Mariusz Kurman
commited on
Commit
·
2a4d1ef
1
Parent(s):
97edb23
Remove registration of NeuroBLAST model in registration.py
Browse files
neuroblast_model/__init__.py
DELETED
|
@@ -1,2 +0,0 @@
|
|
| 1 |
-
from neuroblast_model.configuration_neuroblast import NeuroBLASTConfig
|
| 2 |
-
from neuroblast_model.modeling_neuroblast import NeuroBLASTForCausalLM
|
|
|
|
|
|
|
|
|
neuroblast_model/configuration_neuroblast.py
DELETED
|
@@ -1,85 +0,0 @@
|
|
| 1 |
-
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
-
from transformers.modeling_rope_utils import rope_config_validation
|
| 3 |
-
from typing import Optional
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
class NeuroBLASTConfig(PretrainedConfig):
|
| 7 |
-
model_type = "neuroblast"
|
| 8 |
-
|
| 9 |
-
def __init__(
|
| 10 |
-
self,
|
| 11 |
-
vocab_size=28886,
|
| 12 |
-
hidden_size=2048,
|
| 13 |
-
kv_dim=2048,
|
| 14 |
-
intermediate_size=None,
|
| 15 |
-
num_attention_heads=32,
|
| 16 |
-
num_sensory_cortex_layers=6,
|
| 17 |
-
num_motor_cortex_layers=6,
|
| 18 |
-
num_association_cortex_layers=6,
|
| 19 |
-
dropout=0.1,
|
| 20 |
-
layer_norm_epsilon=1e-6,
|
| 21 |
-
pad_token_id=None,
|
| 22 |
-
use_cache=False,
|
| 23 |
-
rope_theta=10000.0,
|
| 24 |
-
rope_scaling=None,
|
| 25 |
-
max_position_embeddings=2048,
|
| 26 |
-
initializer_range=0.02,
|
| 27 |
-
use_flash_attn=True,
|
| 28 |
-
num_experts=None,
|
| 29 |
-
num_experts_per_tok=None,
|
| 30 |
-
norm_topk_prob=False,
|
| 31 |
-
hidden_act="silu",
|
| 32 |
-
use_zero_memory=False,
|
| 33 |
-
zero_memory_alpha=1.0,
|
| 34 |
-
zero_memory_layers=None,
|
| 35 |
-
gradient_scaling_enabled=True,
|
| 36 |
-
association_gradient_scale=0.9,
|
| 37 |
-
sensory_gradient_scale=0.95,
|
| 38 |
-
cross_attention_gradient_scale=0.95,
|
| 39 |
-
clamp_value=1e5,
|
| 40 |
-
_attn_implementation='sdpa',
|
| 41 |
-
**kwargs
|
| 42 |
-
):
|
| 43 |
-
# Calculate intermediate_size if not provided
|
| 44 |
-
if intermediate_size is None:
|
| 45 |
-
intermediate_size = int(hidden_size * 4 * 2 / 3)
|
| 46 |
-
|
| 47 |
-
super().__init__(
|
| 48 |
-
pad_token_id=pad_token_id,
|
| 49 |
-
**kwargs
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
self.vocab_size = vocab_size
|
| 53 |
-
self.hidden_size = hidden_size
|
| 54 |
-
self.kv_dim = kv_dim
|
| 55 |
-
self.intermediate_size = intermediate_size
|
| 56 |
-
self.num_attention_heads = num_attention_heads
|
| 57 |
-
self.num_sensory_cortex_layers = num_sensory_cortex_layers
|
| 58 |
-
self.num_motor_cortex_layers = num_motor_cortex_layers
|
| 59 |
-
self.num_association_cortex_layers = num_association_cortex_layers
|
| 60 |
-
self.dropout = dropout
|
| 61 |
-
self.layer_norm_epsilon = layer_norm_epsilon
|
| 62 |
-
self.rms_norm_eps = layer_norm_epsilon
|
| 63 |
-
self.use_cache = use_cache
|
| 64 |
-
self.rope_theta = rope_theta
|
| 65 |
-
self.rope_scaling = rope_scaling
|
| 66 |
-
self.max_position_embeddings = max_position_embeddings
|
| 67 |
-
self.initializer_range = initializer_range
|
| 68 |
-
self.use_flash_attn = use_flash_attn
|
| 69 |
-
self.num_experts = num_experts
|
| 70 |
-
self.num_experts_per_tok = num_experts_per_tok
|
| 71 |
-
self.norm_topk_prob = norm_topk_prob
|
| 72 |
-
self.hidden_act = hidden_act
|
| 73 |
-
self.use_zero_memory = use_zero_memory
|
| 74 |
-
self.zero_memory_alpha = zero_memory_alpha
|
| 75 |
-
self.zero_memory_layers = zero_memory_layers
|
| 76 |
-
self.gradient_scaling_enabled = gradient_scaling_enabled
|
| 77 |
-
self.association_gradient_scale = association_gradient_scale
|
| 78 |
-
self.sensory_gradient_scale = sensory_gradient_scale
|
| 79 |
-
self.cross_attention_gradient_scale = cross_attention_gradient_scale
|
| 80 |
-
self._attn_implementation = _attn_implementation
|
| 81 |
-
self.clamp_value = clamp_value
|
| 82 |
-
|
| 83 |
-
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 84 |
-
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 85 |
-
rope_config_validation(self)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
neuroblast_model/modeling_neuroblast.py
DELETED
|
@@ -1,1961 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import math
|
| 3 |
-
from torch import nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
from transformers import PreTrainedModel, GenerationMixin
|
| 6 |
-
from transformers.cache_utils import DynamicCache, Cache
|
| 7 |
-
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 8 |
-
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 9 |
-
from transformers.utils import logging
|
| 10 |
-
from transformers.modeling_outputs import (
|
| 11 |
-
BaseModelOutputWithPast,
|
| 12 |
-
CausalLMOutputWithPast,
|
| 13 |
-
)
|
| 14 |
-
from transformers.activations import ACT2FN
|
| 15 |
-
from typing import Optional, Tuple, Union, List
|
| 16 |
-
from neuroblast_model.configuration_neuroblast import NeuroBLASTConfig
|
| 17 |
-
|
| 18 |
-
CLAMP_VALUE = 1e5
|
| 19 |
-
|
| 20 |
-
logger = logging.get_logger(__name__)
|
| 21 |
-
|
| 22 |
-
def apply_gradient_scaling(
|
| 23 |
-
tensor: torch.Tensor, scale: float, enabled: bool = True
|
| 24 |
-
) -> torch.Tensor:
|
| 25 |
-
"""
|
| 26 |
-
Apply gradient scaling to a tensor.
|
| 27 |
-
This scales the gradients during backward pass while keeping forward pass unchanged.
|
| 28 |
-
"""
|
| 29 |
-
if not enabled or scale == 1.0 or not tensor.requires_grad:
|
| 30 |
-
return tensor
|
| 31 |
-
|
| 32 |
-
# Use a custom autograd function for gradient scaling
|
| 33 |
-
class GradientScale(torch.autograd.Function):
|
| 34 |
-
@staticmethod
|
| 35 |
-
def forward(ctx, input_tensor, scale_factor):
|
| 36 |
-
ctx.scale = scale_factor
|
| 37 |
-
return input_tensor.clone()
|
| 38 |
-
|
| 39 |
-
@staticmethod
|
| 40 |
-
def backward(ctx, grad_output):
|
| 41 |
-
if grad_output is None:
|
| 42 |
-
return None, None
|
| 43 |
-
return grad_output * ctx.scale, None
|
| 44 |
-
|
| 45 |
-
return GradientScale.apply(tensor, scale)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 49 |
-
attention_mask: torch.Tensor,
|
| 50 |
-
sequence_length: int,
|
| 51 |
-
target_length: int,
|
| 52 |
-
dtype: torch.dtype,
|
| 53 |
-
device: torch.device,
|
| 54 |
-
min_dtype: float,
|
| 55 |
-
cache_position: torch.Tensor,
|
| 56 |
-
batch_size: int,
|
| 57 |
-
):
|
| 58 |
-
if attention_mask is not None and attention_mask.dim() == 4:
|
| 59 |
-
causal_mask = attention_mask
|
| 60 |
-
else:
|
| 61 |
-
causal_mask = torch.full(
|
| 62 |
-
(sequence_length, target_length),
|
| 63 |
-
fill_value=min_dtype,
|
| 64 |
-
dtype=dtype,
|
| 65 |
-
device=device,
|
| 66 |
-
)
|
| 67 |
-
if sequence_length != 1:
|
| 68 |
-
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 69 |
-
causal_mask *= torch.arange(
|
| 70 |
-
target_length, device=device
|
| 71 |
-
) > cache_position.reshape(-1, 1)
|
| 72 |
-
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 73 |
-
if attention_mask is not None:
|
| 74 |
-
causal_mask = (
|
| 75 |
-
causal_mask.clone()
|
| 76 |
-
)
|
| 77 |
-
mask_length = attention_mask.shape[-1]
|
| 78 |
-
padding_mask = (
|
| 79 |
-
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 80 |
-
)
|
| 81 |
-
padding_mask = padding_mask == 0
|
| 82 |
-
causal_mask[:, :, :, :mask_length] = causal_mask[
|
| 83 |
-
:, :, :, :mask_length
|
| 84 |
-
].masked_fill(padding_mask, min_dtype)
|
| 85 |
-
|
| 86 |
-
return causal_mask
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# --- RoPE Implementation (using HF LlamaRotaryEmbedding) ---
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
class LlamaRMSNorm(nn.Module):
|
| 93 |
-
def __init__(self, hidden_size, eps=1e-6):
|
| 94 |
-
"""
|
| 95 |
-
LlamaRMSNorm is equivalent to T5LayerNorm
|
| 96 |
-
"""
|
| 97 |
-
super().__init__()
|
| 98 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 99 |
-
self.variance_epsilon = eps
|
| 100 |
-
|
| 101 |
-
def forward(self, hidden_states):
|
| 102 |
-
input_dtype = hidden_states.dtype
|
| 103 |
-
hidden_states = hidden_states.to(torch.float32)
|
| 104 |
-
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 105 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 106 |
-
return self.weight * hidden_states.to(input_dtype)
|
| 107 |
-
|
| 108 |
-
def extra_repr(self):
|
| 109 |
-
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
class NeuroBLASTRotaryEmbedding(nn.Module):
|
| 113 |
-
"""
|
| 114 |
-
Rotary Positional Embedding for NeuroBLAST model.
|
| 115 |
-
Source: LlamaRotaryEmbedding
|
| 116 |
-
"""
|
| 117 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 118 |
-
super().__init__()
|
| 119 |
-
self.dim = dim
|
| 120 |
-
self.max_position_embeddings = max_position_embeddings
|
| 121 |
-
self.base = base
|
| 122 |
-
inv_freq = 1.0 / (
|
| 123 |
-
self.base
|
| 124 |
-
** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim)
|
| 125 |
-
)
|
| 126 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 127 |
-
self._set_cos_sin_cache(
|
| 128 |
-
seq_len=max_position_embeddings, device="cpu", dtype=torch.float32
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 132 |
-
self.max_seq_len_cached = seq_len
|
| 133 |
-
t = torch.arange(
|
| 134 |
-
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
| 135 |
-
)
|
| 136 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 137 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 138 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 139 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 140 |
-
|
| 141 |
-
def forward(self, x, seq_len=None):
|
| 142 |
-
if seq_len > self.max_seq_len_cached:
|
| 143 |
-
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 144 |
-
elif self.cos_cached.device != x.device or self.cos_cached.dtype != x.dtype:
|
| 145 |
-
self.cos_cached = self.cos_cached.to(device=x.device, dtype=x.dtype)
|
| 146 |
-
self.sin_cached = self.sin_cached.to(device=x.device, dtype=x.dtype)
|
| 147 |
-
|
| 148 |
-
return (
|
| 149 |
-
self.cos_cached[:seq_len],
|
| 150 |
-
self.sin_cached[:seq_len],
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def rotate_half(x):
|
| 155 |
-
"""Rotates half the hidden dims of the input."""
|
| 156 |
-
x1 = x[..., : x.shape[-1] // 2]
|
| 157 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
| 158 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 162 |
-
""" Applies rotary positional embeddings to query and key tensors."""
