|
import torch |
|
import math |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from transformers import PreTrainedModel, GenerationMixin |
|
from transformers.cache_utils import DynamicCache, Cache |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.cache_utils import Cache, DynamicCache, StaticCache |
|
from transformers.utils import logging |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.activations import ACT2FN |
|
from typing import Optional, Tuple, Union, List |
|
from .configuration_neuroblast import NeuroBLASTConfig |
|
|
|
CLAMP_VALUE = 1e5 |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def apply_gradient_scaling( |
|
tensor: torch.Tensor, scale: float, enabled: bool = True |
|
) -> torch.Tensor: |
|
""" |
|
Apply gradient scaling to a tensor. |
|
This scales the gradients during backward pass while keeping forward pass unchanged. |
|
""" |
|
if not enabled or scale == 1.0 or not tensor.requires_grad: |
|
return tensor |
|
|
|
|
|
class GradientScale(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, input_tensor, scale_factor): |
|
ctx.scale = scale_factor |
|
return input_tensor.clone() |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
if grad_output is None: |
|
return None, None |
|
return grad_output * ctx.scale, None |
|
|
|
return GradientScale.apply(tensor, scale) |
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), |
|
fill_value=min_dtype, |
|
dtype=dtype, |
|
device=device, |
|
) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange( |
|
target_length, device=device |
|
) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = ( |
|
causal_mask.clone() |
|
) |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = ( |
|
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[ |
|
:, :, :, :mask_length |
|
].masked_fill(padding_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
|
|
|
|
|
|
|
|
class LlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
class NeuroBLASTRotaryEmbedding(nn.Module): |
|
""" |
|
Rotary Positional Embedding for NeuroBLAST model. |
|
Source: LlamaRotaryEmbedding |
|
""" |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / ( |
|
self.base |
|
** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim) |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device="cpu", dtype=torch.float32 |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange( |
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype |
|
) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
elif self.cos_cached.device != x.device or self.cos_cached.dtype != x.dtype: |
|
self.cos_cached = self.cos_cached.to(device=x.device, dtype=x.dtype) |
|
self.sin_cached = self.sin_cached.to(device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len], |
|
self.sin_cached[:seq_len], |
|
) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
""" Applies rotary positional embeddings to query and key tensors.""" |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
|
|
def apply_rotary_pos_emb_single(q, cos, sin, position_ids): |
|
""" Applies rotary positional embeddings to query tensor. """ |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
return q_embed |
|
|
|
|
|
class SwiGLUMLP(nn.Module): |
|
"""SwiGLU MLP block""" |
|
|
|
def __init__(self, hidden_size, config: NeuroBLASTConfig, dropout): |
|
super().__init__() |
|
intermediate_size = getattr(config, "intermediate_size", int(hidden_size * 2.5)) |
|
self.init_std = getattr(config, "initializer_range", 0.02) |
|
self.clamp_value = config.clamp_value |
|
|
|
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=True) |
|
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) |
|
self.act_fn = nn.SiLU() |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
if config.num_experts is not None: |
|
self.experts = NeuroBLASTSparseMoeBlock(config) |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
self.gate_proj.weight.data.normal_( |
|
mean=0.0, |
|
std=self.init_std / math.sqrt(hidden_size), |
|
) |
|
if self.gate_proj.bias is not None: |
|
self.gate_proj.bias.data.zero_() |
|
|
|
self.up_proj.weight.data.normal_( |
|
mean=0.0, std=self.init_std / math.sqrt(hidden_size) |
|
) |
|
|
|
self.down_proj.weight.data.normal_( |
|
mean=0.0, |
|
std=self.init_std |
|
/ math.sqrt(intermediate_size), |
|
) |
|
|
|
def forward(self, x): |
|
gated_x = self.gate_proj(x) |
|
activated_x = self.act_fn(gated_x) |
|
up_projected_x = self.up_proj(x) |
|
|
|
intermediate_activation = activated_x * up_projected_x |
|
|
|
|
|
clamp_value = self.clamp_value |
|
|
|
intermediate_activation = torch.clamp( |
|
intermediate_activation, min=-clamp_value, max=clamp_value |
|
) |
|
intermediate_activation = torch.nan_to_num( |
|
intermediate_activation |
|
) |
|
|
|
y = self.down_proj(intermediate_activation) |
|
y = self.dropout(y) |
|
|
|
if hasattr(self, "experts"): |
|
z = self.experts(y) |
|
|
|
y = y + z |
|
|
|
return y |
|
|
|
|
|
class NeuroBLASTMoeMLP(nn.Module): |
|
""" Source: Qwen3MoeMLP """ |
|
def __init__(self, config, intermediate_size=None): |
|
super().__init__() |
|
self.config = config |
|
self.clamp_value = config.clamp_value |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = ( |
|
intermediate_size |
|
if intermediate_size is not None |
|
else config.intermediate_size |
|
) |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
