Upload folder using huggingface_hub
Browse files- README.md +6 -0
- build.toml +3 -0
- build/torch-universal/triton_flash_attn_sink/__init__.py +3 -0
- build/torch-universal/triton_flash_attn_sink/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch-universal/triton_flash_attn_sink/__pycache__/attention.cpython-313.pyc +0 -0
- build/torch-universal/triton_flash_attn_sink/_ops.py +8 -0
- build/torch-universal/triton_flash_attn_sink/attention.py +803 -0
- flake.lock +169 -0
- flake.nix +17 -0
- torch-ext/triton_flash_attn_sink/__init__.py +3 -0
- torch-ext/triton_flash_attn_sink/attention.py +802 -0
README.md
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- kernel
|
4 |
+
---
|
5 |
+
|
6 |
+
OpenAI Triton flash-attention with attention sinks
|
build.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[general]
|
2 |
+
name = "triton_flash_attn_sink"
|
3 |
+
universal = true
|
build/torch-universal/triton_flash_attn_sink/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .attention import attention
|
2 |
+
|
3 |
+
___all__ = ["attention"]
|
build/torch-universal/triton_flash_attn_sink/__pycache__/__init__.cpython-313.pyc
ADDED
Binary file (252 Bytes). View file
|
|
build/torch-universal/triton_flash_attn_sink/__pycache__/attention.cpython-313.pyc
ADDED
Binary file (24.1 kB). View file
|
|
build/torch-universal/triton_flash_attn_sink/_ops.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
ops = torch.ops._triton_flash_attn_sink_a266b56
|
3 |
+
|
4 |
+
def add_op_namespace_prefix(op_name: str):
|
5 |
+
"""
|
6 |
+
Prefix op by namespace.
|
7 |
+
"""
|
8 |
+
return f"_triton_flash_attn_sink_a266b56::{op_name}"
|
build/torch-universal/triton_flash_attn_sink/attention.py
ADDED
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""FlashAttention w/support for learned sinks and banded attention.
|
2 |
+
|
3 |
+
This is an expanded version of the Flash Attention v2 implementation (see https://tridao.me/publications/flash2/flash2.pdf)
|
4 |
+
which can be found at https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html.
|
5 |
+
|
6 |
+
This version has been extended to support banded attention and learned attention sinks.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
|
15 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
16 |
+
# _attn_fwd_inner
|
17 |
+
# (thanks o3 for the help + kind comment strings....)
|
18 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
19 |
+
@triton.jit
|
20 |
+
def _attn_fwd_inner(
|
21 |
+
acc,
|
22 |
+
l_i,
|
23 |
+
m_i,
|
24 |
+
q,
|
25 |
+
K_block_ptr,
|
26 |
+
V_block_ptr,
|
27 |
+
start_m,
|
28 |
+
qk_scale,
|
29 |
+
BLOCK_M: tl.constexpr,
|
30 |
+
HEAD_DIM: tl.constexpr,
|
31 |
+
BLOCK_N: tl.constexpr,
|
32 |
+
STAGE: tl.constexpr,
|
33 |
+
offs_m: tl.constexpr,
|
34 |
+
offs_n: tl.constexpr,
|
35 |
+
N_CTX: tl.constexpr,
|
36 |
+
BANDWIDTH: tl.constexpr,
|
37 |
+
):
|
38 |
+
# ---------------- range of kv indices for this stage ---------------------
|
39 |
+
if STAGE == 1:
|
40 |
+
# off-band (used only when BANDWIDTH == 0)
|
41 |
+
lo, hi = 0, start_m * BLOCK_M
|
42 |
+
elif STAGE == 2:
|
43 |
+
# on-band **plus** the preceding tokens that fall inside `BANDWIDTH`
|
44 |
+
if BANDWIDTH == 0: # full context → current block only
|
45 |
+
lo = start_m * BLOCK_M
|
46 |
+
else: # local context
|
47 |
+
lo = tl.maximum(0, start_m * BLOCK_M - BANDWIDTH)
|
48 |
+
hi = (start_m + 1) * BLOCK_M