|
| 163 |
-
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 164 |
-
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
| 165 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 166 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 167 |
-
return q_embed, k_embed
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
# Overload for Cross Attention where only query is rotated
|
| 171 |
-
def apply_rotary_pos_emb_single(q, cos, sin, position_ids):
|
| 172 |
-
""" Applies rotary positional embeddings to query tensor. """
|
| 173 |
-
cos = cos[position_ids].unsqueeze(1) # [1, 1, seq_len, dim]
|
| 174 |
-
sin = sin[position_ids].unsqueeze(1) # [1, 1, seq_len, dim]
|
| 175 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 176 |
-
return q_embed
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
class SwiGLUMLP(nn.Module):
|
| 180 |
-
"""SwiGLU MLP block"""
|
| 181 |
-
|
| 182 |
-
def __init__(self, hidden_size, config: NeuroBLASTConfig, dropout):
|
| 183 |
-
super().__init__()
|
| 184 |
-
intermediate_size = getattr(config, "intermediate_size", int(hidden_size * 2.5))
|
| 185 |
-
self.init_std = getattr(config, "initializer_range", 0.02)
|
| 186 |
-
self.clamp_value = config.clamp_value
|
| 187 |
-
|
| 188 |
-
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=True)
|
| 189 |
-
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 190 |
-
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 191 |
-
self.act_fn = nn.SiLU()
|
| 192 |
-
self.dropout = nn.Dropout(dropout)
|
| 193 |
-
|
| 194 |
-
if config.num_experts is not None:
|
| 195 |
-
self.experts = NeuroBLASTSparseMoeBlock(config)
|
| 196 |
-
|
| 197 |
-
# Re-enable scaled initialization
|
| 198 |
-
with torch.no_grad():
|
| 199 |
-
# Scale down initial weights in the up/gate projections
|
| 200 |
-
self.gate_proj.weight.data.normal_(
|
| 201 |
-
mean=0.0,
|
| 202 |
-
std=self.init_std / math.sqrt(hidden_size), # Scale by input dim
|
| 203 |
-
)
|
| 204 |
-
if self.gate_proj.bias is not None:
|
| 205 |
-
self.gate_proj.bias.data.zero_()
|
| 206 |
-
|
| 207 |
-
self.up_proj.weight.data.normal_(
|
| 208 |
-
mean=0.0, std=self.init_std / math.sqrt(hidden_size)
|
| 209 |
-
) # Scale by input dim
|
| 210 |
-
# Scale down initial weights in the down projection even further
|
| 211 |
-
self.down_proj.weight.data.normal_(
|
| 212 |
-
mean=0.0,
|
| 213 |
-
std=self.init_std
|
| 214 |
-
/ math.sqrt(intermediate_size), # Scale by intermediate dim
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
def forward(self, x):
|
| 218 |
-
gated_x = self.gate_proj(x)
|
| 219 |
-
activated_x = self.act_fn(gated_x)
|
| 220 |
-
up_projected_x = self.up_proj(x)
|
| 221 |
-
|
| 222 |
-
intermediate_activation = activated_x * up_projected_x
|
| 223 |
-
|
| 224 |
-
# Clamp the intermediate activation before down_proj
|
| 225 |
-
clamp_value = self.clamp_value
|
| 226 |
-
|
| 227 |
-
intermediate_activation = torch.clamp(
|
| 228 |
-
intermediate_activation, min=-clamp_value, max=clamp_value
|
| 229 |
-
)
|
| 230 |
-
intermediate_activation = torch.nan_to_num(
|
| 231 |
-
intermediate_activation
|
| 232 |
-
) # Safeguard against NaNs
|
| 233 |
-
|
| 234 |
-
y = self.down_proj(intermediate_activation)
|
| 235 |
-
y = self.dropout(y)
|
| 236 |
-
|
| 237 |
-
if hasattr(self, "experts"):
|
| 238 |
-
z = self.experts(y)
|
| 239 |
-
|
| 240 |
-
y = y + z
|
| 241 |
-
|
| 242 |
-
return y
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
class NeuroBLASTMoeMLP(nn.Module):
|
| 246 |
-
""" Source: Qwen3MoeMLP """
|
| 247 |
-
def __init__(self, config, intermediate_size=None):
|
| 248 |
-
super().__init__()
|
| 249 |
-
self.config = config
|
| 250 |
-
self.clamp_value = config.clamp_value
|
| 251 |
-
self.hidden_size = config.hidden_size
|
| 252 |
-
self.intermediate_size = (
|
| 253 |
-
intermediate_size
|
| 254 |
-
if intermediate_size is not None
|
| 255 |
-
else config.intermediate_size
|
| 256 |
-
)
|
| 257 |
-
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 258 |
-
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 259 |
-
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 260 |
-
self.act_fn = ACT2FN[config.hidden_act]
|
| 261 |
-
|
| 262 |
-
def forward(self, x):
|
| 263 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 264 |
-
|
| 265 |
-
down_proj = torch.clamp(down_proj, min=-self.clamp_value, max=self.clamp_value)
|
| 266 |
-
down_proj = torch.nan_to_num(down_proj) # Safeguard against NaNs
|
| 267 |
-
|
| 268 |
-
return down_proj
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
class NeuroBLASTSparseMoeBlock(nn.Module):
|
| 272 |
-
""" Source: Qwen3SparseMoeBlock """
|
| 273 |
-
def __init__(self, config):
|
| 274 |
-
super().__init__()
|
| 275 |
-
self.num_experts = config.num_experts
|
| 276 |
-
self.top_k = config.num_experts_per_tok
|
| 277 |
-
self.norm_topk_prob = config.norm_topk_prob
|
| 278 |
-
|
| 279 |
-
# gating
|
| 280 |
-
self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
|
| 281 |
-
self.experts = nn.ModuleList(
|
| 282 |
-
[NeuroBLASTMoeMLP(config) for _ in range(self.num_experts)]
|
| 283 |
-
)
|
| 284 |
-
|
| 285 |
-
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 286 |
-
""" """
|
| 287 |
-
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 288 |
-
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 289 |
-
# router_logits: (batch * sequence_length, n_experts)
|
| 290 |
-
router_logits = self.gate(hidden_states)
|
| 291 |
-
|
| 292 |
-
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 293 |
-
routing_weights, selected_experts = torch.topk(
|
| 294 |
-
routing_weights, self.top_k, dim=-1
|
| 295 |
-
)
|
| 296 |
-
if self.norm_topk_prob: # only diff with mixtral sparse moe block!
|
| 297 |
-
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 298 |
-
# we cast back to the input dtype
|
| 299 |
-
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 300 |
-
|
| 301 |
-
final_hidden_states = torch.zeros(
|
| 302 |
-
(batch_size * sequence_length, hidden_dim),
|
| 303 |
-
dtype=hidden_states.dtype,
|
| 304 |
-
device=hidden_states.device,
|
| 305 |
-
)
|
| 306 |
-
|
| 307 |
-
# One hot encode the selected experts to create an expert mask
|
| 308 |
-
# this will be used to easily index which expert is going to be sollicitated
|
| 309 |
-
expert_mask = torch.nn.functional.one_hot(
|
| 310 |
-
selected_experts, num_classes=self.num_experts
|
| 311 |
-
).permute(2, 1, 0)
|
| 312 |
-
|
| 313 |
-
# Loop over all available experts in the model and perform the computation on each expert
|
| 314 |
-
for expert_idx in range(self.num_experts):
|
| 315 |
-
expert_layer = self.experts[expert_idx]
|
| 316 |
-
idx, top_x = torch.where(expert_mask[expert_idx])
|
| 317 |
-
|
| 318 |
-
# Index the correct hidden states and compute the expert hidden state for
|
| 319 |
-
# the current expert. We need to make sure to multiply the output hidden
|
| 320 |
-
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
| 321 |
-
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
|
| 322 |
-
current_hidden_states = (
|
| 323 |
-
expert_layer(current_state) * routing_weights[top_x, idx, None]
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
# However `index_add_` only support torch tensors for indexing so we'll use
|
| 327 |
-
# the `top_x` tensor here.
|
| 328 |
-
final_hidden_states.index_add_(
|
| 329 |
-
0, top_x, current_hidden_states.to(hidden_states.dtype)
|
| 330 |
-
)
|
| 331 |
-
final_hidden_states = final_hidden_states.reshape(
|
| 332 |
-
batch_size, sequence_length, hidden_dim
|
| 333 |
-
)
|
| 334 |
-
return final_hidden_states
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
class NeuroBLASTRouterBlock(nn.Module):
|
| 338 |
-
""" Memory router; overcomplicated due to backward compatibility """
|
| 339 |
-
def __init__(
|
| 340 |
-
self,
|
| 341 |
-
config,
|
| 342 |
-
hidden_size,
|
| 343 |
-
):
|
| 344 |
-
super().__init__()
|
| 345 |
-
self.num_experts = 2
|
| 346 |
-
self.top_k = 1
|
| 347 |
-
self.norm_topk_prob = config.norm_topk_prob
|
| 348 |
-
|
| 349 |
-
# gating
|
| 350 |
-
self.gate = nn.Linear(hidden_size, self.num_experts, bias=False)
|
| 351 |
-
|
| 352 |
-
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 353 |
-
""" """
|
| 354 |
-
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
| 355 |
-
hidden_states = hidden_states.view(-1, hidden_dim)
|
| 356 |
-
# router_logits: (batch * sequence_length, n_experts)
|
| 357 |
-
router_logits = self.gate(hidden_states)
|
| 358 |
-
|
| 359 |
-
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
| 360 |
-
routing_weights, selected_experts = torch.topk(
|
| 361 |
-
routing_weights, self.top_k, dim=-1
|
| 362 |
-
)
|
| 363 |
-
if self.norm_topk_prob: # only diff with mixtral sparse moe block!
|
| 364 |
-
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 365 |
-
# we cast back to the input dtype
|
| 366 |
-
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 367 |
-
|
| 368 |
-
return routing_weights, selected_experts
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
class SelfAttention(torch.nn.Module):
|
| 372 |
-
def __init__(
|
| 373 |
-
self,
|
| 374 |
-
config: NeuroBLASTConfig,
|
| 375 |
-
hidden_size: int,
|
| 376 |
-
is_causal: bool = False,
|
| 377 |
-
layer_idx: Optional[int] = None,
|
| 378 |
-
):
|
| 379 |
-
super().__init__()
|
| 380 |
-
self.is_causal = is_causal
|
| 381 |
-
self.dropout_p = config.dropout # Will apply based on self.training
|
| 382 |
-
self.layer_idx = layer_idx
|
| 383 |
-
self.hidden_size = hidden_size
|
| 384 |
-
self.intermediate_size = config.kv_dim
|
| 385 |
-
self.use_flash_attn = config.use_flash_attn
|
| 386 |
-
# Allow overriding num_heads, default to config.num_attention_heads
|
| 387 |
-
self.num_heads = getattr(
|
| 388 |
-
config, f"num_heads_{layer_idx}", config.num_attention_heads
|
| 389 |
-
)
|
| 390 |
-
self.head_dim = self.intermediate_size // self.num_heads
|
| 391 |
-
|
| 392 |
-
if (self.head_dim * self.num_heads) != self.intermediate_size:
|
| 393 |
-
raise ValueError(
|
| 394 |
-
f"Layer {self.layer_idx}: hidden_size ({self.intermediate_size}) must be divisible by num_heads ({self.num_heads})"
|
| 395 |
-
)
|
| 396 |
-
|
| 397 |
-
self.qkv_proj = nn.Linear(
|
| 398 |
-
self.hidden_size, self.intermediate_size * 3, bias=True
|
| 399 |
-
)
|
| 400 |
-
self.o_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 401 |
-
self.dropout = nn.Dropout(config.dropout)
|
| 402 |
-
|
| 403 |
-
def forward(
|
| 404 |
-
self,
|
| 405 |
-
hidden_states: torch.Tensor,
|
| 406 |
-
position_embeddings: Tuple[torch.Tensor, torch.Tensor], # (cos, sin)
|
| 407 |
-
attention_mask: Optional[
|
| 408 |
-
torch.Tensor
|
| 409 |
-
], # Not directly used by flash_attn causal
|
| 410 |
-
past_key_value: Optional[Cache] = None,
|
| 411 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 412 |
-
output_attentions: Optional[bool] = False,
|
| 413 |
-
use_cache: Optional[bool] = False,
|
| 414 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 415 |
-
):
|
| 416 |
-
batch_size, seq_len, _ = hidden_states.shape
|
| 417 |
-
dropout_p = self.dropout_p if self.training else 0.0
|
| 418 |
-
|
| 419 |
-
qkv = self.qkv_proj(hidden_states)
|
| 420 |
-
query_states, key_states, value_states = qkv.chunk(3, dim=-1)
|
| 421 |
-
|
| 422 |
-
query_states = query_states.view(
|
| 423 |
-
batch_size, seq_len, self.num_heads, self.head_dim
|
| 424 |
-
).transpose(1, 2)
|
| 425 |
-
key_states = key_states.view(
|
| 426 |
-
batch_size, seq_len, self.num_heads, self.head_dim
|
| 427 |
-
).transpose(1, 2)
|
| 428 |
-
value_states = value_states.view(
|
| 429 |
-
batch_size, seq_len, self.num_heads, self.head_dim
|
| 430 |
-
).transpose(1, 2)
|
| 431 |
-
|
| 432 |
-
cos, sin = position_embeddings
|
| 433 |
-
query_states, key_states = apply_rotary_pos_emb(
|
| 434 |
-
query_states, key_states, cos, sin, position_ids
|
| 435 |
-
)
|
| 436 |
-
|
| 437 |
-
if past_key_value is not None:
|
| 438 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 439 |
-
# When using Cache object, updating happens in-place.
|
| 440 |
-
key_states, value_states = past_key_value.update(
|
| 441 |
-
key_states, value_states, self.layer_idx, cache_kwargs
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
if self.use_flash_attn:
|
| 445 |
-
causal_mask = attention_mask
|
| 446 |
-
if attention_mask is not None:
|
| 447 |
-
if attention_mask.dim() == 4:
|
| 448 |
-
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 449 |
-
elif attention_mask.dim() == 2:
|
| 450 |
-
causal_mask = attention_mask
|
| 451 |
-
|
| 452 |
-
if causal_mask.dtype not in [
|
| 453 |
-
torch.bool,
|
| 454 |
-
torch.float16,
|
| 455 |
-
torch.float32,
|
| 456 |
-
torch.bfloat16,
|
| 457 |
-
]:
|
| 458 |
-
causal_mask = causal_mask.to(query_states.dtype)
|
| 459 |
-
|
| 460 |
-
is_causal = (
|
| 461 |
-
True if causal_mask is None and query_states.shape[-2] > 1 else False
|
| 462 |
-
)
|
| 463 |
-
|
| 464 |
-
attn_output = F.scaled_dot_product_attention(
|
| 465 |
-
query_states,
|
| 466 |
-
key_states,
|
| 467 |
-
value_states,
|
| 468 |
-
attn_mask=causal_mask,
|
| 469 |
-
dropout_p=dropout_p,
|
| 470 |
-
enable_gqa=False,
|
| 471 |
-
scale=self.head_dim**-0.5,
|
| 472 |
-
is_causal=is_causal,
|
| 473 |
-
)
|
| 474 |
-
attn_weights = None
|
| 475 |
-
else:
|
| 476 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(-1, -2)) / (
|
| 477 |
-
self.head_dim**0.5
|
| 478 |
-
)
|
| 479 |
-
|
| 480 |
-
if attention_mask is not None:
|
| 481 |
-
attn_weights = attn_weights + attention_mask
|
| 482 |
-
elif self.is_causal and seq_len > 1:
|
| 483 |
-
causal_mask = torch.triu(
|
| 484 |
-
torch.ones(
|
| 485 |
-
(seq_len, key_states.shape[2]),
|
| 486 |
-
dtype=torch.bool,
|
| 487 |
-
device=query_states.device,
|
| 488 |
-
),
|
| 489 |
-
diagonal=1,
|
| 490 |
-
)
|
| 491 |
-
attn_weights = attn_weights.masked_fill(
|
| 492 |
-
causal_mask.unsqueeze(0).unsqueeze(0), float("-inf")
|
| 493 |
-
)
|
| 494 |
-
|
| 495 |
-
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 496 |
-
attn_weights_dropped = F.dropout(
|
| 497 |
-
attn_weights, p=dropout_p, training=self.training
|
| 498 |
-
)
|
| 499 |
-
attn_output = torch.matmul(attn_weights_dropped, value_states)
|
| 500 |
-
|
| 501 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 502 |
-
attn_output = attn_output.view(batch_size, seq_len, -1)
|
| 503 |
-
attn_output = self.o_proj(attn_output)
|
| 504 |
-
attn_output = self.dropout(attn_output)
|
| 505 |
-
|
| 506 |
-
if output_attentions:
|
| 507 |
-
logger.warning(
|
| 508 |
-
f"Layer {self.layer_idx}: Flash Attention does not return attention weights."
|
| 509 |
-
)
|
| 510 |
-
|
| 511 |
-
outputs = (attn_output,)
|
| 512 |
-
if output_attentions:
|
| 513 |
-
outputs += (attn_weights,)
|
| 514 |
-
if use_cache:
|
| 515 |
-
outputs += (past_key_value,) # Return the cache object
|
| 516 |
-
|
| 517 |
-
return outputs
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
class CrossAttention(torch.nn.Module):
|
| 521 |
-
def __init__(
|
| 522 |
-
self,
|
| 523 |
-
config: NeuroBLASTConfig,
|
| 524 |
-
query_dim: int,
|
| 525 |
-
kv_dim: int,
|
| 526 |
-
layer_idx: int,
|
| 527 |
-
is_causal: bool = True,
|
| 528 |
-
):
|
| 529 |
-
super().__init__()
|
| 530 |
-
self.dropout_p = config.dropout
|
| 531 |
-
self.layer_idx = layer_idx
|
| 532 |
-
self.query_dim = query_dim
|
| 533 |
-
self.kv_dim = kv_dim
|
| 534 |
-
self.is_causal = is_causal
|
| 535 |
-
|
| 536 |
-
self.num_heads = config.num_attention_heads
|
| 537 |
-
self.head_dim = self.kv_dim // self.num_heads
|
| 538 |
-
self.kv_head_dim = (
|
| 539 |
-
self.kv_dim // self.num_heads
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
if (self.head_dim * self.num_heads) != self.kv_dim:
|
| 543 |
-
raise ValueError(
|
| 544 |
-
f"CrossAttn {layer_idx}: query_dim ({self.kv_dim}) must be divisible by num_heads ({self.num_heads})"
|
| 545 |
-
)
|
| 546 |
-
if (self.kv_head_dim * self.num_heads) != self.kv_dim:
|
| 547 |
-
raise ValueError(
|
| 548 |
-
f"CrossAttn {layer_idx}: kv_dim ({kv_dim}) must be divisible by num_heads ({self.num_heads})"
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
self.q_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True)
|
| 552 |
-
self.k_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True)
|
| 553 |
-
self.v_proj = nn.Linear(self.query_dim, self.kv_dim, bias=True)
|
| 554 |
-
self.o_proj = nn.Linear(self.kv_dim, self.query_dim, bias=False)
|
| 555 |
-
self.dropout = nn.Dropout(config.dropout)
|
| 556 |
-
|
| 557 |
-
self.use_flash_attn = hasattr(
|
| 558 |
-
F, "scaled_dot_product_attention"
|
| 559 |
-
)
|
| 560 |
-
|
| 561 |
-
def forward(
|
| 562 |
-
self,
|
| 563 |
-
query_states: torch.Tensor,
|
| 564 |
-
kv_states: torch.Tensor,
|
| 565 |
-
position_embeddings: Tuple[
|
| 566 |
-
torch.Tensor, torch.Tensor
|
| 567 |
-
],
|
| 568 |
-
past_key_value: Optional[Cache] = None,
|
| 569 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 570 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 571 |
-
output_attentions: Optional[bool] = False,
|
| 572 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 573 |
-
use_cache: Optional[bool] = False,
|
| 574 |
-
):
|
| 575 |
-
batch_size, q_seq_len, _ = query_states.shape
|
| 576 |
-
kv_seq_len = kv_states.shape[1]
|
| 577 |
-
dropout_p = self.dropout_p if self.training else 0.0
|
| 578 |
-
|
| 579 |
-
query = self.q_proj(query_states)
|
| 580 |
-
key = self.k_proj(kv_states)
|
| 581 |
-
value = self.v_proj(kv_states)
|
| 582 |
-
|
| 583 |
-
query = query.view(
|
| 584 |
-
batch_size, q_seq_len, self.num_heads, self.head_dim
|
| 585 |
-
).transpose(1, 2)
|
| 586 |
-
|
| 587 |
-
cos, sin = position_embeddings
|
| 588 |
-
query = apply_rotary_pos_emb_single(query, cos, sin, position_ids)
|
| 589 |
-
|
| 590 |
-
if past_key_value is not None:
|
| 591 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 592 |
-
key, value = past_key_value.update(
|
| 593 |
-
key, value, self.layer_idx or 0, cache_kwargs
|
| 594 |
-
)
|
| 595 |
-
kv_seq_len = key.shape[1]
|
| 596 |
-
|
| 597 |
-
key = key.view(
|
| 598 |
-
batch_size, kv_seq_len, self.num_heads, self.kv_head_dim
|
| 599 |
-
).transpose(1, 2)
|
| 600 |
-
value = value.view(
|
| 601 |
-
batch_size, kv_seq_len, self.num_heads, self.kv_head_dim
|
| 602 |
-
).transpose(1, 2)
|
| 603 |
-
|
| 604 |
-
sdpa_attn_mask = attention_mask
|
| 605 |
-
|
| 606 |
-
if self.use_flash_attn:
|
| 607 |
-
is_causal = True if sdpa_attn_mask is None and q_seq_len > 1 else False
|
| 608 |
-
attn_output = F.scaled_dot_product_attention(
|
| 609 |
-
query,
|
| 610 |
-
key,
|
| 611 |
-
value,
|
| 612 |
-
attn_mask=sdpa_attn_mask if not is_causal else None,
|
| 613 |
-
dropout_p=dropout_p,
|
| 614 |
-
is_causal=is_causal,
|
| 615 |
-
enable_gqa=False,
|
| 616 |
-
scale=self.head_dim**-0.5,
|
| 617 |
-
)
|
| 618 |
-
attn_weights = None
|
| 619 |
-
else:
|
| 620 |
-
attn_weights = torch.matmul(query, key.transpose(-1, -2)) / (
|
| 621 |
-
self.head_dim**0.5
|
| 622 |
-
)
|
| 623 |
-
|
| 624 |
-
if sdpa_attn_mask is not None:
|
| 625 |
-
attn_weights = attn_weights + sdpa_attn_mask
|
| 626 |
-
elif self.is_causal and q_seq_len > 1:
|
| 627 |
-
causal_mask = torch.triu(
|
| 628 |
-
torch.ones(
|
| 629 |
-
(q_seq_len, kv_seq_len), dtype=torch.bool, device=query.device
|
| 630 |
-
),
|
| 631 |
-
diagonal=1,
|
| 632 |
-
)
|
| 633 |
-
attn_weights = attn_weights.masked_fill(
|
| 634 |
-
causal_mask.unsqueeze(0).unsqueeze(0), float("-inf")
|
| 635 |
-
)
|
| 636 |
-
|
| 637 |
-
attn_weights = F.softmax(attn_weights, dim=-1)
|
| 638 |
-
attn_weights_dropped = F.dropout(
|
| 639 |
-
attn_weights, p=dropout_p, training=self.training
|
| 640 |
-
)
|
| 641 |
-
attn_output = torch.matmul(attn_weights_dropped, value)
|
| 642 |
-
|
| 643 |
-
attn_output = attn_output.transpose(
|
| 644 |
-
1, 2
|
| 645 |
-
).contiguous()
|
| 646 |
-
attn_output = attn_output.reshape(batch_size, q_seq_len, self.kv_dim)
|
| 647 |
-
|
| 648 |
-
attn_output = self.o_proj(attn_output)
|
| 649 |
-
attn_output = self.dropout(attn_output)
|
| 650 |
-
|
| 651 |
-
outputs = (attn_output,)
|
| 652 |
-
if output_attentions:
|
| 653 |
-
outputs += (attn_weights,)
|
| 654 |
-
|
| 655 |
-
if use_cache:
|
| 656 |
-
outputs += (past_key_value,)
|
| 657 |
-
|
| 658 |
-
return outputs
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
class AttentionBlock(torch.nn.Module):
|
| 662 |
-
"""Modified Attention Block with Pre-Norm and choice of Self/Cross Attention & MLP"""
|
| 663 |
-
|
| 664 |
-
def __init__(
|
| 665 |
-
self,
|
| 666 |
-
config: NeuroBLASTConfig,
|
| 667 |
-
hidden_size: int,
|
| 668 |
-
attention_module: nn.Module,
|
| 669 |
-
mlp_module: nn.Module,
|
| 670 |
-
is_cross_attention: bool = False,
|
| 671 |
-
layer_idx: int = 0,
|
| 672 |
-
precomputed_total_layers: Optional[int] = None,
|
| 673 |
-
):
|
| 674 |
-
super().__init__()
|
| 675 |
-
self.hidden_size = hidden_size
|
| 676 |
-
self.config = config
|
| 677 |
-
self.layer_idx = layer_idx
|
| 678 |
-
self.is_cross_attention = is_cross_attention
|
| 679 |
-
|
| 680 |
-
self.input_layernorm = nn.LayerNorm(
|
| 681 |
-
hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
|
| 682 |
-
)
|
| 683 |
-
self.attention = attention_module
|
| 684 |
-
|
| 685 |
-
self.post_attention_layernorm = nn.LayerNorm(
|
| 686 |
-
hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
|
| 687 |
-
)
|
| 688 |
-
self.mlp = mlp_module
|
| 689 |
-
|
| 690 |
-
if self.config.use_zero_memory and (
|
| 691 |
-
self.config.zero_memory_layers is None
|
| 692 |
-
or self.layer_idx in self.config.zero_memory_layers
|
| 693 |
-
):
|
| 694 |
-