down_proj = torch.clamp(down_proj, min=-self.clamp_value, max=self.clamp_value) |
|
down_proj = torch.nan_to_num(down_proj) |
|
|
|
return down_proj |
|
|
|
|
|
class NeuroBLASTSparseMoeBlock(nn.Module): |
|
""" Source: Qwen3SparseMoeBlock """ |
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_experts = config.num_experts |
|
self.top_k = config.num_experts_per_tok |
|
self.norm_topk_prob = config.norm_topk_prob |
|
|
|
|
|
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False) |
|
self.experts = nn.ModuleList( |
|
[NeuroBLASTMoeMLP(config) for _ in range(self.num_experts)] |
|
) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
""" """ |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk( |
|
routing_weights, self.top_k, dim=-1 |
|
) |
|
if self.norm_topk_prob: |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
final_hidden_states = torch.zeros( |
|
(batch_size * sequence_length, hidden_dim), |
|
dtype=hidden_states.dtype, |
|
device=hidden_states.device, |
|
) |
|
|
|
|
|
|
|
expert_mask = torch.nn.functional.one_hot( |
|
selected_experts, num_classes=self.num_experts |
|
).permute(2, 1, 0) |
|
|
|
|
|
for expert_idx in range(self.num_experts): |
|
expert_layer = self.experts[expert_idx] |
|
idx, top_x = torch.where(expert_mask[expert_idx]) |
|
|
|
|
|
|
|
|
|
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) |
|
current_hidden_states = ( |
|
expert_layer(current_state) * routing_weights[top_x, idx, None] |
|
) |
|
|
|
|
|
|
|
final_hidden_states.index_add_( |
|
0, top_x, current_hidden_states.to(hidden_states.dtype) |
|
) |
|
final_hidden_states = final_hidden_states.reshape( |
|
batch_size, sequence_length, hidden_dim |
|
) |
|
return final_hidden_states |
|
|
|
|
|
class NeuroBLASTRouterBlock(nn.Module): |
|
""" Memory router; overcomplicated due to backward compatibility """ |
|
def __init__( |
|
self, |
|
config, |
|
hidden_size, |
|
): |
|
super().__init__() |
|
self.num_experts = 2 |
|
self.top_k = 1 |
|
self.norm_topk_prob = config.norm_topk_prob |
|
|
|
|
|
self.gate = nn.Linear(hidden_size, self.num_experts, bias=False) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" """ |
|
batch_size, sequence_length, hidden_dim = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
router_logits = self.gate(hidden_states) |
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) |
|
routing_weights, selected_experts = torch.topk( |
|
routing_weights, self.top_k, dim=-1 |
|
) |
|
if self.norm_topk_prob: |
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True) |
|
|
|
routing_weights = routing_weights.to(hidden_states.dtype) |
|
|
|
return routing_weights, selected_experts |
|
|
|
|
|
class SelfAttention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
config: NeuroBLASTConfig, |
|
hidden_size: int, |
|
is_causal: bool = False, |
|
layer_idx: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.is_causal = is_causal |
|
self.dropout_p = config.dropout |
|
self.layer_idx = layer_idx |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = config.kv_dim |
|
self.use_flash_attn = config.use_flash_attn |
|
|
|
self.num_heads = getattr( |
|
config, f"num_heads_{layer_idx}", config.num_attention_heads |
|
) |
|
self.head_dim = self.intermediate_size // self.num_heads |
|
|
|
if (self.head_dim * self.num_heads) != self.intermediate_size: |
|
raise ValueError( |
|
f"Layer {self.layer_idx}: hidden_size ({self.intermediate_size}) must be divisible by num_heads ({self.num_heads})" |
|
) |
|
|
|
self.qkv_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size * 3, bias=True |
|
) |
|
self.o_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[ |
|
torch.Tensor |
|
], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
): |
|
batch_size, seq_len, _ = hidden_states.shape |
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_states, key_states, value_states = qkv.chunk(3, dim=-1) |
|
|
|
query_states = query_states.view( |
|
batch_size, seq_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
batch_size, seq_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
batch_size, seq_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids |
|
) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, cache_kwargs |
|
) |
|
|
|
if self.use_flash_attn: |
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
if attention_mask.dim() == 4: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
elif attention_mask.dim() == 2: |
|
causal_mask = attention_mask |
|
|
|
if causal_mask.dtype not in [ |
|
torch.bool, |
|
torch.float16, |
|
torch.float32, |
|
torch.bfloat16, |
|
]: |
|
causal_mask = causal_mask.to(query_states.dtype) |
|
|
|
is_causal = ( |
|
True if causal_mask is None and query_states.shape[-2] > 1 else False |
|
) |
|
|
|
attn_output = F.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=dropout_p, |
|
enable_gqa=False, |
|
scale=self.head_dim**-0.5, |
|
is_causal=is_causal, |
|
) |
|
attn_weights = None |
|
else: |
|
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / ( |
|
self.head_dim**0.5 |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_weights = attn_weights + attention_mask |
|
elif self.is_causal and seq_len > 1: |
|
causal_mask = torch.triu( |
|
torch.ones( |
|
(seq_len, key_states.shape[2]), |
|
dtype=torch.bool, |
|
device=query_states.device, |
|
), |
|
diagonal=1, |
|
) |
|
attn_weights = attn_weights.masked_fill( |