|
49 |
+
# make the compiler aware that `lo` is a multiple of BLOCK_N so that
|
50 |
+
# the first `tl.load` is aligned (matches what the large kernel does)
|
51 |
+
lo = tl.multiple_of(lo, BLOCK_N)
|
52 |
+
else: # STAGE == 3 (non-causal)
|
53 |
+
lo, hi = 0, N_CTX
|
54 |
+
|
55 |
+
# advance the KV block-pointers so they point at `lo`
|
56 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
57 |
+
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
58 |
+
|
59 |
+
# ---------------- main loop over K/V tiles -------------------------------
|
60 |
+
for start_n in range(lo, hi, BLOCK_N):
|
61 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
62 |
+
|
63 |
+
# ---- Q·Kᵀ ------------------------------------------------------------
|
64 |
+
k = tl.load(K_block_ptr)
|
65 |
+
qk = tl.dot(q, k)
|
66 |
+
|
67 |
+
# ------------- causal + bandwidth masking (STAGE == 2) ----------------
|
68 |
+
if STAGE == 2:
|
69 |
+
# causal mask (j ≤ i)
|
70 |
+
causal_ok = offs_m[:, None] >= (start_n + offs_n[None, :])
|
71 |
+
|
72 |
+
if BANDWIDTH == 0: # full causal attention
|
73 |
+
mask = causal_ok
|
74 |
+
else: # local causal attention
|
75 |
+
# j ≥ i − BANDWIDTH + 1 ⟺ i < j + BANDWIDTH
|
76 |
+
within_bw = offs_m[:, None] < (start_n + offs_n[None, :] + BANDWIDTH)
|
77 |
+
mask = causal_ok & within_bw
|
78 |
+
|
79 |
+
qk = qk * qk_scale + tl.where(mask, 0.0, -1.0e30)
|
80 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
81 |
+
qk -= m_ij[:, None]
|
82 |
+
else:
|
83 |
+
# STAGE 1 (when BANDWIDTH == 0) or STAGE 3 (non-causal)
|
84 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
|
85 |
+
qk = qk * qk_scale - m_ij[:, None]
|
86 |
+
|
87 |
+
# ---- softmax ---------------------------------------------------------
|
88 |
+
p = tl.math.exp2(qk)
|
89 |
+
l_ij = tl.sum(p, 1)
|
90 |
+
|
91 |
+
# ---- running numerically-stable accumulators -------------------------
|
92 |
+
alpha = tl.math.exp2(m_i - m_ij)
|
93 |
+
l_i = l_i * alpha + l_ij
|
94 |
+
acc = acc * alpha[:, None]
|
95 |
+
|
96 |
+
v = tl.load(V_block_ptr)
|
97 |
+
p = p.to(tl.float16)
|
98 |
+
acc = tl.dot(p, v, acc)
|
99 |
+
|
100 |
+
m_i = m_ij
|
101 |
+
|
102 |
+
# ---- advance pointers ------------------------------------------------
|
103 |
+
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
104 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
105 |
+
|
106 |
+
return acc, l_i, m_i
|
107 |
+
|
108 |
+
|
109 |
+
@triton.jit
|
110 |
+
def _attn_fwd(
|
111 |
+
Q,
|
112 |
+
K,
|
113 |
+
V,
|
114 |
+
Sinks,
|
115 |
+
sm_scale,
|
116 |
+
M,
|
117 |
+
Out, #
|
118 |
+
stride_qz,
|
119 |
+
stride_qh,
|
120 |
+
stride_qm,
|
121 |
+
stride_qk, #
|
122 |
+
stride_kz,
|
123 |
+
stride_kh,
|
124 |
+
stride_kn,
|
125 |
+
stride_kk, #
|
126 |
+
stride_vz,
|
127 |
+
stride_vh,
|
128 |
+
stride_vk,
|
129 |
+
stride_vn, #
|
130 |
+
stride_oz,
|
131 |
+
stride_oh,
|
132 |
+
stride_om,
|
133 |
+
stride_on, #
|
134 |
+
Z,
|
135 |
+
H,
|
136 |
+
N_CTX, #
|
137 |
+
HEAD_DIM: tl.constexpr, #
|
138 |
+
BLOCK_M: tl.constexpr, #
|
139 |
+
BLOCK_N: tl.constexpr, #
|
140 |
+
STAGE: tl.constexpr, #
|
141 |
+
BANDWIDTH: tl.constexpr,
|
142 |
+
):
|
143 |
+
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
144 |
+
start_m = tl.program_id(0)
|
145 |
+
off_hz = tl.program_id(1)
|
146 |
+
off_z = off_hz // H
|
147 |
+
off_h = off_hz % H
|
148 |
+
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
