File size: 25,285 Bytes
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
4fdbc12
 
 
d7aa21c
10b2bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
d7aa21c
 
 
 
 
 
 
4fdbc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93cac63
4fdbc12
 
 
 
 
 
 
93cac63
4fdbc12
 
93cac63
 
4fdbc12
 
 
93cac63
4fdbc12
 
 
 
 
 
93cac63
4fdbc12
 
93cac63
4fdbc12
 
93cac63
4fdbc12
 
 
d7aa21c
 
 
 
 
 
4fdbc12
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baecc67
 
 
 
fc17653
d7aa21c
 
10b2bb7
 
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
 
 
 
 
 
 
 
 
 
d7aa21c
 
 
 
 
10b2bb7
 
 
 
 
 
 
 
 
d7aa21c
 
 
 
10b2bb7
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
 
 
 
 
 
 
 
d7aa21c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
from pathlib import Path
from typing import Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F  # noqa: N812
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoTokenizer,
    PreTrainedModel,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.models.whisper.modeling_whisper import (
    _compute_mask_indices,
)

try:
    from .asr_config import ASRConfig
    from .moe_projector import MoEAudioProjector
    from .residual_projector import ResidualAudioProjector
    from .swiglu_projector import AudioProjector
    from .shared_moe_projector import SharedMoEAudioProjector
except ImportError:
    from asr_config import ASRConfig  # type: ignore[no-redef]
    from moe_projector import MoEAudioProjector  # type: ignore[no-redef]
    from residual_projector import ResidualAudioProjector  # type: ignore[no-redef]
    from swiglu_projector import AudioProjector  # type: ignore[no-redef]
    from shared_moe_projector import SharedMoEAudioProjector  # type: ignore[no-redef]

# Map projector type names to classes
PROJECTOR_CLASSES = {
    "swiglu": AudioProjector,
    "residual": ResidualAudioProjector,
    "moe": MoEAudioProjector,
    "shared_moe": SharedMoEAudioProjector,
}


class ASRModel(PreTrainedModel):
    """Audio-to-text model combining an audio encoder, projector, and language model."""

    config_class = ASRConfig
    base_model_prefix = "model"
    main_input_name = "input_features"
    _supports_flash_attn_2 = True
    supports_gradient_checkpointing = False  # Frozen encoder/LLM don't benefit; projector is small
    _is_loading_from_pretrained: bool = False
    _pretrained_model_path: Optional[str] = None

    TASK_PROMPTS = {
        "transcribe": "Transcribe: <audio>",
        "continue": "Continue: <audio>",
        "describe": "Describe: <audio>",
        "emotion": "Emotion: <audio>",
    }

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
        """Load model from pretrained, handling device placement correctly."""
        from safetensors.torch import load_file
        from transformers.utils.hub import cached_file

        config = kwargs.pop("config", None)
        if config is None:
            config = ASRConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        # Set flag to avoid device_map="auto" in sub-model loaders
        cls._is_loading_from_pretrained = True
        cls._pretrained_model_path = pretrained_model_name_or_path

        try:
            model = cls(config, **kwargs)

            # Load projector weights from safetensors
            subfolder = kwargs.get("subfolder")
            revision = kwargs.get("revision")
            cache_kwargs = {}
            if subfolder:
                cache_kwargs["subfolder"] = subfolder
            if revision:
                cache_kwargs["revision"] = revision

            model_file = cached_file(
                pretrained_model_name_or_path,
                "model.safetensors",
                _raise_exceptions_for_missing_entries=False,
                **cache_kwargs,
            )

            if model_file is not None:
                state_dict = load_file(model_file)
                model.load_state_dict(state_dict, strict=False)

            return model
        finally:
            cls._is_loading_from_pretrained = False
            cls._pretrained_model_path = None

    def __init__(self, config: ASRConfig, **kwargs):
        super().__init__(config)

        self.system_prompt = config.system_prompt
        target_dtype = getattr(torch, config.model_dtype)

        # Audio encoder (frozen)
        self.audio_tower = self._load_audio_encoder(config, target_dtype)

        # Language model (frozen)
        self.language_model = self._load_language_model(config, target_dtype)
        self.generation_config = self.language_model.generation_config