|
causal_mask.unsqueeze(0).unsqueeze(0), float("-inf") |
|
) |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
attn_weights_dropped = F.dropout( |
|
attn_weights, p=dropout_p, training=self.training |
|
) |
|
attn_output = torch.matmul(attn_weights_dropped, value_states) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.view(batch_size, seq_len, -1) |
|
attn_output = self.o_proj(attn_output) |
|
attn_output = self.dropout(attn_output) |
|
|
|
if output_attentions: |
|
logger.warning( |
|
f"Layer {self.layer_idx}: Flash Attention does not return attention weights." |
|
) |
|
|
|
outputs = (attn_output,) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
if use_cache: |
|
outputs += (past_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class CrossAttention(torch.nn.Module): |
|
def __init__( |
|
self, |
|
config: NeuroBLASTConfig, |
|
query_dim: int, |
|
kv_dim: int, |
|
layer_idx: int, |
|
is_causal: bool = True, |
|
): |
|
super().__init__() |
|
self.dropout_p = config.dropout |
|
self.layer_idx = layer_idx |
|
self.query_dim = query_dim |
|
self.kv_dim = kv_dim |
|
self.is_causal = is_causal |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.kv_dim // self.num_heads |
|
self.kv_head_dim = ( |
|
self.kv_dim // self.num_heads |
|
) |
|
|
|
if (self.head_dim * self.num_heads) != self.kv_dim: |
|
raise ValueError( |
|
f"CrossAttn {layer_idx}: query_dim ({self.kv_dim}) must be divisible by num_heads ({self.num_heads})" |
|
) |
|
if (self.kv_head_dim * self.num_heads) != self.kv_dim: |
|
raise ValueError( |
|
f"CrossAttn {layer_idx}: kv_dim ({kv_dim}) must be divisible by num_heads ({self.num_heads})" |
|
) |
|
|
|
self.q_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True) |
|
self.k_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True) |
|
self.v_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True) |
|
self.o_proj = nn.Linear(self.kv_dim, self.query_dim, bias=False) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
self.use_flash_attn = hasattr( |
|
F, "scaled_dot_product_attention" |
|
) |
|
|
|
def forward( |
|
self, |
|
query_states: torch.Tensor, |
|
kv_states: torch.Tensor, |
|
position_embeddings: Tuple[ |
|
torch.Tensor, torch.Tensor |
|
], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
): |
|
batch_size, q_seq_len, _ = query_states.shape |
|
kv_seq_len = kv_states.shape[1] |
|
dropout_p = self.dropout_p if self.training else 0.0 |
|
|
|
query = self.q_proj(query_states) |
|
key = self.k_proj(kv_states) |
|
value = self.v_proj(kv_states) |
|
|
|
query = query.view( |
|
batch_size, q_seq_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query = apply_rotary_pos_emb_single(query, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
key, value = past_key_value.update( |
|
key, value, self.layer_idx or 0, cache_kwargs |
|
) |
|
kv_seq_len = key.shape[1] |
|
|
|
key = key.view( |
|
batch_size, kv_seq_len, self.num_heads, self.kv_head_dim |
|
).transpose(1, 2) |
|
value = value.view( |
|
batch_size, kv_seq_len, self.num_heads, self.kv_head_dim |
|
).transpose(1, 2) |
|
|
|
sdpa_attn_mask = attention_mask |
|
|
|
if self.use_flash_attn: |
|
is_causal = True if sdpa_attn_mask is None and q_seq_len > 1 else False |
|
attn_output = F.scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=sdpa_attn_mask if not is_causal else None, |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
enable_gqa=False, |
|
scale=self.head_dim**-0.5, |
|
) |
|
attn_weights = None |
|
else: |
|
attn_weights = torch.matmul(query, key.transpose(-1, -2)) / ( |
|
self.head_dim**0.5 |
|
) |
|
|
|
if sdpa_attn_mask is not None: |
|
attn_weights = attn_weights + sdpa_attn_mask |
|
elif self.is_causal and q_seq_len > 1: |
|
causal_mask = torch.triu( |
|
torch.ones( |
|
(q_seq_len, kv_seq_len), dtype=torch.bool, device=query.device |
|
), |
|
diagonal=1, |
|
) |
|
attn_weights = attn_weights.masked_fill( |
|
causal_mask.unsqueeze(0).unsqueeze(0), float("-inf") |
|
) |
|
|
|
attn_weights = F.softmax(attn_weights, dim=-1) |
|
attn_weights_dropped = F.dropout( |
|
attn_weights, p=dropout_p, training=self.training |
|
) |
|
attn_output = torch.matmul(attn_weights_dropped, value) |
|
|
|
attn_output = attn_output.transpose( |
|
1, 2 |
|
).contiguous() |
|
attn_output = attn_output.reshape(batch_size, q_seq_len, self.kv_dim) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
attn_output = self.dropout(attn_output) |
|
|
|
outputs = (attn_output,) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (past_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class AttentionBlock(torch.nn.Module): |
|
"""Modified Attention Block with Pre-Norm and choice of Self/Cross Attention & MLP""" |
|
|
|
def __init__( |
|
self, |
|
config: NeuroBLASTConfig, |
|
hidden_size: int, |
|
attention_module: nn.Module, |
|
mlp_module: nn.Module, |
|
is_cross_attention: bool = False, |
|
layer_idx: int = 0, |
|
precomputed_total_layers: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.is_cross_attention = is_cross_attention |
|
|
|
self.input_layernorm = nn.LayerNorm( |
|
hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5) |
|
) |
|
self.attention = attention_module |
|
|
|
self.post_attention_layernorm = nn.LayerNorm( |
|
hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5) |
|
) |
|
self.mlp = mlp_module |
|
|
|
if self.config.use_zero_memory and ( |
