):
"""Initialize tokenizer with audio token."""
self.tokenizer = AutoTokenizer.from_pretrained(config.text_model_id, trust_remote_code=True)
# Set pad token
if (
self.tokenizer.pad_token is None
or self.tokenizer.pad_token_id == self.tokenizer.eos_token_id
) and "<|finetune_right_pad_id|>" in self.tokenizer.get_vocab():
self.tokenizer.pad_token = "<|finetune_right_pad_id|>"
# Add audio token
existing_special = self.tokenizer.additional_special_tokens or []
if "<audio>" not in existing_special:
self.tokenizer.add_special_tokens(
{"additional_special_tokens": existing_special + ["<audio>"]}
)
self.language_model.resize_token_embeddings(len(self.tokenizer), mean_resizing=False)
self.audio_token_id = self.tokenizer.convert_tokens_to_ids("<audio>")
self.tokenizer.padding_side = "right"
# Sync token IDs to configs
for cfg in [self.config.text_config, self.language_model.config, self.generation_config]:
if cfg is not None:
cfg.pad_token_id = self.tokenizer.pad_token_id
cfg.eos_token_id = self.tokenizer.eos_token_id
cfg.bos_token_id = self.tokenizer.bos_token_id
def _init_weights(self, module):
"""Weight initialization (projector weights are initialized in MoEAudioProjector)."""
pass
def can_generate(self) -> bool:
return True
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, value):
self.language_model.set_output_embeddings(value)
def get_processor(self):
"""Get the processor for this model."""
try:
from .asr_processing import ASRProcessor
except ImportError:
from asr_processing import ASRProcessor # type: ignore[no-redef]
return ASRProcessor(feature_extractor=self.feature_extractor, tokenizer=self.tokenizer)
def state_dict(self, *args, **kwargs):
"""Only save trainable projector weights."""
return {f"projector.{k}": v for k, v in self.projector.state_dict().items()}
def _apply_specaugment(
self,
input_features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if not getattr(self.config, "use_specaugment", False):
return input_features
if not self.training:
return input_features
# Input shape: (batch_size, num_mel_bins, sequence_length) for Whisper
batch_size, hidden_size, sequence_length = input_features.size()
mask_time_prob = getattr(self.config, "mask_time_prob", 0.05)
mask_time_length = getattr(self.config, "mask_time_length", 10)
mask_feature_prob = getattr(self.config, "mask_feature_prob", 0.0)
mask_feature_length = getattr(self.config, "mask_feature_length", 10)
# Time masking
if mask_time_prob > 0:
mask_time_np = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=mask_time_prob,
mask_length=mask_time_length,
attention_mask=attention_mask,
min_masks=2,
)
mask_time_indices = torch.tensor(
mask_time_np, device=input_features.device, dtype=torch.bool
)
# Expand to cover all features: (batch, seq) -> (batch, features, seq)
mask_time_expanded = mask_time_indices[:, None].expand(-1, hidden_size, -1)
input_features = input_features.masked_fill(mask_time_expanded, 0.0)
# Feature masking
if mask_feature_prob > 0:
mask_feature_np = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=mask_feature_prob,
mask_length=mask_feature_length,
min_masks=2,
)
mask_feature_indices = torch.tensor(
mask_feature_np, device=input_features.device, dtype=torch.bool
)
# Expand: (batch, features) -> (batch, features, seq)
mask_feature_expanded = mask_feature_indices[:, :, None].expand(
-1, -1, sequence_length
)
input_features = input_features.masked_fill(mask_feature_expanded, 0.0)
return input_features
def _encode_audio(
self,
audio_features: torch.Tensor,
audio_attention_mask: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Encode audio and project to LLM embedding space."""
# Apply SpecAugment during training (before encoding)
is_whisper = hasattr(self.audio_tower.config, "num_mel_bins")
if is_whisper:
audio_features = self._apply_specaugment(audio_features, audio_attention_mask)
with torch.no_grad():
if is_whisper:
encoder_out = self.audio_tower(
input_features=audio_features, attention_mask=audio_attention_mask
)
else:
encoder_out = self.audio_tower(
input_values=audio_features, attention_mask=audio_attention_mask
)
hidden_states = encoder_out.last_hidden_state
audio_embeds = self.projector(hidden_states)
# Create attention mask for projected audio
if audio_attention_mask is not None:
mask_float = audio_attention_mask.unsqueeze(1).float()
pooled_mask = F.interpolate(mask_float, size=audio_embeds.shape[1], mode="nearest")
audio_mask = pooled_mask.squeeze(1).long()
else:
audio_mask = torch.ones(
audio_embeds.shape[:2], device=audio_embeds.device, dtype=torch.long
)
return audio_embeds, audio_mask
def _merge_audio_features(
self,
input_ids: torch.Tensor,
audio_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
audio_mask: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""
Merge audio embeddings into text embeddings at <audio> token positions.