        # Initialize tokenizer and special tokens
        self._init_tokenizer(config)

        # Feature extractor for audio preprocessing
        self.feature_extractor = self._create_feature_extractor(config)

        # Audio projector (trainable)
        self.projector = self._create_projector(config, target_dtype)

        # For model parallelism
        self._no_split_modules = getattr(self.language_model, "_no_split_modules", [])

    def _create_feature_extractor(self, config: ASRConfig):
        """Create the appropriate feature extractor for the audio encoder."""
        from transformers import AutoFeatureExtractor

        return AutoFeatureExtractor.from_pretrained(config.audio_model_id)

    @classmethod
    def _load_audio_encoder(cls, config: ASRConfig, dtype: torch.dtype) -> nn.Module:
        """Load and freeze the audio encoder."""
        encoder_kwargs = {
            "attn_implementation": config.attn_implementation,
            "low_cpu_mem_usage": True,
            "dtype": dtype,
        }

        if "whisper" in config.audio_model_id.lower():
            from transformers import WhisperModel

            full_model = WhisperModel.from_pretrained(config.audio_model_id, **encoder_kwargs)
            encoder = full_model.encoder
            del full_model
        else:
            encoder = AutoModel.from_pretrained(config.audio_model_id, **encoder_kwargs)

        encoder.requires_grad_(False)
        encoder.eval()
        return encoder

    @classmethod
    def _load_language_model(cls, config: ASRConfig, dtype: torch.dtype) -> PreTrainedModel:
        """Load and freeze the language model."""
        decoder_kwargs = {
            "attn_implementation": config.attn_implementation,
            "trust_remote_code": True,
            "tie_word_embeddings": True,
            "low_cpu_mem_usage": True,
            "dtype": dtype,
        }

        decoder = AutoModelForCausalLM.from_pretrained(config.text_model_id, **decoder_kwargs)
        decoder.config.use_cache = getattr(config, "use_cache", True)
        decoder.requires_grad_(False)
        decoder.eval()
        return decoder

    def _create_projector(self, config: ASRConfig, dtype: torch.dtype) -> nn.Module:
        """Create the trainable audio projector."""
        # Auto-detect dimensions if not specified
        if config.encoder_dim is None:
            enc_cfg = self.audio_tower.config
            config.encoder_dim = getattr(enc_cfg, "hidden_size", None) or getattr(
                enc_cfg, "d_model", None
            )
            if config.encoder_dim is None:
                raise ValueError("Could not auto-detect encoder_dim. Please specify in config.")

        if config.llm_dim is None:
            dec_cfg = self.language_model.config
            config.llm_dim = getattr(dec_cfg, "hidden_size", None) or getattr(
                dec_cfg, "d_model", None
            )
            if config.llm_dim is None:
                raise ValueError("Could not auto-detect llm_dim. Please specify in config.")

        # Select projector type based on config
        projector_type = getattr(config, "projector_type", "moe")
        projector_class = PROJECTOR_CLASSES.get(projector_type)
        if projector_class is None:
            raise ValueError(
                f"Unknown projector_type: {projector_type}. "
                f"Valid options: {list(PROJECTOR_CLASSES.keys())}"
            )
        projector = projector_class(config)

        # Move projector to same device as language model (important when using quantization)
        device = next(self.language_model.parameters()).device
        return projector.to(device=device, dtype=dtype)

    def _init_tokenizer(self, config: ASRConfig):
        """Initialize tokenizer with audio token."""
        self.tokenizer = AutoTokenizer.from_pretrained(config.text_model_id, trust_remote_code=True)

        # Set pad token
        if (
            self.tokenizer.pad_token is None
            or self.tokenizer.pad_token_id == self.tokenizer.eos_token_id
        ) and "<|finetune_right_pad_id|>" in self.tokenizer.get_vocab():
            self.tokenizer.pad_token = "<|finetune_right_pad_id|>"

        # Add audio token
        existing_special = self.tokenizer.additional_special_tokens or []
        if "<audio>" not in existing_special:
            self.tokenizer.add_special_tokens(
                {"additional_special_tokens": existing_special + ["<audio>"]}
            )
            self.language_model.resize_token_embeddings(len(self.tokenizer), mean_resizing=False)

        self.audio_token_id = self.tokenizer.convert_tokens_to_ids("<audio>")
        self.tokenizer.padding_side = "right"