|
self.config.zero_memory_layers is None |
|
or self.layer_idx in self.config.zero_memory_layers |
|
): |
|
self.router = NeuroBLASTRouterBlock(config, hidden_size) |
|
self.memory = NeuroBLASTMemory( |
|
config, |
|
hidden_size=hidden_size, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
position_ids: Optional[torch.LongTensor], |
|
kv_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
previous_states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
): |
|
residual = hidden_states |
|
hidden_states = torch.nan_to_num(hidden_states) |
|
normed_hidden_states = self.input_layernorm(hidden_states) |
|
|
|
if self.is_cross_attention: |
|
if kv_states is None: |
|
raise ValueError("kv_states must be provided for CrossAttention") |
|
attn_outputs = self.attention( |
|
query_states=normed_hidden_states, |
|
kv_states=kv_states, |
|
past_key_value=past_key_value, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
) |
|
else: |
|
attn_outputs = self.attention( |
|
normed_hidden_states, |
|
position_embeddings=position_embeddings, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
position_ids=position_ids, |
|
) |
|
attn_output = attn_outputs[0] |
|
past_key_value = attn_outputs[-1] if use_cache else None |
|
|
|
hidden_states = residual + attn_output |
|
hidden_states = torch.nan_to_num(hidden_states) |
|
|
|
residual = hidden_states |
|
|
|
normed_hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
|
mlp_output = self.mlp(normed_hidden_states) |
|
|
|
hidden_states = residual + mlp_output |
|
|
|
hidden_states = torch.nan_to_num(hidden_states) |
|
|
|
if self.config.use_zero_memory and ( |
|
self.config.zero_memory_layers is None |
|
or self.layer_idx in self.config.zero_memory_layers |
|
): |
|
routing_weights, selected_experts = self.router(hidden_states) |
|
|
|
residual = hidden_states |
|
|
|
hidden_states, (hx, cx), past_key_value = self.memory( |
|
hidden_states, |
|
previous_states, |
|
past_key_value=past_key_value, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = torch.nan_to_num(hidden_states) |
|
hx = torch.nan_to_num(hx) |
|
cx = torch.nan_to_num(cx) |
|
|
|
hidden_states = hidden_states * routing_weights.reshape( |
|
hidden_states.shape[:-1] |
|
).unsqueeze(-1) |
|
|
|
hidden_states = residual + self.config.zero_memory_alpha * hidden_states |
|
hidden_states = torch.nan_to_num(hidden_states) |
|
|
|
outputs = (hidden_states,) + attn_outputs[1:] |
|
|
|
if self.config.use_zero_memory and ( |
|
self.config.zero_memory_layers is None |
|
or self.layer_idx in self.config.zero_memory_layers |
|
): |
|
outputs += ((hx, cx),) |
|
else: |
|
outputs += (previous_states,) |
|
|
|
if use_cache: |
|
outputs += (past_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class NeuroBLASTMemory(nn.Module): |
|
def __init__( |
|
self, |
|
config: NeuroBLASTConfig, |
|
hidden_size: int = 256, |
|
num_heads: int = 4, |
|
scale_factor: int = 4, |
|
layer_idx: int = 0, |
|
with_hx: bool = True, |
|
precomputed_total_layers: Optional[int] = None, |
|
*args, |
|
**kwargs, |
|
): |
|
super().__init__(*args, **kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.num_heads = num_heads |
|
self.scale_factor = scale_factor |
|
self.clamp_value = config.clamp_value |
|
|
|
layer_shift = ( |
|
precomputed_total_layers if precomputed_total_layers is not None else 100 |
|
) |
|
self.layer_idx = layer_idx + layer_shift |
|
self.with_hx = with_hx |
|
self.kv_dim = ( |
|
config.kv_dim |
|
) |
|
|
|
self.scaled_dim = hidden_size * scale_factor |
|
self.head_dim = self.kv_dim // config.num_attention_heads |
|
self.num_heads = self.hidden_size // self.head_dim |
|
|
|
self.norm1 = nn.LayerNorm(hidden_size) |
|
|
|
if self.with_hx: |
|
self.lin1 = nn.Linear(self.hidden_size, self.scaled_dim) |
|
self.lin2 = nn.Linear(self.hidden_size, self.scaled_dim) |
|
self.lin3 = nn.Linear(self.scaled_dim, self.hidden_size) |
|
|
|
self.lin4 = nn.Linear(self.hidden_size, self.scaled_dim) |
|
self.lin5 = nn.Linear(self.scaled_dim, self.hidden_size) |
|
|
|
if self.with_hx: |
|
self.lin6 = nn.Linear(self.scaled_dim, self.hidden_size) |
|
|
|
self.gate1 = nn.Linear(self.scaled_dim, self.scaled_dim) |
|
self.act1 = nn.SiLU() |
|
|
|
self.gate2 = nn.Linear(self.scaled_dim, self.scaled_dim) |
|
self.act2 = nn.SiLU() |
|
|
|
self.last_token_reg = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
self.prev_tokens_reg = nn.Linear(self.hidden_size, self.hidden_size, bias=True) |
|
|
|
self.norm2 = nn.LayerNorm(hidden_size) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
previous_state: tuple[torch.Tensor, torch.Tensor], |
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
attention_mask: Optional[torch.Tensor], |
|
position_ids: Optional[torch.LongTensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
): |
|
hx, cx = previous_state |
|
|
|
b, s, d = x.size() |
|
|
|
x = torch.nan_to_num(x) |
|
norm_x = self.norm1(x) |
|
|
|
norm_x = norm_x.view(b, s, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
norm_x = apply_rotary_pos_emb_single(norm_x, cos, sin, position_ids) |
|
|
|
kv_seq_len = s |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
norm_x, _ = past_key_value.update( |
|
norm_x, |
|
torch.zeros((b, 1, kv_seq_len, d)), |
|
self.layer_idx, |
|
cache_kwargs, |
|
) |
|
kv_seq_len = norm_x.shape[2] |
|
|
|
norm_x = norm_x.transpose(1, 2).contiguous() |
