Update README.md
Browse files
README.md
CHANGED
|
@@ -1,46 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# FlowerVLA - Vision-Language-Action Flow Model for {dataset_name}
|
| 2 |
|
| 3 |
-
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
- Operates on action chunks for better long-horizon planning
|
| 12 |
|
| 13 |
-
|
| 14 |
|
| 15 |
-
|
| 16 |
-
from huggingface_hub import snapshot_download
|
| 17 |
-
import torch
|
| 18 |
-
import hydra
|
| 19 |
-
from omegaconf import OmegaConf
|
| 20 |
-
import json
|
| 21 |
-
import os
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
with open(os.path.join(model_path, "config.json")) as f:
|
| 26 |
-
config = json.load(f)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
model_cfg["_target_"] = "flower.models.flower.FLOWERVLA"
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
# goal = {"lang_text": "push the blue block to the right"}
|
| 40 |
-
# action = model.step(obs, goal)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- microsoft/Florence-2-large
|
| 7 |
+
pipeline_tag: robotics
|
| 8 |
+
tags:
|
| 9 |
+
- robotics
|
| 10 |
+
- VLA
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
# FlowerVLA - Vision-Language-Action Flow Model for {dataset_name}
|
| 14 |
|
| 15 |
+
This is a pretrained FlowerVLA model for robotic manipulation trained on the {dataset_name} dataset.
|
| 16 |
+
Flower is an efficient Vision-Language-Action Flow policy for robot learning that only contains 1B parameters.
|
| 17 |
|
| 18 |
+
## Model Description
|
| 19 |
|
| 20 |
+
FlowerVLA is a novel architecture that:
|
| 21 |
+
- Uses half of Florence-2 for multi-modal vision-language encoding
|
| 22 |
+
- Employs an novel transformer-based flow matching architecture
|
| 23 |
+
- Provides an efficient, versatile VLA policy with only ~1B parameters
|
|
|
|
| 24 |
|
| 25 |
+
## Model Performance
|
| 26 |
|
| 27 |
+
This checkpoint contains weights for the CALVIN ABC challenge and currently ranks 1 with the following results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
| Train→Test | Method | 1 | 2 | 3 | 4 | 5 | **Avg. Len.** |
|
| 30 |
+
|------------|--------|---|---|---|---|---|---------------|
|
| 31 |
+
| {dataset_name} | FlowerVLA | 99.3% | 95.9% | 90.5% | 84.8% |77.5% | 4.54 |
|
| 32 |
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
### Input/Output Specifications
|
|
|
|
| 35 |
|
| 36 |
+
#### Inputs
|
| 37 |
+
- RGB Static Camera: `(B, T, 3, H, W)` tensor
|
| 38 |
+
- RGB Gripper Camera: `(B, T, 3, H, W)` tensor
|
| 39 |
+
- Language Instructions: Text strings
|
| 40 |
|
| 41 |
+
#### Outputs
|
| 42 |
+
- Action Space: `(B, T, 7)` tensor representing delta EEF actions
|
| 43 |
|
| 44 |
+
## Usage
|
| 45 |
|
| 46 |
+
Check out our full model implementation on Github [todo]() and follow the instructions in the readme to test the model on one of the environments.
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
```python
|
| 49 |
+
obs = {
|
| 50 |
+
"rgb_obs": {
|
| 51 |
+
"rgb_static": static_image,
|
| 52 |
+
"rgb_gripper": gripper_image
|
| 53 |
}
|
| 54 |
+
}
|
| 55 |
+
goal = {"lang_text": "pick up the blue cube"}
|
| 56 |
+
action = model.step(obs, goal)
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## Training Details
|
| 60 |
+
|
| 61 |
+
### Configuration
|
| 62 |
+
- **Optimizer**: AdamW
|
| 63 |
+
- **Learning Rate**: 2e-5
|
| 64 |
+
- **Weight Decay**: 0.05
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@inproceedings{
|
| 68 |
+
reuss2025flower,
|
| 69 |
+
# Add citation when available
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
## License
|
| 74 |
+
This model is released under the MIT license.
|
| 75 |
|