        # Sync token IDs to configs
        for cfg in [self.config.text_config, self.language_model.config, self.generation_config]:
            if cfg is not None:
                cfg.pad_token_id = self.tokenizer.pad_token_id
                cfg.eos_token_id = self.tokenizer.eos_token_id
                cfg.bos_token_id = self.tokenizer.bos_token_id

    def _init_weights(self, module):
        """Weight initialization (projector weights are initialized in MoEAudioProjector)."""
        pass

    def can_generate(self) -> bool:
        return True

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, value):
        self.language_model.set_output_embeddings(value)

    def get_processor(self):
        """Get the processor for this model."""
        try:
            from .asr_processing import ASRProcessor
        except ImportError:
            from asr_processing import ASRProcessor  # type: ignore[no-redef]

        return ASRProcessor(feature_extractor=self.feature_extractor, tokenizer=self.tokenizer)

    def state_dict(self, *args, **kwargs):
        """Only save trainable projector weights."""
        return {f"projector.{k}": v for k, v in self.projector.state_dict().items()}

    def _apply_specaugment(
        self,
        input_features: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:

        if not getattr(self.config, "use_specaugment", False):
            return input_features

        if not self.training:
            return input_features

        # Input shape: (batch_size, num_mel_bins, sequence_length) for Whisper
        batch_size, hidden_size, sequence_length = input_features.size()

        mask_time_prob = getattr(self.config, "mask_time_prob", 0.05)
        mask_time_length = getattr(self.config, "mask_time_length", 10)
        mask_feature_prob = getattr(self.config, "mask_feature_prob", 0.0)
        mask_feature_length = getattr(self.config, "mask_feature_length", 10)

        # Time masking
        if mask_time_prob > 0:
            mask_time_np = _compute_mask_indices(
                (batch_size, sequence_length),
                mask_prob=mask_time_prob,
                mask_length=mask_time_length,
                attention_mask=attention_mask,
                min_masks=2,
            )
            mask_time_indices = torch.tensor(
                mask_time_np, device=input_features.device, dtype=torch.bool
            )
            # Expand to cover all features: (batch, seq) -> (batch, features, seq)
            mask_time_expanded = mask_time_indices[:, None].expand(-1, hidden_size, -1)
            input_features = input_features.masked_fill(mask_time_expanded, 0.0)

        # Feature masking
        if mask_feature_prob > 0:
            mask_feature_np = _compute_mask_indices(
                (batch_size, hidden_size),
                mask_prob=mask_feature_prob,
                mask_length=mask_feature_length,
                min_masks=2,
            )
            mask_feature_indices = torch.tensor(
                mask_feature_np, device=input_features.device, dtype=torch.bool
            )
            # Expand: (batch, features) -> (batch, features, seq)
            mask_feature_expanded = mask_feature_indices[:, :, None].expand(
                -1, -1, sequence_length
            )
            input_features = input_features.masked_fill(mask_feature_expanded, 0.0)

        return input_features

    def _encode_audio(
        self,
        audio_features: torch.Tensor,
        audio_attention_mask: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """Encode audio and project to LLM embedding space."""
        # Apply SpecAugment during training (before encoding)
        is_whisper = hasattr(self.audio_tower.config, "num_mel_bins")
        if is_whisper:
            audio_features = self._apply_specaugment(audio_features, audio_attention_mask)

        with torch.no_grad():
            if is_whisper:
                encoder_out = self.audio_tower(
                    input_features=audio_features, attention_mask=audio_attention_mask
                )
            else:
                encoder_out = self.audio_tower(
                    input_values=audio_features, attention_mask=audio_attention_mask
                )
            hidden_states = encoder_out.last_hidden_state

        audio_embeds = self.projector(hidden_states)

        # Create attention mask for projected audio
        if audio_attention_mask is not None:
            mask_float = audio_attention_mask.unsqueeze(1).float()
            pooled_mask = F.interpolate(mask_float, size=audio_embeds.shape[1], mode="nearest")
            audio_mask = pooled_mask.squeeze(1).long()
        else:
            audio_mask = torch.ones(
                audio_embeds.shape[:2], device=audio_embeds.device, dtype=torch.long
            )

        return audio_embeds, audio_mask

    def _merge_audio_features(
        self,
        input_ids: torch.Tensor,
        audio_embeds: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        audio_mask: Optional[torch.Tensor] = None,
    ) -> tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        """
        Merge audio embeddings into text embeddings at <audio> token positions.