self.router = NeuroBLASTRouterBlock(config, hidden_size)
|
| 695 |
-
self.memory = NeuroBLASTMemory(
|
| 696 |
-
config,
|
| 697 |
-
hidden_size=hidden_size,
|
| 698 |
-
layer_idx=layer_idx,
|
| 699 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 700 |
-
)
|
| 701 |
-
|
| 702 |
-
def forward(
|
| 703 |
-
self,
|
| 704 |
-
hidden_states: torch.Tensor,
|
| 705 |
-
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 706 |
-
attention_mask: Optional[torch.Tensor],
|
| 707 |
-
position_ids: Optional[torch.LongTensor],
|
| 708 |
-
kv_states: Optional[torch.Tensor] = None,
|
| 709 |
-
past_key_value: Optional[Cache] = None,
|
| 710 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 711 |
-
output_attentions: Optional[bool] = False,
|
| 712 |
-
use_cache: Optional[bool] = False,
|
| 713 |
-
previous_states: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 714 |
-
):
|
| 715 |
-
residual = hidden_states
|
| 716 |
-
hidden_states = torch.nan_to_num(hidden_states)
|
| 717 |
-
normed_hidden_states = self.input_layernorm(hidden_states)
|
| 718 |
-
|
| 719 |
-
if self.is_cross_attention:
|
| 720 |
-
if kv_states is None:
|
| 721 |
-
raise ValueError("kv_states must be provided for CrossAttention")
|
| 722 |
-
attn_outputs = self.attention(
|
| 723 |
-
query_states=normed_hidden_states,
|
| 724 |
-
kv_states=kv_states,
|
| 725 |
-
past_key_value=past_key_value,
|
| 726 |
-
cache_position=cache_position,
|
| 727 |
-
position_embeddings=position_embeddings,
|
| 728 |
-
attention_mask=attention_mask,
|
| 729 |
-
output_attentions=output_attentions,
|
| 730 |
-
position_ids=position_ids,
|
| 731 |
-
use_cache=use_cache,
|
| 732 |
-
)
|
| 733 |
-
else:
|
| 734 |
-
attn_outputs = self.attention(
|
| 735 |
-
normed_hidden_states,
|
| 736 |
-
position_embeddings=position_embeddings,
|
| 737 |
-
attention_mask=attention_mask,
|
| 738 |
-
past_key_value=past_key_value,
|
| 739 |
-
cache_position=cache_position,
|
| 740 |
-
output_attentions=output_attentions,
|
| 741 |
-
use_cache=use_cache,
|
| 742 |
-
position_ids=position_ids,
|
| 743 |
-
)
|
| 744 |
-
attn_output = attn_outputs[0]
|
| 745 |
-
past_key_value = attn_outputs[-1] if use_cache else None
|
| 746 |
-
|
| 747 |
-
hidden_states = residual + attn_output
|
| 748 |
-
hidden_states = torch.nan_to_num(hidden_states)
|
| 749 |
-
|
| 750 |
-
residual = hidden_states
|
| 751 |
-
|
| 752 |
-
normed_hidden_states = self.post_attention_layernorm(hidden_states)
|
| 753 |
-
|
| 754 |
-
mlp_output = self.mlp(normed_hidden_states)
|
| 755 |
-
|
| 756 |
-
hidden_states = residual + mlp_output
|
| 757 |
-
|
| 758 |
-
hidden_states = torch.nan_to_num(hidden_states)
|
| 759 |
-
|
| 760 |
-
if self.config.use_zero_memory and (
|
| 761 |
-
self.config.zero_memory_layers is None
|
| 762 |
-
or self.layer_idx in self.config.zero_memory_layers
|
| 763 |
-
):
|
| 764 |
-
routing_weights, selected_experts = self.router(hidden_states)
|
| 765 |
-
|
| 766 |
-
residual = hidden_states
|
| 767 |
-
|
| 768 |
-
hidden_states, (hx, cx), past_key_value = self.memory(
|
| 769 |
-
hidden_states,
|
| 770 |
-
previous_states,
|
| 771 |
-
past_key_value=past_key_value,
|
| 772 |
-
cache_position=cache_position,
|
| 773 |
-
position_embeddings=position_embeddings,
|
| 774 |
-
attention_mask=attention_mask,
|
| 775 |
-
output_attentions=output_attentions,
|
| 776 |
-
position_ids=position_ids,
|
| 777 |
-
use_cache=use_cache,
|
| 778 |
-
)
|
| 779 |
-
|
| 780 |
-
hidden_states = torch.nan_to_num(hidden_states)
|
| 781 |
-
hx = torch.nan_to_num(hx)
|
| 782 |
-
cx = torch.nan_to_num(cx)
|
| 783 |
-
|
| 784 |
-
hidden_states = hidden_states * routing_weights.reshape(
|
| 785 |
-
hidden_states.shape[:-1]
|
| 786 |
-
).unsqueeze(-1)
|
| 787 |
-
|
| 788 |
-
hidden_states = residual + self.config.zero_memory_alpha * hidden_states
|
| 789 |
-
hidden_states = torch.nan_to_num(hidden_states)
|
| 790 |
-
|
| 791 |
-
outputs = (hidden_states,) + attn_outputs[1:]
|
| 792 |
-
|
| 793 |
-
if self.config.use_zero_memory and (
|
| 794 |
-
self.config.zero_memory_layers is None
|
| 795 |
-
or self.layer_idx in self.config.zero_memory_layers
|
| 796 |
-
):
|
| 797 |
-
outputs += ((hx, cx),)
|
| 798 |
-
else:
|
| 799 |
-
outputs += (previous_states,)
|
| 800 |
-
|
| 801 |
-
if use_cache:
|
| 802 |
-
outputs += (past_key_value,)
|
| 803 |
-
|
| 804 |
-
return outputs
|
| 805 |
-
|
| 806 |
-
|
| 807 |
-
class NeuroBLASTMemory(nn.Module):
|
| 808 |
-
def __init__(
|
| 809 |
-
self,
|
| 810 |
-
config: NeuroBLASTConfig,
|
| 811 |
-
hidden_size: int = 256,
|
| 812 |
-
num_heads: int = 4,
|
| 813 |
-
scale_factor: int = 4,
|
| 814 |
-
layer_idx: int = 0,
|
| 815 |
-
with_hx: bool = True,
|
| 816 |
-
precomputed_total_layers: Optional[int] = None,
|
| 817 |
-
*args,
|
| 818 |
-
**kwargs,
|
| 819 |
-
):
|
| 820 |
-
super().__init__(*args, **kwargs)
|
| 821 |
-
|
| 822 |
-
self.hidden_size = hidden_size
|
| 823 |
-
self.num_heads = num_heads
|
| 824 |
-
self.scale_factor = scale_factor
|
| 825 |
-
self.clamp_value = config.clamp_value
|
| 826 |
-
# Use precomputed_total_layers instead of hardcoded 100 for layer index shift
|
| 827 |
-
layer_shift = (
|
| 828 |
-
precomputed_total_layers if precomputed_total_layers is not None else 100
|
| 829 |
-
)
|
| 830 |
-
self.layer_idx = layer_idx + layer_shift
|
| 831 |
-
self.with_hx = with_hx
|
| 832 |
-
self.kv_dim = (
|
| 833 |
-
config.kv_dim
|
| 834 |
-
)
|
| 835 |
-
|
| 836 |
-
self.scaled_dim = hidden_size * scale_factor
|
| 837 |
-
self.head_dim = self.kv_dim // config.num_attention_heads
|
| 838 |
-
self.num_heads = self.hidden_size // self.head_dim
|
| 839 |
-
|
| 840 |
-
self.norm1 = nn.LayerNorm(hidden_size)
|
| 841 |
-
|
| 842 |
-
if self.with_hx:
|
| 843 |
-
self.lin1 = nn.Linear(self.hidden_size, self.scaled_dim)
|
| 844 |
-
self.lin2 = nn.Linear(self.hidden_size, self.scaled_dim)
|
| 845 |
-
self.lin3 = nn.Linear(self.scaled_dim, self.hidden_size)
|
| 846 |
-
|
| 847 |
-
self.lin4 = nn.Linear(self.hidden_size, self.scaled_dim)
|
| 848 |
-
self.lin5 = nn.Linear(self.scaled_dim, self.hidden_size)
|
| 849 |
-
|
| 850 |
-
if self.with_hx:
|
| 851 |
-
self.lin6 = nn.Linear(self.scaled_dim, self.hidden_size)
|
| 852 |
-
|
| 853 |
-
self.gate1 = nn.Linear(self.scaled_dim, self.scaled_dim)
|
| 854 |
-
self.act1 = nn.SiLU()
|
| 855 |
-
|
| 856 |
-
self.gate2 = nn.Linear(self.scaled_dim, self.scaled_dim)
|
| 857 |
-
self.act2 = nn.SiLU()
|
| 858 |
-
|
| 859 |
-
self.last_token_reg = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
| 860 |
-
self.prev_tokens_reg = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
| 861 |
-
|
| 862 |
-
self.norm2 = nn.LayerNorm(hidden_size)
|
| 863 |
-
self.dropout = nn.Dropout(config.dropout)
|
| 864 |
-
|
| 865 |
-
def forward(
|
| 866 |
-
self,
|
| 867 |
-
x: torch.Tensor,
|
| 868 |
-
previous_state: tuple[torch.Tensor, torch.Tensor],
|
| 869 |
-
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
| 870 |
-
attention_mask: Optional[torch.Tensor],
|
| 871 |
-
position_ids: Optional[torch.LongTensor],
|
| 872 |
-
past_key_value: Optional[Cache] = None,
|
| 873 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 874 |
-
output_attentions: Optional[bool] = False,
|
| 875 |
-
use_cache: Optional[bool] = False,
|
| 876 |
-
):
|
| 877 |
-
hx, cx = previous_state
|
| 878 |
-
|
| 879 |
-
b, s, d = x.size()
|
| 880 |
-
|
| 881 |
-
x = torch.nan_to_num(x)
|
| 882 |
-
norm_x = self.norm1(x)
|
| 883 |
-
|
| 884 |
-
norm_x = norm_x.view(b, s, self.num_heads, self.head_dim).transpose(1, 2)
|
| 885 |
-
|
| 886 |
-
cos, sin = position_embeddings
|
| 887 |
-
norm_x = apply_rotary_pos_emb_single(norm_x, cos, sin, position_ids)
|
| 888 |
-
|
| 889 |
-
kv_seq_len = s
|
| 890 |
-
|
| 891 |
-
if past_key_value is not None:
|
| 892 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 893 |
-
norm_x, _ = past_key_value.update(
|
| 894 |
-
norm_x,
|
| 895 |
-
torch.zeros((b, 1, kv_seq_len, d)),
|
| 896 |
-
self.layer_idx,
|
| 897 |
-
cache_kwargs,
|
| 898 |
-
)
|
| 899 |
-
kv_seq_len = norm_x.shape[2]
|
| 900 |
-
|
| 901 |
-
norm_x = norm_x.transpose(1, 2).contiguous()
|
| 902 |
-
norm_x = norm_x.view(b, kv_seq_len, d)
|
| 903 |
-
|
| 904 |
-
norm_x = torch.nan_to_num(norm_x)
|
| 905 |
-
|
| 906 |
-
expanded_x = None
|
| 907 |
-
|
| 908 |
-
shifted_x = torch.cat(
|
| 909 |
-
[
|
| 910 |
-
torch.zeros((b, 1, d), device=x.device, dtype=x.dtype),
|
| 911 |
-
(norm_x[:, :-1].contiguous()),
|
| 912 |
-
],
|
| 913 |
-
dim=1,
|
| 914 |
-
).contiguous()
|
| 915 |
-
|
| 916 |
-
shifted_x = torch.nan_to_num(shifted_x) # Replace NaNs with zeros
|
| 917 |
-
|
| 918 |
-
prev_tokens_x = norm_x.cumsum(dim=1)
|
| 919 |
-
|
| 920 |
-
prev_tokens_x = prev_tokens_x - shifted_x
|
| 921 |
-
prev_tokens_x = torch.nan_to_num(prev_tokens_x)[:, -s:].contiguous()
|
| 922 |
-
|
| 923 |
-
if self.with_hx:
|
| 924 |
-
expanded_x = self.lin1(norm_x[:, -s:].contiguous())
|
| 925 |
-
expanded_x = torch.nan_to_num(expanded_x)
|
| 926 |
-
|
| 927 |
-
expanded_shifted_x = self.lin2(shifted_x[:, -s:].contiguous())
|
| 928 |
-
|
| 929 |
-
expanded_shifted_x = torch.nan_to_num(expanded_shifted_x)
|
| 930 |
-
|
| 931 |
-
gated_shifted_x = self.gate1(expanded_shifted_x)
|
| 932 |
-
gated_shifted_x = self.act1(gated_shifted_x)
|
| 933 |
-
gated_shifted_x = torch.clamp(
|
| 934 |
-
gated_shifted_x, min=-self.clamp_value, max=self.clamp_value
|
| 935 |
-
)
|
| 936 |
-
|
| 937 |
-
gated_shifted_x = torch.nan_to_num(gated_shifted_x)
|
| 938 |
-
|
| 939 |
-
collapsed_shifted_x = self.lin3(gated_shifted_x)
|
| 940 |
-
collapsed_shifted_x = torch.nan_to_num(collapsed_shifted_x)
|
| 941 |
-
|
| 942 |
-
prev_tokens_x = torch.nan_to_num(prev_tokens_x)
|
| 943 |
-
|
| 944 |
-