|
norm_x = norm_x.view(b, kv_seq_len, d) |
|
|
|
norm_x = torch.nan_to_num(norm_x) |
|
|
|
expanded_x = None |
|
|
|
shifted_x = torch.cat( |
|
[ |
|
torch.zeros((b, 1, d), device=x.device, dtype=x.dtype), |
|
(norm_x[:, :-1].contiguous()), |
|
], |
|
dim=1, |
|
).contiguous() |
|
|
|
shifted_x = torch.nan_to_num(shifted_x) |
|
|
|
prev_tokens_x = norm_x.cumsum(dim=1) |
|
|
|
prev_tokens_x = prev_tokens_x - shifted_x |
|
prev_tokens_x = torch.nan_to_num(prev_tokens_x)[:, -s:].contiguous() |
|
|
|
if self.with_hx: |
|
expanded_x = self.lin1(norm_x[:, -s:].contiguous()) |
|
expanded_x = torch.nan_to_num(expanded_x) |
|
|
|
expanded_shifted_x = self.lin2(shifted_x[:, -s:].contiguous()) |
|
|
|
expanded_shifted_x = torch.nan_to_num(expanded_shifted_x) |
|
|
|
gated_shifted_x = self.gate1(expanded_shifted_x) |
|
gated_shifted_x = self.act1(gated_shifted_x) |
|
gated_shifted_x = torch.clamp( |
|
gated_shifted_x, min=-self.clamp_value, max=self.clamp_value |
|
) |
|
|
|
gated_shifted_x = torch.nan_to_num(gated_shifted_x) |
|
|
|
collapsed_shifted_x = self.lin3(gated_shifted_x) |
|
collapsed_shifted_x = torch.nan_to_num(collapsed_shifted_x) |
|
|
|
prev_tokens_x = torch.nan_to_num(prev_tokens_x) |
|
|
|
expanded_prev_tokens_x = self.lin4(prev_tokens_x) |
|
expanded_prev_tokens_x = torch.nan_to_num(expanded_prev_tokens_x) |
|
|
|
gated_prev_tokens_x = self.gate2(expanded_prev_tokens_x) |
|
gated_prev_tokens_x = self.act2(gated_prev_tokens_x) |
|
gated_prev_tokens_x = torch.clamp( |
|
gated_prev_tokens_x, min=-self.clamp_value, max=self.clamp_value |
|
) |
|
|
|
gated_prev_tokens_x = torch.nan_to_num(gated_prev_tokens_x) |
|
|
|
collapsed_prev_tokens_x = self.lin5(gated_prev_tokens_x) |
|
collapsed_prev_tokens_x = torch.nan_to_num(collapsed_prev_tokens_x) |
|
|
|
if self.with_hx: |
|
weights = torch.softmax(expanded_x * expanded_shifted_x, dim=-1) |
|
|
|
expanded_x_attn = weights * expanded_x |
|
|
|
expanded_x_attn = torch.nan_to_num(expanded_x_attn) |
|
hx = hx + self.lin6(expanded_x_attn) |
|
hx = torch.nan_to_num(hx) |
|
|
|
if self.with_hx: |
|
x = torch.nan_to_num(x) |
|
hx = torch.nan_to_num(hx) |
|
collapsed_shifted_x = torch.nan_to_num(collapsed_shifted_x) |
|
collapsed_prev_tokens_x = torch.nan_to_num(collapsed_prev_tokens_x) |
|
output = x + ( |
|
hx |
|
* ( |
|
self.last_token_reg(collapsed_shifted_x) |
|
+ self.prev_tokens_reg(collapsed_prev_tokens_x) |
|
) |
|
) |
|
output = torch.nan_to_num(output) |
|
|
|
else: |
|
output = ( |
|
x |
|
+ ( |
|
self.last_token_reg(collapsed_shifted_x) |
|
+ self.prev_tokens_reg(collapsed_prev_tokens_x) |
|
)[:, -s:].contiguous() |
|
) |
|
|
|
output = self.norm2(output) |
|
output = self.dropout(output) |
|
output = torch.nan_to_num(output) |
|
|
|
return ( |
|
output, |
|
(hx, cx), |
|
past_key_value, |
|
) |
|
|
|
|
|
class NeuroBLASTPreTrainedModel(PreTrainedModel): |
|
config_class = NeuroBLASTConfig |
|
base_model_prefix = "brain" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = [] |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
_supports_flash_attn_2 = False |
|
_supports_sdpa = True |
|
|
|
def _init_weights(self, module): |
|
std = getattr(self.config, "initializer_range", 0.02) |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class NeuroBLASTModel(NeuroBLASTPreTrainedModel): |
|
def __init__(self, config: NeuroBLASTConfig): |
|
super(NeuroBLASTModel, self).__init__(config) |
|
self.config = config |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, |
|
config.hidden_size, |
|
padding_idx=self.padding_idx, |
|
) |
|
self.rotary_emb = NeuroBLASTRotaryEmbedding( |
|
config.kv_dim // config.num_attention_heads, |
|
max_position_embeddings=config.max_position_embeddings, |
|
base=config.rope_theta, |
|
) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
self.assoc_to_sensory_pooler = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Identity(), |
|
nn.GELU(), |
|
nn.LayerNorm(config.hidden_size), |
|
) |
|
self.assoc_to_motor_pooler = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Identity(), |
|
nn.GELU(), |
|
nn.LayerNorm(config.hidden_size), |
|
) |
|
self.sensory_to_motor_pooler = nn.Sequential( |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.Identity(), |
|
nn.GELU(), |
|
nn.LayerNorm(config.hidden_size), |
|
) |
|
|
|
|
|
|
|
total_layers = 0 |
|
|
|
|
|
precomputed_total_layers = ( |
|
config.num_association_cortex_layers |
|
+ config.num_sensory_cortex_layers * 2 |
|
+ config.num_motor_cortex_layers |
|
* 3 |
|
) |
|
self.precomputed_total_layers = precomputed_total_layers |
|
config.precomputed_total_layers = precomputed_total_layers |
|
|
|
|
|
self.association_cortex = nn.ModuleList() |
|
for i in range(config.num_association_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to association cortex") |
|
self.association_cortex.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=SelfAttention( |
|
config, config.hidden_size, is_causal=True, layer_idx=layer_idx |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=False, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_association_cortex_layers |
|
|
|
self.sensory_self_attn_layers = nn.ModuleList() |
|
self.sensory_cross_attn_layers = ( |
|
nn.ModuleList() |
|
) |
|
for i in range(config.num_sensory_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to sensory cortex") |
|