        Returns: (inputs_embeds, attention_mask, labels)
        """
        batch_size, seq_len = input_ids.shape
        num_audio_tokens = audio_embeds.shape[1]
        device = input_ids.device

        # Find audio token position in each sequence
        audio_positions = (input_ids == self.audio_token_id).int().argmax(dim=1)

        # Calculate new sequence length (replace 1 audio token with num_audio_tokens)
        new_seq_len = seq_len - 1 + num_audio_tokens

        # Get text embeddings
        text_embeds = self.language_model.get_input_embeddings()(input_ids)

        # Build merged embeddings
        merged_embeds = torch.zeros(
            batch_size, new_seq_len, text_embeds.shape[-1], device=device, dtype=text_embeds.dtype
        )
        merged_attention = torch.ones(batch_size, new_seq_len, device=device, dtype=torch.long)
        merged_labels = None
        if labels is not None:
            merged_labels = torch.full(
                (batch_size, new_seq_len), -100, device=device, dtype=labels.dtype
            )

        for i in range(batch_size):
            pos = audio_positions[i].item()

            # Before audio token
            if pos > 0:
                merged_embeds[i, :pos] = text_embeds[i, :pos]
                if attention_mask is not None:
                    merged_attention[i, :pos] = attention_mask[i, :pos]
                if merged_labels is not None and labels is not None:
                    merged_labels[i, :pos] = labels[i, :pos]

            # Audio embeddings
            audio_end = pos + num_audio_tokens
            merged_embeds[i, pos:audio_end] = audio_embeds[i]
            if audio_mask is not None:
                merged_attention[i, pos:audio_end] = audio_mask[i]

            # After audio token
            remaining = seq_len - pos - 1
            if remaining > 0:
                merged_embeds[i, audio_end : audio_end + remaining] = text_embeds[i, pos + 1 :]
                if attention_mask is not None:
                    merged_attention[i, audio_end : audio_end + remaining] = attention_mask[
                        i, pos + 1 :
                    ]
                if merged_labels is not None and labels is not None:
                    merged_labels[i, audio_end : audio_end + remaining] = labels[i, pos + 1 :]

        return merged_embeds, merged_attention, merged_labels

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        input_values: Optional[torch.Tensor] = None,
        input_features: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        audio_attention_mask: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        """Forward pass for training and inference."""
        # Accept either input_values (wav2vec2) or input_features (whisper)
        audio_inputs = input_features if input_features is not None else input_values

        if audio_inputs is not None:
            if input_ids is None:
                raise ValueError("input_ids required when audio is provided")

            # Encode audio
            audio_embeds, audio_mask = self._encode_audio(audio_inputs, audio_attention_mask)

            # Merge audio with text
            inputs_embeds, full_attention_mask, labels = self._merge_audio_features(
                input_ids, audio_embeds, attention_mask, labels, audio_mask
            )
        else:
            # Text-only forward
            inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
            full_attention_mask = attention_mask

        # Run through language model
        outputs = self.language_model(
            inputs_embeds=inputs_embeds,
            attention_mask=full_attention_mask,
            use_cache=False,
            **kwargs,
        )

        # Compute loss if labels provided
        loss = None
        if labels is not None:
            logits = outputs.logits
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss = F.cross_entropy(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1),
                ignore_index=-100,
                label_smoothing=getattr(self.config, "label_smoothing", 0.0),
            )

            # Add auxiliary loss from MoE projectors if available
            if hasattr(self.projector, "get_aux_loss"):
                aux_loss = self.projector.get_aux_loss()
                if aux_loss is not None and aux_loss.numel() > 0:
                    loss = loss + aux_loss.to(loss.device)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=outputs.logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @torch.no_grad()
    def generate(
        self,
        input_values: Optional[torch.Tensor] = None,
        input_features: Optional[torch.Tensor] = None,
        audio_attention_mask: Optional[torch.Tensor] = None,
        system_prompt: Optional[str] = None,
        user_prompt: Optional[str] = None,
        task: Optional[str] = None,
        **generate_kwargs,
    ) -> torch.Tensor:
        """Generate text from audio input."""
        audio_inputs = input_features if input_features is not None else input_values
        if audio_inputs is None:
            raise ValueError("input_values or input_features required for generation")

        device = audio_inputs.device
        batch_size = audio_inputs.shape[0]