expanded_prev_tokens_x = self.lin4(prev_tokens_x)
|
| 945 |
-
expanded_prev_tokens_x = torch.nan_to_num(expanded_prev_tokens_x)
|
| 946 |
-
|
| 947 |
-
gated_prev_tokens_x = self.gate2(expanded_prev_tokens_x)
|
| 948 |
-
gated_prev_tokens_x = self.act2(gated_prev_tokens_x)
|
| 949 |
-
gated_prev_tokens_x = torch.clamp(
|
| 950 |
-
gated_prev_tokens_x, min=-self.clamp_value, max=self.clamp_value
|
| 951 |
-
)
|
| 952 |
-
|
| 953 |
-
gated_prev_tokens_x = torch.nan_to_num(gated_prev_tokens_x)
|
| 954 |
-
|
| 955 |
-
collapsed_prev_tokens_x = self.lin5(gated_prev_tokens_x)
|
| 956 |
-
collapsed_prev_tokens_x = torch.nan_to_num(collapsed_prev_tokens_x)
|
| 957 |
-
|
| 958 |
-
if self.with_hx:
|
| 959 |
-
weights = torch.softmax(expanded_x * expanded_shifted_x, dim=-1)
|
| 960 |
-
|
| 961 |
-
expanded_x_attn = weights * expanded_x
|
| 962 |
-
|
| 963 |
-
expanded_x_attn = torch.nan_to_num(expanded_x_attn)
|
| 964 |
-
hx = hx + self.lin6(expanded_x_attn)
|
| 965 |
-
hx = torch.nan_to_num(hx)
|
| 966 |
-
|
| 967 |
-
if self.with_hx:
|
| 968 |
-
x = torch.nan_to_num(x)
|
| 969 |
-
hx = torch.nan_to_num(hx)
|
| 970 |
-
collapsed_shifted_x = torch.nan_to_num(collapsed_shifted_x)
|
| 971 |
-
collapsed_prev_tokens_x = torch.nan_to_num(collapsed_prev_tokens_x)
|
| 972 |
-
output = x + (
|
| 973 |
-
hx
|
| 974 |
-
* (
|
| 975 |
-
self.last_token_reg(collapsed_shifted_x)
|
| 976 |
-
+ self.prev_tokens_reg(collapsed_prev_tokens_x)
|
| 977 |
-
)
|
| 978 |
-
)
|
| 979 |
-
output = torch.nan_to_num(output)
|
| 980 |
-
|
| 981 |
-
else:
|
| 982 |
-
output = (
|
| 983 |
-
x
|
| 984 |
-
+ (
|
| 985 |
-
self.last_token_reg(collapsed_shifted_x)
|
| 986 |
-
+ self.prev_tokens_reg(collapsed_prev_tokens_x)
|
| 987 |
-
)[:, -s:].contiguous()
|
| 988 |
-
)
|
| 989 |
-
|
| 990 |
-
output = self.norm2(output)
|
| 991 |
-
output = self.dropout(output)
|
| 992 |
-
output = torch.nan_to_num(output)
|
| 993 |
-
|
| 994 |
-
return (
|
| 995 |
-
output,
|
| 996 |
-
(hx, cx),
|
| 997 |
-
past_key_value,
|
| 998 |
-
)
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
class NeuroBLASTPreTrainedModel(PreTrainedModel):
|
| 1002 |
-
config_class = NeuroBLASTConfig
|
| 1003 |
-
base_model_prefix = "brain"
|
| 1004 |
-
supports_gradient_checkpointing = True
|
| 1005 |
-
_no_split_modules = []
|
| 1006 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
| 1007 |
-
_supports_flash_attn_2 = False
|
| 1008 |
-
_supports_sdpa = True
|
| 1009 |
-
|
| 1010 |
-
def _init_weights(self, module):
|
| 1011 |
-
std = getattr(self.config, "initializer_range", 0.02)
|
| 1012 |
-
if isinstance(module, nn.Linear):
|
| 1013 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 1014 |
-
if module.bias is not None:
|
| 1015 |
-
module.bias.data.zero_()
|
| 1016 |
-
elif isinstance(module, nn.Embedding):
|
| 1017 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
| 1018 |
-
if module.padding_idx is not None:
|
| 1019 |
-
module.weight.data[module.padding_idx].zero_()
|
| 1020 |
-
elif isinstance(module, nn.LayerNorm):
|
| 1021 |
-
if module.bias is not None:
|
| 1022 |
-
module.bias.data.zero_()
|
| 1023 |
-
module.weight.data.fill_(1.0)
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
class NeuroBLASTModel(NeuroBLASTPreTrainedModel):
|
| 1027 |
-
def __init__(self, config: NeuroBLASTConfig):
|
| 1028 |
-
super(NeuroBLASTModel, self).__init__(config)
|
| 1029 |
-
self.config = config
|
| 1030 |
-
self.padding_idx = config.pad_token_id
|
| 1031 |
-
self.vocab_size = config.vocab_size
|
| 1032 |
-
|
| 1033 |
-
self.embed_tokens = nn.Embedding(
|
| 1034 |
-
config.vocab_size,
|
| 1035 |
-
config.hidden_size, # Using main hidden_size for embeddings now
|
| 1036 |
-
padding_idx=self.padding_idx,
|
| 1037 |
-
)
|
| 1038 |
-
self.rotary_emb = NeuroBLASTRotaryEmbedding(
|
| 1039 |
-
config.kv_dim // config.num_attention_heads,
|
| 1040 |
-
max_position_embeddings=config.max_position_embeddings,
|
| 1041 |
-
base=config.rope_theta,
|
| 1042 |
-
)
|
| 1043 |
-
self.dropout = nn.Dropout(config.dropout)
|
| 1044 |
-
|
| 1045 |
-
self.assoc_to_sensory_pooler = nn.Sequential(
|
| 1046 |
-
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1047 |
-
nn.Identity(), # Backward compatibility - previously LayerNorm, but we found that removing it improve generalization
|
| 1048 |
-
nn.GELU(),
|
| 1049 |
-
nn.LayerNorm(config.hidden_size),
|
| 1050 |
-
)
|
| 1051 |
-
self.assoc_to_motor_pooler = nn.Sequential(
|
| 1052 |
-
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1053 |
-
nn.Identity(), # Backward compatibility
|
| 1054 |
-
nn.GELU(),
|
| 1055 |
-
nn.LayerNorm(config.hidden_size),
|
| 1056 |
-
)
|
| 1057 |
-
self.sensory_to_motor_pooler = nn.Sequential(
|
| 1058 |
-
nn.Linear(config.hidden_size, config.hidden_size),
|
| 1059 |
-
nn.Identity(), # Backward compatibility
|
| 1060 |
-
nn.GELU(),
|
| 1061 |
-
nn.LayerNorm(config.hidden_size),
|
| 1062 |
-
)
|
| 1063 |
-
|
| 1064 |
-
# --- Cortex Layers ---
|
| 1065 |
-
# Using generic AttentionBlock with specific Self/Cross Attention modules passed in
|
| 1066 |
-
total_layers = 0
|
| 1067 |
-
|
| 1068 |
-
# Precompute total layers for Memory layer indexing before creating any layers
|
| 1069 |
-
precomputed_total_layers = (
|
| 1070 |
-
config.num_association_cortex_layers
|
| 1071 |
-
+ config.num_sensory_cortex_layers * 2
|
| 1072 |
-
+ config.num_motor_cortex_layers
|
| 1073 |
-
* 3
|
| 1074 |
-
)
|
| 1075 |
-
self.precomputed_total_layers = precomputed_total_layers
|
| 1076 |
-
config.precomputed_total_layers = precomputed_total_layers
|
| 1077 |
-
|
| 1078 |
-
# 1. Association Cortex (Self-Attention)
|
| 1079 |
-
self.association_cortex = nn.ModuleList()
|
| 1080 |
-
for i in range(config.num_association_cortex_layers):
|
| 1081 |
-
layer_idx = total_layers + i
|
| 1082 |
-
print(f"Adding layer {layer_idx} to association cortex")
|
| 1083 |
-
self.association_cortex.append(
|
| 1084 |
-
AttentionBlock(
|
| 1085 |
-
config,
|
| 1086 |
-
config.hidden_size, # Use main hidden_size
|
| 1087 |
-
attention_module=SelfAttention(
|
| 1088 |
-
config, config.hidden_size, is_causal=True, layer_idx=layer_idx
|
| 1089 |
-
),
|
| 1090 |
-
mlp_module=(
|
| 1091 |
-
NeuroBLASTSparseMoeBlock(
|
| 1092 |
-
config,
|
| 1093 |
-
)
|
| 1094 |
-
if config.num_experts
|
| 1095 |
-
else NeuroBLASTMoeMLP(config)
|
| 1096 |
-
),
|
| 1097 |
-
is_cross_attention=False,
|
| 1098 |
-
layer_idx=layer_idx,
|
| 1099 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1100 |
-
)
|
| 1101 |
-
)
|
| 1102 |
-
|
| 1103 |
-
total_layers += config.num_association_cortex_layers
|
| 1104 |
-
# 2. Sensory Cortex (Self-Attention + Cross-Attention to Association)
|
| 1105 |
-
self.sensory_self_attn_layers = nn.ModuleList()
|
| 1106 |
-
self.sensory_cross_attn_layers = (
|
| 1107 |
-
nn.ModuleList()
|
| 1108 |
-
) # One cross-attn per self-attn layer
|
| 1109 |
-
for i in range(config.num_sensory_cortex_layers):
|
| 1110 |
-
layer_idx = total_layers + i
|
| 1111 |
-
print(f"Adding layer {layer_idx} to sensory cortex")
|
| 1112 |
-
self.sensory_self_attn_layers.append(
|
| 1113 |
-
AttentionBlock(
|
| 1114 |
-
config,
|
| 1115 |
-
config.hidden_size,
|
| 1116 |
-
attention_module=SelfAttention(
|
| 1117 |
-
config,
|
| 1118 |
-
config.hidden_size,
|
| 1119 |
-
is_causal=True,
|
| 1120 |
-
layer_idx=layer_idx,
|
| 1121 |
-
),
|
| 1122 |
-
mlp_module=(
|
| 1123 |
-
NeuroBLASTSparseMoeBlock(
|
| 1124 |
-
config,
|
| 1125 |
-
)
|
| 1126 |
-
if config.num_experts
|
| 1127 |
-
else NeuroBLASTMoeMLP(config)
|
| 1128 |
-
),
|
| 1129 |
-
is_cross_attention=False,
|
| 1130 |
-
layer_idx=layer_idx,
|
| 1131 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1132 |
-
)
|
| 1133 |
-
)
|
| 1134 |
-
|
| 1135 |
-
total_layers += config.num_sensory_cortex_layers
|
| 1136 |
-
for i in range(config.num_sensory_cortex_layers):
|
| 1137 |
-
layer_idx = total_layers + i
|
| 1138 |
-
print(f"Adding layer {layer_idx} to sensory cross-attention")
|
| 1139 |
-
# Add Cross-Attention layer: Sensory queries, Association is K/V source
|
| 1140 |
-
self.sensory_cross_attn_layers.append(
|
| 1141 |
-
AttentionBlock(
|
| 1142 |
-
config,
|
| 1143 |
-
config.hidden_size, # Query Dim
|
| 1144 |
-
attention_module=CrossAttention(
|
| 1145 |
-
config,
|
| 1146 |
-
query_dim=config.hidden_size,
|
| 1147 |
-
kv_dim=config.kv_dim, # Assoc output dim
|
| 1148 |
-
layer_idx=layer_idx,
|
| 1149 |
-
),
|
| 1150 |
-
mlp_module=(
|
| 1151 |
-
NeuroBLASTSparseMoeBlock(
|
| 1152 |
-
config,
|
| 1153 |
-
)
|
| 1154 |
-
if config.num_experts
|
| 1155 |
-
else NeuroBLASTMoeMLP(config)
|
| 1156 |
-
),
|
| 1157 |
-
is_cross_attention=True,
|
| 1158 |
-
layer_idx=layer_idx,
|
| 1159 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1160 |
-
)
|
| 1161 |
-
)
|
| 1162 |
-
|
| 1163 |
-
total_layers += config.num_sensory_cortex_layers
|
| 1164 |
-
|
| 1165 |
-
# 3. Motor Cortex (Self-Attention + Cross-Attention to Sensory + Cross-Attention to Association)
|
| 1166 |
-
self.motor_self_attn_layers = nn.ModuleList()
|
| 1167 |
-
self.motor_cross_sensory_layers = nn.ModuleList()
|
| 1168 |
-
self.motor_cross_assoc_layers = nn.ModuleList()
|
| 1169 |
-
for i in range(config.num_motor_cortex_layers):
|
| 1170 |
-
layer_idx = total_layers + i
|
| 1171 |
-
print(f"Adding layer {layer_idx} to motor cortex")
|
| 1172 |
-
self.motor_self_attn_layers.append(
|
| 1173 |
-
AttentionBlock(
|
| 1174 |
-
config,
|
| 1175 |
-
config.hidden_size,
|
| 1176 |
-
attention_module=SelfAttention(
|
| 1177 |
-
config,
|
| 1178 |
-
config.hidden_size,
|
| 1179 |
-
is_causal=True,
|
| 1180 |
-
layer_idx=layer_idx,
|
| 1181 |
-
),
|
| 1182 |
-
mlp_module=(
|
| 1183 |
-
NeuroBLASTSparseMoeBlock(
|
| 1184 |
