File size: 9,531 Bytes
d7aa21c
 
 
 
 
 
 
10b2bb7
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
10b2bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7aa21c
 
 
 
01ab6d7
d7aa21c
01ab6d7
d7aa21c
01ab6d7
 
 
 
 
d7aa21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from collections.abc import Iterator
from pathlib import Path
from typing import Any

import torch
import transformers

try:
    from .asr_modeling import ASRModel
except ImportError:
    from asr_modeling import ASRModel  # type: ignore[no-redef]


class ASRPipeline(transformers.AutomaticSpeechRecognitionPipeline):
    """ASR Pipeline for audio-to-text transcription."""

    model: ASRModel

    def __init__(self, model: ASRModel, **kwargs):
        feature_extractor = kwargs.pop("feature_extractor", None)
        tokenizer = kwargs.pop("tokenizer", model.tokenizer)

        # Get feature extractor from model's processor if not provided
        if feature_extractor is None:
            processor = model.get_processor()
            feature_extractor = processor.feature_extractor

        super().__init__(
            model=model, feature_extractor=feature_extractor, tokenizer=tokenizer, **kwargs
        )

    def __call__(self, inputs, **kwargs):
        generate_kwargs = {}
        generate_keys = [
            "max_new_tokens",
            "num_beams",
            "do_sample",
            "length_penalty",
            "repetition_penalty",
            "no_repeat_ngram_size",
            "early_stopping",
            "num_beam_groups",
            "diversity_penalty",
            "top_k",
            "temperature",
            "top_p",
            "user_prompt",
            "task",
            "text_input",
        ]
        for key in generate_keys:
            if key in kwargs:
                generate_kwargs[key] = kwargs.pop(key)

        # Handle text-only mode
        task = generate_kwargs.get("task")
        if task == "text" or generate_kwargs.get("text_input"):
            return self._process_text_only(generate_kwargs)

        # Handle list inputs
        if isinstance(inputs, list):
            return [self.__call__(inp, **kwargs, **generate_kwargs) for inp in inputs]

        model_inputs = self.preprocess(inputs, **kwargs)

        if isinstance(model_inputs, Iterator):
            return self._process_chunks(list(model_inputs), generate_kwargs)

        model_outputs = self._forward(model_inputs, **generate_kwargs)
        return self.postprocess(model_outputs)

    def _process_chunks(self, chunks: list, generate_kwargs: dict) -> dict[str, str]:
        """Process chunked audio and merge results."""
        all_tokens: list[int] = []

        for chunk in chunks:
            output = self._forward(chunk, **generate_kwargs)
            tokens = output.get("tokens")
            if tokens is None:
                tokens = output.get("generated_ids")
            if tokens is not None:
                if torch.is_tensor(tokens):
                    tokens = tokens.cpu()
                if len(tokens.shape) > 1:
                    tokens = tokens[0]
                all_tokens.extend(tokens.tolist() if torch.is_tensor(tokens) else tokens)

        text = self.tokenizer.decode(all_tokens, skip_special_tokens=True).strip()

        return {"text": text}

    def preprocess(self, inputs, **preprocess_params):
        if isinstance(inputs, list):
            raise ValueError("Lists should not reach preprocess")

        preprocess_params.setdefault("chunk_length_s", 0)

        # Normalize input formats
        if isinstance(inputs, dict):
            if "bytes" in inputs:
                inputs = self._decode_audio_bytes(inputs["bytes"])
            elif "array" in inputs:
                inputs = {
                    "raw": inputs["array"],
                    "sampling_rate": inputs.get("sampling_rate", self.feature_extractor.sampling_rate),
                }
            elif "path" in inputs and "array" not in inputs:
                # Lazy-loaded audio - load from path
                inputs = self._decode_audio_bytes(Path(inputs["path"]).read_bytes())
        elif hasattr(inputs, "array") and hasattr(inputs, "sampling_rate"):
            inputs = {"raw": inputs.array, "sampling_rate": inputs.sampling_rate}
        elif hasattr(inputs, "__array__") and not isinstance(inputs, (dict, bytes, str)):
            inputs = {"raw": inputs, "sampling_rate": self.model.config.audio_sample_rate}
        elif torch.is_tensor(inputs):
            inputs = {
                "raw": inputs.cpu().numpy(),
                "sampling_rate": self.model.config.audio_sample_rate,
            }

