File size: 3,190 Bytes
2fe4bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from typing import Optional


class NeuroBLASTConfig(PretrainedConfig):
    model_type = "neuroblast"

    def __init__(
        self,
        vocab_size=28886,
        hidden_size=2048,
        kv_dim=2048,
        intermediate_size=None,
        num_attention_heads=32,
        num_sensory_cortex_layers=6,
        num_motor_cortex_layers=6,
        num_association_cortex_layers=6,
        dropout=0.1,
        layer_norm_epsilon=1e-6,
        pad_token_id=None,
        use_cache=False,
        rope_theta=10000.0,
        rope_scaling=None,
        max_position_embeddings=2048,
        initializer_range=0.02,
        use_flash_attn=True,
        num_experts=None,
        num_experts_per_tok=None,
        norm_topk_prob=False,
        hidden_act="silu",
        use_zero_memory=False,
        zero_memory_alpha=1.0,
        zero_memory_layers=None,
        gradient_scaling_enabled=True,
        association_gradient_scale=0.9,
        sensory_gradient_scale=0.95,
        cross_attention_gradient_scale=0.95,
        clamp_value=1e5,
        _attn_implementation='sdpa',
        **kwargs
    ):
        # Calculate intermediate_size if not provided
        if intermediate_size is None:
            intermediate_size = int(hidden_size * 4 * 2 / 3)

        super().__init__(
            pad_token_id=pad_token_id,
            **kwargs
        )
        
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.kv_dim = kv_dim
        self.intermediate_size = intermediate_size
        self.num_attention_heads = num_attention_heads
        self.num_sensory_cortex_layers = num_sensory_cortex_layers
        self.num_motor_cortex_layers = num_motor_cortex_layers
        self.num_association_cortex_layers = num_association_cortex_layers
        self.dropout = dropout
        self.layer_norm_epsilon = layer_norm_epsilon
        self.rms_norm_eps = layer_norm_epsilon
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.use_flash_attn = use_flash_attn
        self.num_experts = num_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.norm_topk_prob = norm_topk_prob
        self.hidden_act = hidden_act
        self.use_zero_memory = use_zero_memory
        self.zero_memory_alpha = zero_memory_alpha
        self.zero_memory_layers = zero_memory_layers
        self.gradient_scaling_enabled = gradient_scaling_enabled
        self.association_gradient_scale = association_gradient_scale
        self.sensory_gradient_scale = sensory_gradient_scale
        self.cross_attention_gradient_scale = cross_attention_gradient_scale
        self._attn_implementation = _attn_implementation
        self.clamp_value = clamp_value

        if self.rope_scaling is not None and "type" in self.rope_scaling:
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self)