self.sensory_self_attn_layers.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=SelfAttention( |
|
config, |
|
config.hidden_size, |
|
is_causal=True, |
|
layer_idx=layer_idx, |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=False, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_sensory_cortex_layers |
|
for i in range(config.num_sensory_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to sensory cross-attention") |
|
|
|
self.sensory_cross_attn_layers.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=CrossAttention( |
|
config, |
|
query_dim=config.hidden_size, |
|
kv_dim=config.kv_dim, |
|
layer_idx=layer_idx, |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=True, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_sensory_cortex_layers |
|
|
|
|
|
self.motor_self_attn_layers = nn.ModuleList() |
|
self.motor_cross_sensory_layers = nn.ModuleList() |
|
self.motor_cross_assoc_layers = nn.ModuleList() |
|
for i in range(config.num_motor_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to motor cortex") |
|
self.motor_self_attn_layers.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=SelfAttention( |
|
config, |
|
config.hidden_size, |
|
is_causal=True, |
|
layer_idx=layer_idx, |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=False, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_motor_cortex_layers |
|
for i in range(config.num_motor_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to motor cross-sensory") |
|
|
|
self.motor_cross_sensory_layers.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=CrossAttention( |
|
config, |
|
query_dim=config.hidden_size, |
|
kv_dim=config.kv_dim, |
|
layer_idx=layer_idx, |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=True, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_motor_cortex_layers |
|
for i in range(config.num_motor_cortex_layers): |
|
layer_idx = total_layers + i |
|
print(f"Adding layer {layer_idx} to motor cross-association") |
|
|
|
self.motor_cross_assoc_layers.append( |
|
AttentionBlock( |
|
config, |
|
config.hidden_size, |
|
attention_module=CrossAttention( |
|
config, |
|
query_dim=config.hidden_size, |
|
kv_dim=config.kv_dim, |
|
layer_idx=layer_idx, |
|
), |
|
mlp_module=( |
|
NeuroBLASTSparseMoeBlock( |
|
config, |
|
) |
|
if config.num_experts |
|
else NeuroBLASTMoeMLP(config) |
|
), |
|
is_cross_attention=True, |
|
layer_idx=layer_idx, |
|
precomputed_total_layers=precomputed_total_layers, |
|
) |
|
) |
|
|
|
total_layers += config.num_motor_cortex_layers |
|
|
|
|
|
self.sensory_cross_assoc_gate = NeuroBLASTMoeMLP( |
|
config, |
|
) |
|
self.motor_cross_sensory_gate = NeuroBLASTMoeMLP( |
|
config, |
|
) |
|
self.motor_cross_assoc_gate = NeuroBLASTMoeMLP( |
|
config, |
|
) |
|
|
|
|
|
self.norm = nn.LayerNorm( |
|
config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5) |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[ |
|
Cache |
|
] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
): |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("Specify either input_ids or inputs_embeds") |
|
batch_size, seq_length = ( |
|
input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` incompatible with gradient checkpointing. Setting `use_cache=False`" |
|
) |
|
use_cache = False |
|
|
|
if not any(param.requires_grad for param in self.parameters()): |
|
logger.warning_once( |
|
"No parameters require gradients. Disabling gradient checkpointing to avoid warnings." |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
past_key_values_length = 0 |
|
if use_cache: |
|
if not isinstance(past_key_values, Cache): |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_seq_length() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = ( |
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
) |
|
cache_position = torch.arange( |
|
past_seen_tokens, |
|
past_seen_tokens + inputs_embeds.shape[1], |
|
device=inputs_embeds.device, |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, |
|
inputs_embeds, |
|
cache_position, |
|
past_key_values, |
|
output_attentions, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
cos, sin = self.rotary_emb( |
|
hidden_states, seq_len=seq_length + past_key_values_length |
|
) |
|
position_embeddings = (cos, sin) |
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = ( |
|
() if output_attentions else None |
|
) |
|
next_decoder_cache = ( |
|
past_key_values if use_cache else None |
|
) |
|
|
|
if self.config.use_zero_memory: |
|
hx = torch.ones( |
|
(batch_size, seq_length, hidden_states.size(-1)), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
cx = torch.ones( |
|
(batch_size, seq_length, hidden_states.size(-1)), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
if self.training: |
|
hx.requires_grad_() |
|
cx.requires_grad_() |
|
else: |
|
hx = None |
|
cx = None |
|
|
|
|
|
assoc_output = hidden_states |
|
for i, layer in enumerate(self.association_cortex): |
|
if output_hidden_states: |
|
all_hidden_states += (assoc_output,) |
|
if self.gradient_checkpointing and self.training: |
|
outputs = torch.utils.checkpoint.checkpoint( |
|
layer, |
|
assoc_output, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
None, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs = layer( |
|
assoc_output, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
kv_states=None, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