Returns: (inputs_embeds, attention_mask, labels)
"""
batch_size, seq_len = input_ids.shape
num_audio_tokens = audio_embeds.shape[1]
device = input_ids.device
# Find audio token position in each sequence
audio_positions = (input_ids == self.audio_token_id).int().argmax(dim=1)
# Calculate new sequence length (replace 1 audio token with num_audio_tokens)
new_seq_len = seq_len - 1 + num_audio_tokens
# Get text embeddings
text_embeds = self.language_model.get_input_embeddings()(input_ids)
# Build merged embeddings
merged_embeds = torch.zeros(
batch_size, new_seq_len, text_embeds.shape[-1], device=device, dtype=text_embeds.dtype
)
merged_attention = torch.ones(batch_size, new_seq_len, device=device, dtype=torch.long)
merged_labels = None
if labels is not None:
merged_labels = torch.full(
(batch_size, new_seq_len), -100, device=device, dtype=labels.dtype
)
for i in range(batch_size):
pos = audio_positions[i].item()
# Before audio token
if pos > 0:
merged_embeds[i, :pos] = text_embeds[i, :pos]
if attention_mask is not None:
merged_attention[i, :pos] = attention_mask[i, :pos]
if merged_labels is not None and labels is not None:
merged_labels[i, :pos] = labels[i, :pos]
# Audio embeddings
audio_end = pos + num_audio_tokens
merged_embeds[i, pos:audio_end] = audio_embeds[i]
if audio_mask is not None:
merged_attention[i, pos:audio_end] = audio_mask[i]
# After audio token
remaining = seq_len - pos - 1
if remaining > 0:
merged_embeds[i, audio_end : audio_end + remaining] = text_embeds[i, pos + 1 :]
if attention_mask is not None:
merged_attention[i, audio_end : audio_end + remaining] = attention_mask[
i, pos + 1 :
]
if merged_labels is not None and labels is not None:
merged_labels[i, audio_end : audio_end + remaining] = labels[i, pos + 1 :]
return merged_embeds, merged_attention, merged_labels
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
input_values: Optional[torch.Tensor] = None,
input_features: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
audio_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> CausalLMOutputWithPast:
"""Forward pass for training and inference."""
# Accept either input_values (wav2vec2) or input_features (whisper)
audio_inputs = input_features if input_features is not None else input_values
if audio_inputs is not None:
if input_ids is None:
raise ValueError("input_ids required when audio is provided")
# Encode audio
audio_embeds, audio_mask = self._encode_audio(audio_inputs, audio_attention_mask)
# Merge audio with text
inputs_embeds, full_attention_mask, labels = self._merge_audio_features(
input_ids, audio_embeds, attention_mask, labels, audio_mask
)
else:
# Text-only forward
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
full_attention_mask = attention_mask
# Run through language model
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=full_attention_mask,
use_cache=False,
**kwargs,
)
# Compute loss if labels provided
loss = None
if labels is not None:
logits = outputs.logits
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
ignore_index=-100,
label_smoothing=getattr(self.config, "label_smoothing", 0.0),
)
# Add auxiliary loss from MoE projectors if available
if hasattr(self.projector, "get_aux_loss"):
aux_loss = self.projector.get_aux_loss()
if aux_loss is not None and aux_loss.numel() > 0:
loss = loss + aux_loss.to(loss.device)
return CausalLMOutputWithPast(
loss=loss,
logits=outputs.logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_values: Optional[torch.Tensor] = None,
input_features: Optional[torch.Tensor] = None,
audio_attention_mask: Optional[torch.Tensor] = None,
system_prompt: Optional[str] = None,
user_prompt: Optional[str] = None,
task: Optional[str] = None,
**generate_kwargs,
) -> torch.Tensor:
"""Generate text from audio input."""