-
config,
|
| 1185 |
-
)
|
| 1186 |
-
if config.num_experts
|
| 1187 |
-
else NeuroBLASTMoeMLP(config)
|
| 1188 |
-
),
|
| 1189 |
-
is_cross_attention=False,
|
| 1190 |
-
layer_idx=layer_idx,
|
| 1191 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1192 |
-
)
|
| 1193 |
-
)
|
| 1194 |
-
|
| 1195 |
-
total_layers += config.num_motor_cortex_layers
|
| 1196 |
-
for i in range(config.num_motor_cortex_layers):
|
| 1197 |
-
layer_idx = total_layers + i
|
| 1198 |
-
print(f"Adding layer {layer_idx} to motor cross-sensory")
|
| 1199 |
-
# Cross-Attend to Sensory Output
|
| 1200 |
-
self.motor_cross_sensory_layers.append(
|
| 1201 |
-
AttentionBlock(
|
| 1202 |
-
config,
|
| 1203 |
-
config.hidden_size, # Query Dim
|
| 1204 |
-
attention_module=CrossAttention(
|
| 1205 |
-
config,
|
| 1206 |
-
query_dim=config.hidden_size,
|
| 1207 |
-
kv_dim=config.kv_dim, # Sensory output dim
|
| 1208 |
-
layer_idx=layer_idx,
|
| 1209 |
-
),
|
| 1210 |
-
mlp_module=(
|
| 1211 |
-
NeuroBLASTSparseMoeBlock(
|
| 1212 |
-
config,
|
| 1213 |
-
)
|
| 1214 |
-
if config.num_experts
|
| 1215 |
-
else NeuroBLASTMoeMLP(config)
|
| 1216 |
-
),
|
| 1217 |
-
is_cross_attention=True,
|
| 1218 |
-
layer_idx=layer_idx,
|
| 1219 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1220 |
-
)
|
| 1221 |
-
)
|
| 1222 |
-
|
| 1223 |
-
total_layers += config.num_motor_cortex_layers
|
| 1224 |
-
for i in range(config.num_motor_cortex_layers):
|
| 1225 |
-
layer_idx = total_layers + i
|
| 1226 |
-
print(f"Adding layer {layer_idx} to motor cross-association")
|
| 1227 |
-
# Cross-Attend to Association Output
|
| 1228 |
-
self.motor_cross_assoc_layers.append(
|
| 1229 |
-
AttentionBlock(
|
| 1230 |
-
config,
|
| 1231 |
-
config.hidden_size, # Query Dim
|
| 1232 |
-
attention_module=CrossAttention(
|
| 1233 |
-
config,
|
| 1234 |
-
query_dim=config.hidden_size,
|
| 1235 |
-
kv_dim=config.kv_dim, # Assoc output dim
|
| 1236 |
-
layer_idx=layer_idx,
|
| 1237 |
-
),
|
| 1238 |
-
mlp_module=(
|
| 1239 |
-
NeuroBLASTSparseMoeBlock(
|
| 1240 |
-
config,
|
| 1241 |
-
)
|
| 1242 |
-
if config.num_experts
|
| 1243 |
-
else NeuroBLASTMoeMLP(config)
|
| 1244 |
-
),
|
| 1245 |
-
is_cross_attention=True,
|
| 1246 |
-
layer_idx=layer_idx,
|
| 1247 |
-
precomputed_total_layers=precomputed_total_layers,
|
| 1248 |
-
)
|
| 1249 |
-
)
|
| 1250 |
-
|
| 1251 |
-
total_layers += config.num_motor_cortex_layers
|
| 1252 |
-
|
| 1253 |
-
# Initialize more conservatively to prevent strong gradient flow initially
|
| 1254 |
-
self.sensory_cross_assoc_gate = NeuroBLASTMoeMLP(
|
| 1255 |
-
config,
|
| 1256 |
-
)
|
| 1257 |
-
self.motor_cross_sensory_gate = NeuroBLASTMoeMLP(
|
| 1258 |
-
config,
|
| 1259 |
-
)
|
| 1260 |
-
self.motor_cross_assoc_gate = NeuroBLASTMoeMLP(
|
| 1261 |
-
config,
|
| 1262 |
-
)
|
| 1263 |
-
|
| 1264 |
-
# Final normalization before output head
|
| 1265 |
-
self.norm = nn.LayerNorm(
|
| 1266 |
-
config.hidden_size, eps=getattr(config, "rms_norm_eps", 1e-5)
|
| 1267 |
-
)
|
| 1268 |
-
|
| 1269 |
-
self.gradient_checkpointing = False
|
| 1270 |
-
self.post_init()
|
| 1271 |
-
|
| 1272 |
-
def forward(
|
| 1273 |
-
self,
|
| 1274 |
-
input_ids: torch.LongTensor,
|
| 1275 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1276 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1277 |
-
past_key_values: Optional[
|
| 1278 |
-
Cache
|
| 1279 |
-
] = None,
|
| 1280 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1281 |
-
use_cache: Optional[bool] = None,
|
| 1282 |
-
output_attentions: Optional[bool] = None,
|
| 1283 |
-
output_hidden_states: Optional[bool] = None,
|
| 1284 |
-
return_dict: Optional[bool] = None,
|
| 1285 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 1286 |
-
):
|
| 1287 |
-
output_attentions = (
|
| 1288 |
-
output_attentions
|
| 1289 |
-
if output_attentions is not None
|
| 1290 |
-
else self.config.output_attentions
|
| 1291 |
-
)
|
| 1292 |
-
output_hidden_states = (
|
| 1293 |
-
output_hidden_states
|
| 1294 |
-
if output_hidden_states is not None
|
| 1295 |
-
else self.config.output_hidden_states
|
| 1296 |
-
)
|
| 1297 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1298 |
-
# use_cache = False
|
| 1299 |
-
return_dict = (
|
| 1300 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1301 |
-
)
|
| 1302 |
-
|
| 1303 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 1304 |
-
raise ValueError("Specify either input_ids or inputs_embeds")
|
| 1305 |
-
batch_size, seq_length = (
|
| 1306 |
-
input_ids.shape if input_ids is not None else inputs_embeds.shape[:2]
|
| 1307 |
-
)
|
| 1308 |
-
|
| 1309 |
-
if self.gradient_checkpointing and self.training:
|
| 1310 |
-
if use_cache:
|
| 1311 |
-
logger.warning_once(
|
| 1312 |
-
"`use_cache=True` incompatible with gradient checkpointing. Setting `use_cache=False`"
|
| 1313 |
-
)
|
| 1314 |
-
use_cache = False
|
| 1315 |
-
|
| 1316 |
-
if not any(param.requires_grad for param in self.parameters()):
|
| 1317 |
-
logger.warning_once(
|
| 1318 |
-
"No parameters require gradients. Disabling gradient checkpointing to avoid warnings."
|
| 1319 |
-
)
|
| 1320 |
-
self.gradient_checkpointing = False
|
| 1321 |
-
|
| 1322 |
-
if inputs_embeds is None:
|
| 1323 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 1324 |
-
|
| 1325 |
-
past_key_values_length = 0
|
| 1326 |
-
if use_cache:
|
| 1327 |
-
if not isinstance(past_key_values, Cache):
|
| 1328 |
-
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 1329 |
-
past_key_values_length = past_key_values.get_seq_length()
|
| 1330 |
-
|
| 1331 |
-
if cache_position is None:
|
| 1332 |
-
past_seen_tokens = (
|
| 1333 |
-
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1334 |
-
)
|
| 1335 |
-
cache_position = torch.arange(
|
| 1336 |
-
past_seen_tokens,
|
| 1337 |
-
past_seen_tokens + inputs_embeds.shape[1],
|
| 1338 |
-
device=inputs_embeds.device,
|
| 1339 |
-
)
|
| 1340 |
-
|
| 1341 |
-
if position_ids is None:
|
| 1342 |
-
position_ids = cache_position.unsqueeze(0)
|
| 1343 |
-
|
| 1344 |
-
causal_mask = self._update_causal_mask(
|
| 1345 |
-
attention_mask,
|
| 1346 |
-
inputs_embeds,
|
| 1347 |
-
cache_position,
|
| 1348 |
-
past_key_values,
|
| 1349 |
-
output_attentions,
|
| 1350 |
-
)
|
| 1351 |
-
|
| 1352 |
-
hidden_states = inputs_embeds
|
| 1353 |
-
|
| 1354 |
-
cos, sin = self.rotary_emb(
|
| 1355 |
-
hidden_states, seq_len=seq_length + past_key_values_length
|
| 1356 |
-
)
|
| 1357 |
-
position_embeddings = (cos, sin)
|
| 1358 |
-
|
| 1359 |
-
all_hidden_states = () if output_hidden_states else None
|
| 1360 |
-
all_attentions = (
|
| 1361 |
-
() if output_attentions else None
|
| 1362 |
-
)
|
| 1363 |
-
next_decoder_cache = (
|
| 1364 |
-
past_key_values if use_cache else None
|
| 1365 |
-
)
|
| 1366 |
-
|
| 1367 |
-
if self.config.use_zero_memory:
|
| 1368 |
-
hx = torch.ones(
|
| 1369 |
-
(batch_size, seq_length, hidden_states.size(-1)),
|
| 1370 |
-
device=hidden_states.device,
|
| 1371 |
-
dtype=hidden_states.dtype,
|
| 1372 |
-
)
|
| 1373 |
-
cx = torch.ones(
|
| 1374 |
-
(batch_size, seq_length, hidden_states.size(-1)),
|
| 1375 |
-
device=hidden_states.device,
|
| 1376 |
-
dtype=hidden_states.dtype,
|
| 1377 |
-
)
|
| 1378 |
-
|
| 1379 |
-
if self.training:
|
| 1380 |
-
hx.requires_grad_()
|
| 1381 |
-
cx.requires_grad_()
|
| 1382 |
-
else:
|
| 1383 |
-
hx = None
|
| 1384 |
-
cx = None
|
| 1385 |
-
|
| 1386 |
-
# 1. Association Cortex (Self-Attention)
|
| 1387 |
-
assoc_output = hidden_states
|
| 1388 |
-
for i, layer in enumerate(self.association_cortex):
|
| 1389 |
-
if output_hidden_states:
|
| 1390 |
-
all_hidden_states += (assoc_output,)
|
| 1391 |
-
if self.gradient_checkpointing and self.training:
|
| 1392 |
-
outputs = torch.utils.checkpoint.checkpoint(
|
| 1393 |
-
layer,
|
| 1394 |
-
assoc_output,
|
| 1395 |
-
position_embeddings,
|
| 1396 |
-
causal_mask,
|
| 1397 |
-
position_ids,
|
| 1398 |
-
None,
|
| 1399 |
-
next_decoder_cache,
|
| 1400 |
-
cache_position,
|
| 1401 |
-
output_attentions,
|
| 1402 |
-
use_cache,
|
| 1403 |
-
(hx, cx),
|
| 1404 |
-
)
|
| 1405 |
-
else:
|
| 1406 |
-
outputs = layer(
|
| 1407 |
-
assoc_output,
|
| 1408 |
-
position_embeddings,
|
| 1409 |
-
causal_mask,
|
| 1410 |
-
position_ids,
|
| 1411 |
-
kv_states=None,
|
| 1412 |
-
past_key_value=next_decoder_cache,
|
| 1413 |
-
cache_position=cache_position,
|
| 1414 |
-
output_attentions=output_attentions,
|
| 1415 |
-
use_cache=use_cache,
|
| 1416 |
-
previous_states=(hx, cx),
|
| 1417 |
-
)
|
| 1418 |
-
assoc_output = outputs[0]
|
| 1419 |
-
|
| 1420 |
-
hx, cx = outputs[-1 if not use_cache else -2]
|
| 1421 |
-
|
| 1422 |
-
if output_attentions:
|
| 1423 |
-
all_attentions += (outputs[1],)
|
| 1424 |
-
|
| 1425 |
-
if use_cache:
|
| 1426 |
-
next_decoder_cache = outputs[-1]
|
| 1427 |
-
else:
|
| 1428 |
-
next_decoder_cache = None
|
| 1429 |
-
|
| 1430 |
-
sensory_state = self.assoc_to_sensory_pooler(assoc_output)
|
| 1431 |
-
|
| 1432 |
-
sensory_state = apply_gradient_scaling(
|
| 1433 |
-
sensory_state,
|
| 1434 |
-
self.config.association_gradient_scale,
|
| 1435 |
-
self.config.gradient_scaling_enabled,
|
| 1436 |
-
)
|
| 1437 |
-
|
| 1438 |
-
# 2. Sensory Cortex (Self-Attention + Cross-Attention to Association)
|
| 1439 |
-
for i in range(self.config.num_sensory_cortex_layers):
|
| 1440 |
-
if output_hidden_states:
|
| 1441 |
-
all_hidden_states += (sensory_state,)
|
| 1442 |
-
|
| 1443 |
-
self_attn_layer = self.sensory_self_attn_layers[i]
|
| 1444 |
-
if self.gradient_checkpointing and self.training:
|
| 1445 |
-
outputs_self = torch.utils.checkpoint.checkpoint(
|
| 1446 |
-
self_attn_layer,
|
| 1447 |
-
sensory_state,
|
| 1448 |
-
position_embeddings,
|
| 1449 |
-