assoc_output = outputs[0] |
|
|
|
hx, cx = outputs[-1 if not use_cache else -2] |
|
|
|
if output_attentions: |
|
all_attentions += (outputs[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
sensory_state = self.assoc_to_sensory_pooler(assoc_output) |
|
|
|
sensory_state = apply_gradient_scaling( |
|
sensory_state, |
|
self.config.association_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
) |
|
|
|
|
|
for i in range(self.config.num_sensory_cortex_layers): |
|
if output_hidden_states: |
|
all_hidden_states += (sensory_state,) |
|
|
|
self_attn_layer = self.sensory_self_attn_layers[i] |
|
if self.gradient_checkpointing and self.training: |
|
outputs_self = torch.utils.checkpoint.checkpoint( |
|
self_attn_layer, |
|
sensory_state, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
None, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs_self = self_attn_layer( |
|
sensory_state, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
kv_states=None, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
sensory_state = outputs_self[0] |
|
hx, cx = outputs_self[-1 if not use_cache else -2] |
|
|
|
if output_attentions: |
|
all_attentions += (outputs_self[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs_self[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
cross_attn_layer = self.sensory_cross_attn_layers[i] |
|
|
|
cross_attn_causal_mask = None |
|
|
|
if causal_mask is not None: |
|
q_seq_len = sensory_state.size(1) |
|
kv_seq_len = assoc_output.size(1) |
|
|
|
cross_attn_causal_mask = torch.ones( |
|
(batch_size, 1, q_seq_len, kv_seq_len), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
causal_mask_upper = torch.triu( |
|
torch.ones((q_seq_len, kv_seq_len), device=hidden_states.device), |
|
diagonal=1, |
|
) |
|
|
|
cross_attn_causal_mask = cross_attn_causal_mask.masked_fill( |
|
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(), |
|
torch.finfo(hidden_states.dtype).min, |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs_cross = torch.utils.checkpoint.checkpoint( |
|
cross_attn_layer, |
|
sensory_state, |
|
position_embeddings, |
|
cross_attn_causal_mask, |
|
position_ids, |
|
assoc_output, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs_cross = cross_attn_layer( |
|
sensory_state, |
|
position_embeddings, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
attention_mask=cross_attn_causal_mask, |
|
position_ids=position_ids, |
|
kv_states=apply_gradient_scaling( |
|
assoc_output, |
|
self.config.cross_attention_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
), |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
|
|
cross_contribution = nn.functional.layer_norm( |
|
outputs_cross[0], |
|
normalized_shape=(self.config.hidden_size,), |
|
eps=getattr(self.config, "rms_norm_eps", 1e-5), |
|
) |
|
|
|
sensory_state = sensory_state + self.sensory_cross_assoc_gate( |
|
cross_contribution |
|
) |
|
|
|
hx, cx = outputs_cross[-1 if not use_cache else -2] |
|
if output_attentions: |
|
all_attentions += (outputs_cross[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs_cross[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
motor_state = self.sensory_to_motor_pooler(sensory_state) |
|
|
|
motor_state = apply_gradient_scaling( |
|
motor_state, |
|
self.config.sensory_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
) |
|
|
|
motor_state_from_assoc = self.assoc_to_motor_pooler(assoc_output) |
|
|
|
motor_state_from_assoc = apply_gradient_scaling( |
|
motor_state_from_assoc, |
|
self.config.association_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
) |
|
|
|
motor_state = motor_state + motor_state_from_assoc |
|
|
|
|
|
for i in range(self.config.num_motor_cortex_layers): |
|
if output_hidden_states: |
|
all_hidden_states += (motor_state,) |
|
|
|
self_attn_layer = self.motor_self_attn_layers[i] |
|
if self.gradient_checkpointing and self.training: |
|
outputs_self = torch.utils.checkpoint.checkpoint( |
|
self_attn_layer, |
|
motor_state, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
None, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs_self = self_attn_layer( |
|
motor_state, |
|
position_embeddings, |
|
causal_mask, |
|
position_ids, |
|
kv_states=None, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
motor_state = outputs_self[0] |
|
hx, cx = outputs_self[-1 if not use_cache else -2] |
|
if output_attentions: |
|
all_attentions += (outputs_self[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs_self[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
cross_sensory_layer = self.motor_cross_sensory_layers[i] |
|
|
|
motor_cross_sensory_mask = None |
|
|
|
if causal_mask is not None: |
|
motor_q_seq_len = motor_state.size(1) |
|
sensory_kv_seq_len = sensory_state.size( |
|
1 |
|
) |
|
|
|
motor_cross_sensory_mask = torch.ones( |
|
(batch_size, 1, motor_q_seq_len, sensory_kv_seq_len), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
causal_mask_upper = torch.triu( |
|
torch.ones( |
|
(motor_q_seq_len, sensory_kv_seq_len), |
|
device=hidden_states.device, |
|
), |
|
diagonal=1, |
|
) |
|
|
|
motor_cross_sensory_mask = motor_cross_sensory_mask.masked_fill( |
|
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(), |
|
torch.finfo(hidden_states.dtype).min, |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs_cross_sensory = torch.utils.checkpoint.checkpoint( |