        # Encode audio
        audio_embeds, audio_mask = self._encode_audio(audio_inputs, audio_attention_mask)

        # Build prompt
        system_prompt = system_prompt or self.system_prompt
        user_prompt = user_prompt or self.TASK_PROMPTS.get(
            task, self.config.user_prompt or "Transcribe: <audio>"
        )

        messages = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        messages.append({"role": "user", "content": user_prompt})

        prompt_ids = self.tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_tensors="pt",
            enable_thinking=False,
        ).to(device)

        if prompt_ids.dim() == 1:
            prompt_ids = prompt_ids.unsqueeze(0)
        if prompt_ids.shape[0] == 1 and batch_size > 1:
            prompt_ids = prompt_ids.expand(batch_size, -1)

        if not (prompt_ids == self.audio_token_id).any():
            raise ValueError("Audio token <audio> not found in prompt")

        # Merge audio with prompt
        inputs_embeds, attention_mask, _ = self._merge_audio_features(
            prompt_ids, audio_embeds, audio_mask=audio_mask
        )

        # Set generation defaults from config
        generate_kwargs.setdefault("max_new_tokens", self.config.max_new_tokens)
        generate_kwargs.setdefault("num_beams", self.config.num_beams)
        generate_kwargs.setdefault("do_sample", self.config.do_sample)
        generate_kwargs.setdefault("use_cache", self.config.use_cache)
        generate_kwargs.setdefault("length_penalty", self.config.length_penalty)
        generate_kwargs.setdefault("repetition_penalty", self.config.repetition_penalty)
        generate_kwargs.setdefault("no_repeat_ngram_size", self.config.no_repeat_ngram_size)
        generate_kwargs.setdefault("temperature", self.config.temperature)
        if self.config.top_k is not None:
            generate_kwargs.setdefault("top_k", self.config.top_k)
        if self.config.top_p is not None:
            generate_kwargs.setdefault("top_p", self.config.top_p)
        generate_kwargs.setdefault(
            "eos_token_id", self.tokenizer.convert_tokens_to_ids("<|im_end|>")
        )
        generate_kwargs.setdefault("pad_token_id", self.tokenizer.pad_token_id)

        # Create dummy input_ids matching inputs_embeds length for repetition penalty tracking
        # Use pad_token_id as placeholder since the actual tokens don't matter for penalty calc
        dummy_input_ids = torch.full(
            (inputs_embeds.shape[0], inputs_embeds.shape[1]),
            self.tokenizer.pad_token_id,
            dtype=torch.long,
            device=device,
        )

        # Generate (type ignore needed as generate() has complex return type)
        # Note: When using inputs_embeds, generate() returns only new tokens
        # (no placeholder positions for input embeddings), so no stripping needed
        output = self.language_model.generate(  # type: ignore[operator]
            input_ids=dummy_input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **generate_kwargs,
        )

        # Return generated tokens directly - no stripping needed with inputs_embeds
        if isinstance(output, torch.Tensor):
            return output
        # Handle GenerateOutput types that have sequences attribute
        return output.sequences

    def save_pretrained(self, save_directory: Union[str, Path], **kwargs):
        """Save model, tokenizer, and processor."""
        import shutil
        from pathlib import Path as PathlibPath

        save_dir = PathlibPath(save_directory)
        save_dir.mkdir(parents=True, exist_ok=True)

        # Update config with actual vocab size
        self.config.vocab_size = self.language_model.config.vocab_size
        self.config.text_config.vocab_size = self.language_model.config.vocab_size

        if hasattr(self.audio_tower.config, "num_mel_bins"):
            self.config.audio_config.num_mel_bins = self.audio_tower.config.num_mel_bins

        # Save model (temporarily remove non-serializable attributes)
        tokenizer = self.tokenizer
        del self.tokenizer

        try:
            super().save_pretrained(save_dir, **kwargs)
        finally:
            self.tokenizer = tokenizer

        # Save tokenizer and processor
        self.tokenizer.save_pretrained(save_dir)
        self.get_processor().save_pretrained(save_dir)

        # Copy source files for auto-loading
        src_dir = PathlibPath(__file__).parent
        for asr_file in src_dir.glob("asr_*.py"):
            shutil.copy(asr_file, save_dir / asr_file.name)
        # Copy projector files
        projector_files = [
            "moe_projector.py",
            "residual_projector.py",
            "swiglu_projector.py",
            "shared_moe_projector.py",
        ]
        for projector_file in projector_files:
            src_path = src_dir / projector_file
            if src_path.exists():
                shutil.copy(src_path, save_dir / projector_file)


# Register with transformers Auto classes
AutoConfig.register("asr_model", ASRConfig)
AutoModel.register(ASRConfig, ASRModel)