causal_mask,
|
| 1450 |
-
position_ids,
|
| 1451 |
-
None,
|
| 1452 |
-
next_decoder_cache,
|
| 1453 |
-
cache_position,
|
| 1454 |
-
output_attentions,
|
| 1455 |
-
use_cache,
|
| 1456 |
-
(hx, cx),
|
| 1457 |
-
)
|
| 1458 |
-
else:
|
| 1459 |
-
outputs_self = self_attn_layer(
|
| 1460 |
-
sensory_state,
|
| 1461 |
-
position_embeddings,
|
| 1462 |
-
causal_mask,
|
| 1463 |
-
position_ids,
|
| 1464 |
-
kv_states=None,
|
| 1465 |
-
past_key_value=next_decoder_cache,
|
| 1466 |
-
cache_position=cache_position,
|
| 1467 |
-
output_attentions=output_attentions,
|
| 1468 |
-
use_cache=use_cache,
|
| 1469 |
-
previous_states=(hx, cx),
|
| 1470 |
-
)
|
| 1471 |
-
sensory_state = outputs_self[0]
|
| 1472 |
-
hx, cx = outputs_self[-1 if not use_cache else -2]
|
| 1473 |
-
|
| 1474 |
-
if output_attentions:
|
| 1475 |
-
all_attentions += (outputs_self[1],)
|
| 1476 |
-
|
| 1477 |
-
if use_cache:
|
| 1478 |
-
next_decoder_cache = outputs_self[-1]
|
| 1479 |
-
else:
|
| 1480 |
-
next_decoder_cache = None
|
| 1481 |
-
|
| 1482 |
-
cross_attn_layer = self.sensory_cross_attn_layers[i]
|
| 1483 |
-
|
| 1484 |
-
cross_attn_causal_mask = None
|
| 1485 |
-
|
| 1486 |
-
if causal_mask is not None:
|
| 1487 |
-
q_seq_len = sensory_state.size(1)
|
| 1488 |
-
kv_seq_len = assoc_output.size(1)
|
| 1489 |
-
|
| 1490 |
-
cross_attn_causal_mask = torch.ones(
|
| 1491 |
-
(batch_size, 1, q_seq_len, kv_seq_len),
|
| 1492 |
-
device=hidden_states.device,
|
| 1493 |
-
dtype=hidden_states.dtype,
|
| 1494 |
-
)
|
| 1495 |
-
|
| 1496 |
-
causal_mask_upper = torch.triu(
|
| 1497 |
-
torch.ones((q_seq_len, kv_seq_len), device=hidden_states.device),
|
| 1498 |
-
diagonal=1,
|
| 1499 |
-
)
|
| 1500 |
-
|
| 1501 |
-
cross_attn_causal_mask = cross_attn_causal_mask.masked_fill(
|
| 1502 |
-
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(),
|
| 1503 |
-
torch.finfo(hidden_states.dtype).min,
|
| 1504 |
-
)
|
| 1505 |
-
|
| 1506 |
-
if self.gradient_checkpointing and self.training:
|
| 1507 |
-
outputs_cross = torch.utils.checkpoint.checkpoint(
|
| 1508 |
-
cross_attn_layer,
|
| 1509 |
-
sensory_state,
|
| 1510 |
-
position_embeddings,
|
| 1511 |
-
cross_attn_causal_mask,
|
| 1512 |
-
position_ids,
|
| 1513 |
-
assoc_output,
|
| 1514 |
-
next_decoder_cache,
|
| 1515 |
-
cache_position,
|
| 1516 |
-
output_attentions,
|
| 1517 |
-
use_cache,
|
| 1518 |
-
(hx, cx),
|
| 1519 |
-
)
|
| 1520 |
-
else:
|
| 1521 |
-
outputs_cross = cross_attn_layer(
|
| 1522 |
-
sensory_state,
|
| 1523 |
-
position_embeddings,
|
| 1524 |
-
past_key_value=next_decoder_cache,
|
| 1525 |
-
cache_position=cache_position,
|
| 1526 |
-
attention_mask=cross_attn_causal_mask,
|
| 1527 |
-
position_ids=position_ids,
|
| 1528 |
-
kv_states=apply_gradient_scaling(
|
| 1529 |
-
assoc_output,
|
| 1530 |
-
self.config.cross_attention_gradient_scale,
|
| 1531 |
-
self.config.gradient_scaling_enabled,
|
| 1532 |
-
),
|
| 1533 |
-
output_attentions=output_attentions,
|
| 1534 |
-
use_cache=use_cache,
|
| 1535 |
-
previous_states=(hx, cx),
|
| 1536 |
-
)
|
| 1537 |
-
|
| 1538 |
-
cross_contribution = nn.functional.layer_norm(
|
| 1539 |
-
outputs_cross[0],
|
| 1540 |
-
normalized_shape=(self.config.hidden_size,),
|
| 1541 |
-
eps=getattr(self.config, "rms_norm_eps", 1e-5),
|
| 1542 |
-
)
|
| 1543 |
-
|
| 1544 |
-
sensory_state = sensory_state + self.sensory_cross_assoc_gate(
|
| 1545 |
-
cross_contribution
|
| 1546 |
-
)
|
| 1547 |
-
|
| 1548 |
-
hx, cx = outputs_cross[-1 if not use_cache else -2]
|
| 1549 |
-
if output_attentions:
|
| 1550 |
-
all_attentions += (outputs_cross[1],)
|
| 1551 |
-
|
| 1552 |
-
if use_cache:
|
| 1553 |
-
next_decoder_cache = outputs_cross[-1]
|
| 1554 |
-
else:
|
| 1555 |
-
next_decoder_cache = None
|
| 1556 |
-
|
| 1557 |
-
motor_state = self.sensory_to_motor_pooler(sensory_state)
|
| 1558 |
-
|
| 1559 |
-
motor_state = apply_gradient_scaling(
|
| 1560 |
-
motor_state,
|
| 1561 |
-
self.config.sensory_gradient_scale,
|
| 1562 |
-
self.config.gradient_scaling_enabled,
|
| 1563 |
-
)
|
| 1564 |
-
|
| 1565 |
-
motor_state_from_assoc = self.assoc_to_motor_pooler(assoc_output)
|
| 1566 |
-
|
| 1567 |
-
motor_state_from_assoc = apply_gradient_scaling(
|
| 1568 |
-
motor_state_from_assoc,
|
| 1569 |
-
self.config.association_gradient_scale,
|
| 1570 |
-
self.config.gradient_scaling_enabled,
|
| 1571 |
-
)
|
| 1572 |
-
|
| 1573 |
-
motor_state = motor_state + motor_state_from_assoc # Combine pooled inputs
|
| 1574 |
-
|
| 1575 |
-
# 3. Motor Cortex (Self + Cross-Sensory + Cross-Association)
|
| 1576 |
-
for i in range(self.config.num_motor_cortex_layers):
|
| 1577 |
-
if output_hidden_states:
|
| 1578 |
-
all_hidden_states += (motor_state,)
|
| 1579 |
-
|
| 1580 |
-
self_attn_layer = self.motor_self_attn_layers[i]
|
| 1581 |
-
if self.gradient_checkpointing and self.training:
|
| 1582 |
-
outputs_self = torch.utils.checkpoint.checkpoint(
|
| 1583 |
-
self_attn_layer,
|
| 1584 |
-
motor_state,
|
| 1585 |
-
position_embeddings,
|
| 1586 |
-
causal_mask,
|
| 1587 |
-
position_ids,
|
| 1588 |
-
None,
|
| 1589 |
-
next_decoder_cache,
|
| 1590 |
-
cache_position,
|
| 1591 |
-
output_attentions,
|
| 1592 |
-
use_cache,
|
| 1593 |
-
(hx, cx),
|
| 1594 |
-
)
|
| 1595 |
-
else:
|
| 1596 |
-
outputs_self = self_attn_layer(
|
| 1597 |
-
motor_state,
|
| 1598 |
-
position_embeddings,
|
| 1599 |
-
causal_mask,
|
| 1600 |
-
position_ids,
|
| 1601 |
-
kv_states=None,
|
| 1602 |
-
past_key_value=next_decoder_cache,
|
| 1603 |
-
cache_position=cache_position,
|
| 1604 |
-
output_attentions=output_attentions,
|
| 1605 |
-
use_cache=use_cache,
|
| 1606 |
-
previous_states=(hx, cx),
|
| 1607 |
-
)
|
| 1608 |
-
motor_state = outputs_self[0]
|
| 1609 |
-
hx, cx = outputs_self[-1 if not use_cache else -2]
|
| 1610 |
-
if output_attentions:
|
| 1611 |
-
all_attentions += (outputs_self[1],)
|
| 1612 |
-
|
| 1613 |
-
if use_cache:
|
| 1614 |
-
next_decoder_cache = outputs_self[-1]
|
| 1615 |
-
else:
|
| 1616 |
-
next_decoder_cache = None
|
| 1617 |
-
|
| 1618 |
-
cross_sensory_layer = self.motor_cross_sensory_layers[i]
|
| 1619 |
-
|
| 1620 |
-
motor_cross_sensory_mask = None
|
| 1621 |
-
|
| 1622 |
-
if causal_mask is not None:
|
| 1623 |
-
motor_q_seq_len = motor_state.size(1)
|
| 1624 |
-
sensory_kv_seq_len = sensory_state.size(
|
| 1625 |
-
1
|
| 1626 |
-
)
|
| 1627 |
-
|
| 1628 |
-
motor_cross_sensory_mask = torch.ones(
|
| 1629 |
-
(batch_size, 1, motor_q_seq_len, sensory_kv_seq_len),
|
| 1630 |
-
device=hidden_states.device,
|
| 1631 |
-
dtype=hidden_states.dtype,
|
| 1632 |
-
)
|
| 1633 |
-
|
| 1634 |
-
causal_mask_upper = torch.triu(
|
| 1635 |
-
torch.ones(
|
| 1636 |
-
(motor_q_seq_len, sensory_kv_seq_len),
|
| 1637 |
-
device=hidden_states.device,
|
| 1638 |
-
),
|
| 1639 |
-
diagonal=1,
|
| 1640 |
-
)
|
| 1641 |
-
|
| 1642 |
-
motor_cross_sensory_mask = motor_cross_sensory_mask.masked_fill(
|
| 1643 |
-
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(),
|
| 1644 |
-
torch.finfo(hidden_states.dtype).min,
|
| 1645 |
-
)
|
| 1646 |
-
|
| 1647 |
-
if self.gradient_checkpointing and self.training:
|
| 1648 |
-
outputs_cross_sensory = torch.utils.checkpoint.checkpoint(
|
| 1649 |
-
cross_sensory_layer,
|
| 1650 |
-
motor_state,
|
| 1651 |
-
position_embeddings,
|
| 1652 |
-
motor_cross_sensory_mask,
|
| 1653 |
-
position_ids,
|
| 1654 |
-
sensory_state,
|
| 1655 |
-
next_decoder_cache,
|
| 1656 |
-
cache_position,
|
| 1657 |
-
output_attentions,
|
| 1658 |
-
use_cache,
|
| 1659 |
-
(hx, cx),
|
| 1660 |
-
)
|
| 1661 |
-
else:
|
| 1662 |
-
outputs_cross_sensory = cross_sensory_layer(
|
| 1663 |
-
motor_state,
|
| 1664 |
-
position_embeddings,
|
| 1665 |
-
attention_mask=motor_cross_sensory_mask,
|
| 1666 |
-
position_ids=position_ids,
|
| 1667 |
-
kv_states=apply_gradient_scaling(
|
| 1668 |
-
sensory_state,
|
| 1669 |
-
self.config.cross_attention_gradient_scale,
|
| 1670 |
-
self.config.gradient_scaling_enabled,
|
| 1671 |
-
),
|
| 1672 |
-
output_attentions=output_attentions,
|
| 1673 |
-
past_key_value=next_decoder_cache,
|
| 1674 |
-
cache_position=cache_position,
|
| 1675 |
-
use_cache=use_cache,
|
| 1676 |
-
previous_states=(hx, cx),
|
| 1677 |
-
)
|
| 1678 |
-
motor_state = motor_state + self.motor_cross_sensory_gate(
|
| 1679 |
-
outputs_cross_sensory[0]
|
| 1680 |
-
)
|
| 1681 |
-
hx, cx = outputs_cross_sensory[-1 if not use_cache else -2]
|
| 1682 |
-
if output_attentions:
|
| 1683 |
-
all_attentions += (outputs_cross_sensory[1],)
|
| 1684 |
-
|
| 1685 |
-
if use_cache:
|
| 1686 |
-
next_decoder_cache = outputs_cross_sensory[-1]
|
| 1687 |
-
else:
|
| 1688 |
-
next_decoder_cache = None
|
| 1689 |
-
|
| 1690 |
-
cross_assoc_layer = self.motor_cross_assoc_layers[i]
|
| 1691 |
-
|
| 1692 |
-
motor_cross_assoc_mask = None
|
| 1693 |
-
if causal_mask is not None:
|
| 1694 |
-
motor_q_seq_len = motor_state.size(1)
|
| 1695 |
-
assoc_kv_seq_len = assoc_output.size(
|
| 1696 |
-
1
|
| 1697 |
-
)
|
| 1698 |
-
|
| 1699 |
-
motor_cross_assoc_mask = torch.ones(
|
| 1700 |
-
(batch_size, 1, motor_q_seq_len, assoc_kv_seq_len),
|
| 1701 |
-
device=hidden_states.device,
|
| 1702 |
-
dtype=hidden_states.dtype,
|
| 1703 |
-
)
|
| 1704 |
-
|
| 1705 |
-
causal_mask_upper = torch.triu(
|
| 1706 |
-
torch.ones(
|
| 1707 |
-
(motor_q_seq_len, assoc_kv_seq_len), device=hidden_states.device
|
| 1708 |
-
),
|
| 1709 |
-
diagonal=1,
|
| 1710 |
-
)
|
| 1711 |
-
|
| 1712 |
-
motor_cross_assoc_mask = motor_cross_assoc_mask.masked_fill(
|
| 1713 |
-
causal_mask_upper.unsqueeze(0).unsqueeze(0).bool(),
|
| 1714 |
-
torch.finfo(hidden_states.dtype).min,
|
| 1715 |
-
)
|
| 1716 |
-
|
| 1717 |
-
if self.gradient_checkpointing and self.training:
|
| 1718 |
-