|
cross_sensory_layer, |
|
motor_state, |
|
position_embeddings, |
|
motor_cross_sensory_mask, |
|
position_ids, |
|
sensory_state, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs_cross_sensory = cross_sensory_layer( |
|
motor_state, |
|
position_embeddings, |
|
attention_mask=motor_cross_sensory_mask, |
|
position_ids=position_ids, |
|
kv_states=apply_gradient_scaling( |
|
sensory_state, |
|
self.config.cross_attention_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
), |
|
output_attentions=output_attentions, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
motor_state = motor_state + self.motor_cross_sensory_gate( |
|
outputs_cross_sensory[0] |
|
) |
|
hx, cx = outputs_cross_sensory[-1 if not use_cache else -2] |
|
if output_attentions: |
|
all_attentions += (outputs_cross_sensory[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs_cross_sensory[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
cross_assoc_layer = self.motor_cross_assoc_layers[i] |
|
|
|
motor_cross_assoc_mask = None |
|
if causal_mask is not None: |
|
motor_q_seq_len = motor_state.size(1) |
|
assoc_kv_seq_len = assoc_output.size( |
|
1 |
|
) |
|
|
|
motor_cross_assoc_mask = torch.ones( |
|
(batch_size, 1, motor_q_seq_len, assoc_kv_seq_len), |
|
device=hidden_states.device, |
|
dtype=hidden_states.dtype, |
|
) |
|
|
|
causal_mask_upper = torch.triu( |
|
torch.ones( |
|
(motor_q_seq_len, assoc_kv_seq_len), device=hidden_states.device |
|
), |
|
diagonal=1, |
|
) |
|
|
|
motor_cross_assoc_mask = motor_cross_assoc_mask.masked_fill( |
|
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(), |
|
torch.finfo(hidden_states.dtype).min, |
|
) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
outputs_cross_assoc = torch.utils.checkpoint.checkpoint( |
|
cross_assoc_layer, |
|
motor_state, |
|
position_embeddings, |
|
motor_cross_assoc_mask, |
|
position_ids, |
|
assoc_output, |
|
next_decoder_cache, |
|
cache_position, |
|
output_attentions, |
|
use_cache, |
|
(hx, cx), |
|
) |
|
else: |
|
outputs_cross_assoc = cross_assoc_layer( |
|
motor_state, |
|
position_embeddings, |
|
attention_mask=motor_cross_assoc_mask, |
|
position_ids=position_ids, |
|
kv_states=apply_gradient_scaling( |
|
assoc_output, |
|
self.config.cross_attention_gradient_scale, |
|
self.config.gradient_scaling_enabled, |
|
), |
|
output_attentions=output_attentions, |
|
past_key_value=next_decoder_cache, |
|
cache_position=cache_position, |
|
use_cache=use_cache, |
|
previous_states=(hx, cx), |
|
) |
|
motor_state = motor_state + self.motor_cross_assoc_gate( |
|
outputs_cross_assoc[0] |
|
) |
|
hx, cx = outputs_cross_assoc[-1 if not use_cache else -2] |
|
if output_attentions: |
|
all_attentions += (outputs_cross_assoc[1],) |
|
|
|
if use_cache: |
|
next_decoder_cache = outputs_cross_assoc[-1] |
|
else: |
|
next_decoder_cache = None |
|
|
|
final_output = self.norm(motor_state) |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (final_output,) |
|
|
|
if not return_dict: |
|
outputs_tuple = (final_output,) |
|
if use_cache: |
|
outputs_tuple += (next_decoder_cache,) |
|
if output_hidden_states: |
|
outputs_tuple += (all_hidden_states,) |
|
if output_attentions: |
|
outputs_tuple += (all_attentions,) |
|
return tuple(v for v in outputs_tuple if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=final_output, |
|
past_key_values=next_decoder_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
|
|
past_seen_tokens = ( |
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
) |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not using_static_cache |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype, device = input_tensor.dtype, input_tensor.device |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
if using_static_cache: |
|
target_length = ( |
|
getattr( |
|
past_key_values, |
|
"get_max_length", |
|
lambda: past_key_values.get_seq_length(), |
|
)() |
|
if hasattr(past_key_values, "get_seq_length") |
|
else sequence_length + past_seen_tokens |
|
) |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type == "cuda" |
|
and not output_attentions |
|
): |
|
causal_mask = AttentionMaskConverter._unmask_unattended( |
|
causal_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
|
|
class NeuroBLASTForCausalLM(NeuroBLASTPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: NeuroBLASTConfig): |
|
super().__init__(config) |
|
self.config = config |
|
self.model = NeuroBLASTModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = torch.nn.Linear(config.hidden_size, self.vocab_size, bias=False) |
|
self.loss_steps = 0 |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def tie_weights(self): |
|
if getattr(self.config, "tie_word_embeddings", False): |
|
output_embeddings = self.get_output_embeddings() |
|
input_embeddings = self.get_input_embeddings() |
|
output_embeddings.weight = input_embeddings.weight |
|
if getattr(output_embeddings, "bias", None) is not None: |
|
output_embeddings.bias.data.zero_() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**loss_kwargs, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function( |
|
logits=logits, |
|
labels=labels, |
|
vocab_size=self.config.vocab_size, |
|
**loss_kwargs, |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def __str__(self): |
|
return f"NeuroBLASTForCausalLM(config={self.config})" |
|
|