        # Resample to target sample rate if needed (workaround for transformers bug)
        # See: https://github.com/huggingface/transformers/pull/41298
        if isinstance(inputs, dict) and "sampling_rate" in inputs:
            in_sr = inputs["sampling_rate"]
            target_sr = self.feature_extractor.sampling_rate
            if in_sr != target_sr:
                import librosa
                import numpy as np

                audio = inputs["raw"]
                if hasattr(audio, "numpy"):
                    audio = audio.numpy()
                resampled = librosa.resample(
                    np.asarray(audio, dtype=np.float32), orig_sr=in_sr, target_sr=target_sr
                )
                inputs = {"raw": resampled, "sampling_rate": target_sr}

        return super().preprocess(inputs, **preprocess_params)

    def _decode_audio_bytes(self, wav_bytes: bytes) -> dict[str, Any]:
        """Decode audio bytes to array format."""
        import io

        import soundfile as sf

        audio_data, sample_rate = sf.read(io.BytesIO(wav_bytes))
        return {
            "raw": audio_data,
            "sampling_rate": sample_rate,
        }

    def _forward(self, model_inputs, **generate_kwargs) -> dict[str, Any]:
        task: str | None = generate_kwargs.pop("task", None)

        # Task-specific defaults
        task_params: dict[str, dict[str, Any]] = {
            "transcribe": {"do_sample": False},
            "emotion": {"do_sample": True, "temperature": 0.7},
            "describe": {"do_sample": True, "temperature": 0.7},
            "continue": {"do_sample": True, "temperature": 1.0},
        }
        if task is not None and task in task_params:
            for key, value in task_params[task].items():
                generate_kwargs.setdefault(key, value)

        # Extract audio from model_inputs
        audio_inputs, is_whisper = self._extract_audio(model_inputs)
        is_last = model_inputs.pop("is_last", True) if isinstance(model_inputs, dict) else True

        # Generation defaults
        generate_kwargs.setdefault(
            "eos_token_id", self.model.tokenizer.convert_tokens_to_ids("<|im_end|>")
        )
        generate_kwargs.setdefault("max_new_tokens", self.model.config.max_new_tokens)

        # Generate
        if is_whisper:
            generated_ids = self.model.generate(
                input_features=audio_inputs,
                task=task,
                **generate_kwargs,
            )
        else:
            generated_ids = self.model.generate(
                input_values=audio_inputs,
                task=task,
                **generate_kwargs,
            )

        return {"tokens": generated_ids, "is_last": is_last}

    def _extract_audio(self, model_inputs) -> tuple[torch.Tensor, bool]:
        """Extract audio tensor from various input formats."""
        if isinstance(model_inputs, torch.Tensor):
            return model_inputs.to(self.model.device), False

        if isinstance(model_inputs, (list, tuple)) and model_inputs:
            model_inputs = (
                model_inputs[0]
                if isinstance(model_inputs[0], dict)
                else {"input_values": model_inputs[0]}
            )

        if isinstance(model_inputs, dict):
            model_inputs.pop("stride", None)
            if "input_features" in model_inputs:
                return model_inputs["input_features"].to(self.model.device), True
            if "input_values" in model_inputs:
                return model_inputs["input_values"].to(self.model.device), False

        raise ValueError(f"Could not extract audio from {type(model_inputs)}")

    def _process_text_only(self, generate_kwargs: dict) -> dict[str, str]:
        """Process text-only input without audio."""
        text_input = generate_kwargs.pop("text_input", None)
        if text_input is None:
            raise ValueError("text_input required for text task")

        generate_kwargs.pop("task", None)
        generated_ids = self.model.generate(task="text", text_input=text_input, **generate_kwargs)
        text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)

        return {"text": text}

    def postprocess(
        self, model_outputs: dict[str, Any], return_timestamps=None, return_language=None
    ) -> dict[str, str]:
        if isinstance(model_outputs, list):
            for output in model_outputs:
                for key, value in output.items():
                    if torch.is_tensor(value):
                        output[key] = value.cpu()
            return super().postprocess(model_outputs)

        model_outputs.pop("is_last", None)
        tokens = model_outputs.get("tokens") or model_outputs.get("generated_ids")

        if tokens is None:
            raise ValueError(f"Expected 'tokens' or 'generated_ids', got: {model_outputs.keys()}")

        if torch.is_tensor(tokens) and tokens.device.type != "cpu":
            tokens = tokens.cpu()
        if len(tokens.shape) > 1:
            tokens = tokens[0]

        text = self.tokenizer.decode(tokens, skip_special_tokens=True).strip()

        return {"text": text}