outputs_cross_assoc = torch.utils.checkpoint.checkpoint(
|
| 1719 |
-
cross_assoc_layer,
|
| 1720 |
-
motor_state,
|
| 1721 |
-
position_embeddings,
|
| 1722 |
-
motor_cross_assoc_mask,
|
| 1723 |
-
position_ids,
|
| 1724 |
-
assoc_output,
|
| 1725 |
-
next_decoder_cache,
|
| 1726 |
-
cache_position,
|
| 1727 |
-
output_attentions,
|
| 1728 |
-
use_cache,
|
| 1729 |
-
(hx, cx),
|
| 1730 |
-
)
|
| 1731 |
-
else:
|
| 1732 |
-
outputs_cross_assoc = cross_assoc_layer(
|
| 1733 |
-
motor_state,
|
| 1734 |
-
position_embeddings,
|
| 1735 |
-
attention_mask=motor_cross_assoc_mask,
|
| 1736 |
-
position_ids=position_ids,
|
| 1737 |
-
kv_states=apply_gradient_scaling(
|
| 1738 |
-
assoc_output,
|
| 1739 |
-
self.config.cross_attention_gradient_scale,
|
| 1740 |
-
self.config.gradient_scaling_enabled,
|
| 1741 |
-
),
|
| 1742 |
-
output_attentions=output_attentions,
|
| 1743 |
-
past_key_value=next_decoder_cache,
|
| 1744 |
-
cache_position=cache_position,
|
| 1745 |
-
use_cache=use_cache,
|
| 1746 |
-
previous_states=(hx, cx),
|
| 1747 |
-
)
|
| 1748 |
-
motor_state = motor_state + self.motor_cross_assoc_gate(
|
| 1749 |
-
outputs_cross_assoc[0]
|
| 1750 |
-
)
|
| 1751 |
-
hx, cx = outputs_cross_assoc[-1 if not use_cache else -2]
|
| 1752 |
-
if output_attentions:
|
| 1753 |
-
all_attentions += (outputs_cross_assoc[1],)
|
| 1754 |
-
|
| 1755 |
-
if use_cache:
|
| 1756 |
-
next_decoder_cache = outputs_cross_assoc[-1]
|
| 1757 |
-
else:
|
| 1758 |
-
next_decoder_cache = None
|
| 1759 |
-
|
| 1760 |
-
final_output = self.norm(motor_state)
|
| 1761 |
-
|
| 1762 |
-
if output_hidden_states:
|
| 1763 |
-
all_hidden_states += (final_output,)
|
| 1764 |
-
|
| 1765 |
-
if not return_dict:
|
| 1766 |
-
outputs_tuple = (final_output,)
|
| 1767 |
-
if use_cache:
|
| 1768 |
-
outputs_tuple += (next_decoder_cache,)
|
| 1769 |
-
if output_hidden_states:
|
| 1770 |
-
outputs_tuple += (all_hidden_states,)
|
| 1771 |
-
if output_attentions:
|
| 1772 |
-
outputs_tuple += (all_attentions,)
|
| 1773 |
-
return tuple(v for v in outputs_tuple if v is not None)
|
| 1774 |
-
|
| 1775 |
-
return BaseModelOutputWithPast(
|
| 1776 |
-
last_hidden_state=final_output,
|
| 1777 |
-
past_key_values=next_decoder_cache,
|
| 1778 |
-
hidden_states=all_hidden_states,
|
| 1779 |
-
attentions=all_attentions,
|
| 1780 |
-
)
|
| 1781 |
-
|
| 1782 |
-
def get_input_embeddings(self):
|
| 1783 |
-
return self.embed_tokens
|
| 1784 |
-
|
| 1785 |
-
def set_input_embeddings(self, value):
|
| 1786 |
-
self.embed_tokens = value
|
| 1787 |
-
|
| 1788 |
-
def _update_causal_mask(
|
| 1789 |
-
self,
|
| 1790 |
-
attention_mask: torch.Tensor,
|
| 1791 |
-
input_tensor: torch.Tensor,
|
| 1792 |
-
cache_position: torch.Tensor,
|
| 1793 |
-
past_key_values: Cache,
|
| 1794 |
-
output_attentions: bool,
|
| 1795 |
-
):
|
| 1796 |
-
if self.config._attn_implementation == "flash_attention_2":
|
| 1797 |
-
if attention_mask is not None and 0.0 in attention_mask:
|
| 1798 |
-
return attention_mask
|
| 1799 |
-
return None
|
| 1800 |
-
|
| 1801 |
-
past_seen_tokens = (
|
| 1802 |
-
past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1803 |
-
)
|
| 1804 |
-
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1805 |
-
|
| 1806 |
-
if (
|
| 1807 |
-
self.config._attn_implementation == "sdpa"
|
| 1808 |
-
and not using_static_cache
|
| 1809 |
-
and not output_attentions
|
| 1810 |
-
):
|
| 1811 |
-
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1812 |
-
attention_mask,
|
| 1813 |
-
inputs_embeds=input_tensor,
|
| 1814 |
-
past_key_values_length=past_seen_tokens,
|
| 1815 |
-
is_training=self.training,
|
| 1816 |
-
):
|
| 1817 |
-
return None
|
| 1818 |
-
|
| 1819 |
-
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1820 |
-
min_dtype = torch.finfo(dtype).min
|
| 1821 |
-
sequence_length = input_tensor.shape[1]
|
| 1822 |
-
if using_static_cache:
|
| 1823 |
-
target_length = (
|
| 1824 |
-
getattr(
|
| 1825 |
-
past_key_values,
|
| 1826 |
-
"get_max_length",
|
| 1827 |
-
lambda: past_key_values.get_seq_length(),
|
| 1828 |
-
)()
|
| 1829 |
-
if hasattr(past_key_values, "get_seq_length")
|
| 1830 |
-
else sequence_length + past_seen_tokens
|
| 1831 |
-
)
|
| 1832 |
-
else:
|
| 1833 |
-
target_length = (
|
| 1834 |
-
attention_mask.shape[-1]
|
| 1835 |
-
if isinstance(attention_mask, torch.Tensor)
|
| 1836 |
-
else past_seen_tokens + sequence_length + 1
|
| 1837 |
-
)
|
| 1838 |
-
|
| 1839 |
-
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1840 |
-
attention_mask,
|
| 1841 |
-
sequence_length=sequence_length,
|
| 1842 |
-
target_length=target_length,
|
| 1843 |
-
dtype=dtype,
|
| 1844 |
-
device=device,
|
| 1845 |
-
min_dtype=min_dtype,
|
| 1846 |
-
cache_position=cache_position,
|
| 1847 |
-
batch_size=input_tensor.shape[0],
|
| 1848 |
-
)
|
| 1849 |
-
|
| 1850 |
-
if (
|
| 1851 |
-
self.config._attn_implementation == "sdpa"
|
| 1852 |
-
and attention_mask is not None
|
| 1853 |
-
and attention_mask.device.type == "cuda"
|
| 1854 |
-
and not output_attentions
|
| 1855 |
-
):
|
| 1856 |
-
causal_mask = AttentionMaskConverter._unmask_unattended(
|
| 1857 |
-
causal_mask, min_dtype
|
| 1858 |
-
)
|
| 1859 |
-
|
| 1860 |
-
return causal_mask
|
| 1861 |
-
|
| 1862 |
-
|
| 1863 |
-
class NeuroBLASTForCausalLM(NeuroBLASTPreTrainedModel, GenerationMixin):
|
| 1864 |
-
_tied_weights_keys = ["lm_head.weight"]
|
| 1865 |
-
|
| 1866 |
-
def __init__(self, config: NeuroBLASTConfig):
|
| 1867 |
-
super().__init__(config)
|
| 1868 |
-
self.config = config
|
| 1869 |
-
self.model = NeuroBLASTModel(config)
|
| 1870 |
-
self.vocab_size = config.vocab_size # Ensure vocab_size is accessible
|
| 1871 |
-
self.lm_head = torch.nn.Linear(config.hidden_size, self.vocab_size, bias=False)
|
| 1872 |
-
self.loss_steps = 0
|
| 1873 |
-
self.post_init() # Initialize weights
|
| 1874 |
-
|
| 1875 |
-
def get_input_embeddings(self):
|
| 1876 |
-
return self.model.get_input_embeddings()
|
| 1877 |
-
|
| 1878 |
-
def set_input_embeddings(self, value):
|
| 1879 |
-
self.model.set_input_embeddings(value)
|
| 1880 |
-
|
| 1881 |
-
def get_output_embeddings(self):
|
| 1882 |
-
return self.lm_head
|
| 1883 |
-
|
| 1884 |
-
def set_output_embeddings(self, new_embeddings):
|
| 1885 |
-
self.lm_head = new_embeddings
|
| 1886 |
-
|
| 1887 |
-
def tie_weights(self):
|
| 1888 |
-
if getattr(self.config, "tie_word_embeddings", False):
|
| 1889 |
-
output_embeddings = self.get_output_embeddings()
|
| 1890 |
-
input_embeddings = self.get_input_embeddings()
|
| 1891 |
-
output_embeddings.weight = input_embeddings.weight
|
| 1892 |
-
if getattr(output_embeddings, "bias", None) is not None:
|
| 1893 |
-
output_embeddings.bias.data.zero_()
|
| 1894 |
-
|
| 1895 |
-
def forward(
|
| 1896 |
-
self,
|
| 1897 |
-
input_ids: torch.LongTensor = None,
|
| 1898 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 1899 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 1900 |
-
past_key_values: Optional[Cache] = None,
|
| 1901 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1902 |
-
labels: Optional[torch.LongTensor] = None,
|
| 1903 |
-
use_cache: Optional[bool] = None,
|
| 1904 |
-
output_attentions: Optional[bool] = None,
|
| 1905 |
-
output_hidden_states: Optional[bool] = None,
|
| 1906 |
-
return_dict: Optional[bool] = None,
|
| 1907 |
-
cache_position: Optional[torch.LongTensor] = None,
|
| 1908 |
-
**loss_kwargs,
|
| 1909 |
-
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1910 |
-
|
| 1911 |
-
return_dict = (
|
| 1912 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1913 |
-
)
|
| 1914 |
-
|
| 1915 |
-
outputs = self.model(
|
| 1916 |
-
input_ids=input_ids,
|
| 1917 |
-
attention_mask=attention_mask,
|
| 1918 |
-
position_ids=position_ids,
|
| 1919 |
-
past_key_values=past_key_values,
|
| 1920 |
-
inputs_embeds=inputs_embeds,
|
| 1921 |
-
use_cache=use_cache,
|
| 1922 |
-
output_attentions=output_attentions,
|
| 1923 |
-
output_hidden_states=output_hidden_states,
|
| 1924 |
-
return_dict=return_dict,
|
| 1925 |
-
cache_position=cache_position,
|
| 1926 |
-
)
|
| 1927 |
-
|
| 1928 |
-
hidden_states = outputs[0]
|
| 1929 |
-
|
| 1930 |
-
logits = self.lm_head(hidden_states)
|
| 1931 |
-
logits = logits.float()
|
| 1932 |
-
|
| 1933 |
-
loss = None
|
| 1934 |
-
if labels is not None:
|
| 1935 |
-
loss = self.loss_function(
|
| 1936 |
-
logits=logits,
|
| 1937 |
-
labels=labels,
|
| 1938 |
-
vocab_size=self.config.vocab_size,
|
| 1939 |
-
**loss_kwargs,
|
| 1940 |
-
)
|
| 1941 |
-
|
| 1942 |
-
if not return_dict:
|
| 1943 |
-
output = (logits,) + outputs[1:]
|
| 1944 |
-
return (loss,) + output if loss is not None else output
|
| 1945 |
-
|
| 1946 |
-
return CausalLMOutputWithPast(
|
| 1947 |
-
loss=loss,
|
| 1948 |
-
logits=logits,
|
| 1949 |
-
past_key_values=outputs.past_key_values,
|
| 1950 |
-
hidden_states=hidden_states,
|
| 1951 |
-
attentions=outputs.attentions,
|
| 1952 |
-
)
|
| 1953 |
-
|
| 1954 |
-
def get_input_embeddings(self):
|
| 1955 |
-
return self.model.get_input_embeddings()
|
| 1956 |
-
|
| 1957 |
-
def set_input_embeddings(self, value):
|
| 1958 |
-
self.model.set_input_embeddings(value)
|
| 1959 |
-
|
| 1960 |
-
def __str__(self):
|
| 1961 |
-
return f"NeuroBLASTForCausalLM(config={self.config})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
neuroblast_model/registration.py
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
from transformers import AutoConfig, AutoModel
|
| 2 |
-
from neuroblast_model import NeuroBLASTConfig, NeuroBLASTForCausalLM
|
| 3 |
-
|
| 4 |
-
AutoConfig.register("neuroblast", NeuroBLASTForCausalLM)
|
| 5 |
-
AutoModel.register(NeuroBLASTConfig, NeuroBLASTForCausalLM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|