audio_inputs = input_features if input_features is not None else input_values
if audio_inputs is None:
raise ValueError("input_values or input_features required for generation")
device = audio_inputs.device
batch_size = audio_inputs.shape[0]
# Encode audio
audio_embeds, audio_mask = self._encode_audio(audio_inputs, audio_attention_mask)
# Build prompt
system_prompt = system_prompt or self.system_prompt
user_prompt = user_prompt or self.TASK_PROMPTS.get(
task, self.config.user_prompt or "Transcribe: <audio>"
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": user_prompt})
prompt_ids = self.tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
enable_thinking=False,
).to(device)
if prompt_ids.dim() == 1:
prompt_ids = prompt_ids.unsqueeze(0)
if prompt_ids.shape[0] == 1 and batch_size > 1:
prompt_ids = prompt_ids.expand(batch_size, -1)
if not (prompt_ids == self.audio_token_id).any():
raise ValueError("Audio token <audio> not found in prompt")
# Merge audio with prompt
inputs_embeds, attention_mask, _ = self._merge_audio_features(
prompt_ids, audio_embeds, audio_mask=audio_mask
)
# Set generation defaults from config
generate_kwargs.setdefault("max_new_tokens", self.config.max_new_tokens)
generate_kwargs.setdefault("num_beams", self.config.num_beams)
generate_kwargs.setdefault("do_sample", self.config.do_sample)
generate_kwargs.setdefault("use_cache", self.config.use_cache)
generate_kwargs.setdefault("length_penalty", self.config.length_penalty)
generate_kwargs.setdefault("repetition_penalty", self.config.repetition_penalty)
generate_kwargs.setdefault("no_repeat_ngram_size", self.config.no_repeat_ngram_size)
generate_kwargs.setdefault("temperature", self.config.temperature)
if self.config.top_k is not None:
generate_kwargs.setdefault("top_k", self.config.top_k)
if self.config.top_p is not None:
generate_kwargs.setdefault("top_p", self.config.top_p)
generate_kwargs.setdefault(
"eos_token_id", self.tokenizer.convert_tokens_to_ids("<|im_end|>")
)
generate_kwargs.setdefault("pad_token_id", self.tokenizer.pad_token_id)
# Create dummy input_ids matching inputs_embeds length for repetition penalty tracking
# Use pad_token_id as placeholder since the actual tokens don't matter for penalty calc
dummy_input_ids = torch.full(
(inputs_embeds.shape[0], inputs_embeds.shape[1]),
self.tokenizer.pad_token_id,
dtype=torch.long,
device=device,
)
# Generate (type ignore needed as generate() has complex return type)
# Note: When using inputs_embeds, generate() returns only new tokens
# (no placeholder positions for input embeddings), so no stripping needed
output = self.language_model.generate( # type: ignore[operator]
input_ids=dummy_input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
**generate_kwargs,
)
# Return generated tokens directly - no stripping needed with inputs_embeds
if isinstance(output, torch.Tensor):
return output
# Handle GenerateOutput types that have sequences attribute
return output.sequences
def save_pretrained(self, save_directory: Union[str, Path], **kwargs):
"""Save model, tokenizer, and processor."""
import shutil
from pathlib import Path as PathlibPath
save_dir = PathlibPath(save_directory)
save_dir.mkdir(parents=True, exist_ok=True)
# Update config with actual vocab size
self.config.vocab_size = self.language_model.config.vocab_size
self.config.text_config.vocab_size = self.language_model.config.vocab_size
if hasattr(self.audio_tower.config, "num_mel_bins"):
self.config.audio_config.num_mel_bins = self.audio_tower.config.num_mel_bins
# Save model (temporarily remove non-serializable attributes)
tokenizer = self.tokenizer
del self.tokenizer
try:
super().save_pretrained(save_dir, **kwargs)
finally:
self.tokenizer = tokenizer
# Save tokenizer and processor
self.tokenizer.save_pretrained(save_dir)
self.get_processor().save_pretrained(save_dir)
# Copy source files for auto-loading
src_dir = PathlibPath(__file__).parent
for asr_file in src_dir.glob("asr_*.py"):
shutil.copy(asr_file, save_dir / asr_file.name)
# Copy projector files
projector_files = [
"moe_projector.py",
"residual_projector.py",
"swiglu_projector.py",
"shared_moe_projector.py",
]
for projector_file in projector_files:
src_path = src_dir / projector_file
if src_path.exists():
shutil.copy(src_path, save_dir / projector_file)
# Register with transformers Auto classes
AutoConfig.register("asr_model", ASRConfig)
AutoModel.register(ASRConfig, ASRModel)
|