149 |
+
|
150 |
+
# block pointers
|
151 |
+
Q_block_ptr = tl.make_block_ptr(
|
152 |
+
base=Q + qvk_offset,
|
153 |
+
shape=(N_CTX, HEAD_DIM),
|
154 |
+
strides=(stride_qm, stride_qk),
|
155 |
+
offsets=(start_m * BLOCK_M, 0),
|
156 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
157 |
+
order=(1, 0),
|
158 |
+
)
|
159 |
+
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
160 |
+
V_block_ptr = tl.make_block_ptr(
|
161 |
+
base=V + qvk_offset,
|
162 |
+
shape=(N_CTX, HEAD_DIM),
|
163 |
+
strides=(stride_vk, stride_vn),
|
164 |
+
offsets=(0, 0),
|
165 |
+
block_shape=(BLOCK_N, HEAD_DIM),
|
166 |
+
order=v_order,
|
167 |
+
)
|
168 |
+
K_block_ptr = tl.make_block_ptr(
|
169 |
+
base=K + qvk_offset,
|
170 |
+
shape=(HEAD_DIM, N_CTX),
|
171 |
+
strides=(stride_kk, stride_kn),
|
172 |
+
offsets=(0, 0),
|
173 |
+
block_shape=(HEAD_DIM, BLOCK_N),
|
174 |
+
order=(0, 1),
|
175 |
+
)
|
176 |
+
O_block_ptr = tl.make_block_ptr(
|
177 |
+
base=Out + qvk_offset,
|
178 |
+
shape=(N_CTX, HEAD_DIM),
|
179 |
+
strides=(stride_om, stride_on),
|
180 |
+
offsets=(start_m * BLOCK_M, 0),
|
181 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
182 |
+
order=(1, 0),
|
183 |
+
)
|
184 |
+
|
185 |
+
# load attention sinks
|
186 |
+
if Sinks is not None:
|
187 |
+
sink = tl.load(Sinks + off_h).to(tl.float32)
|
188 |
+
else:
|
189 |
+
sink = -1.0e30
|
190 |
+
|
191 |
+
# initialize offsets
|
192 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
193 |
+
offs_n = tl.arange(0, BLOCK_N)
|
194 |
+
# initialize pointer to m and l
|
195 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + sink
|
196 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
197 |
+
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
198 |
+
# load scales
|
199 |
+
qk_scale = sm_scale
|
200 |
+
qk_scale *= 1.44269504 # 1/log(2)
|
201 |
+
# load q: it will stay in SRAM throughout
|
202 |
+
q = tl.load(Q_block_ptr)
|
203 |
+
# stage 1: off-band
|
204 |
+
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
205 |
+
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
206 |
+
if STAGE & 1 and (BANDWIDTH == 0):
|
207 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
208 |
+
acc,
|
209 |
+
l_i,
|
210 |
+
m_i,
|
211 |
+
q,
|
212 |
+
K_block_ptr,
|
213 |
+
V_block_ptr, #
|
214 |
+
start_m,
|
215 |
+
qk_scale, #
|
216 |
+
BLOCK_M,
|
217 |
+
HEAD_DIM,
|
218 |
+
BLOCK_N, #
|
219 |
+
4 - STAGE,
|
220 |
+
offs_m,
|
221 |
+
offs_n,
|
222 |
+
N_CTX,
|
223 |
+
BANDWIDTH,
|
224 |
+
)
|
225 |
+
# stage 2: on-band
|
226 |
+
if STAGE & 2:
|
227 |
+
# barrier makes it easier for compielr to schedule the
|
228 |
+
# two loops independently
|
229 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
230 |
+
acc,
|
231 |
+
l_i,
|
232 |
+
m_i,
|
233 |
+
q,
|
234 |
+
K_block_ptr,
|
235 |
+
V_block_ptr, #
|
236 |
+
start_m,
|
237 |
+
qk_scale, #
|
238 |
+
BLOCK_M,
|
239 |
+
HEAD_DIM,
|
240 |
+
BLOCK_N, #
|
241 |
+
2,
|
242 |
+
offs_m,
|
243 |
+
offs_n,
|
244 |
+
N_CTX,
|
245 |
+
BANDWIDTH,
|
246 |
+
)
|
247 |
+
# epilogue
|
248 |
+
m_i += tl.math.log2(l_i)
|
249 |
+
acc = acc / l_i[:, None]
|
250 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
251 |
+
tl.store(m_ptrs, m_i)
|
252 |
+
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
253 |
+
|
254 |
+
|
255 |
+
@triton.jit
|
256 |
+
def _attn_bwd_preprocess(
|
257 |
+
O,
|
258 |
+
DO, #
|
259 |
+
Sinks,
|
260 |
+
DSinks,
|
261 |
+
DSinkstemp,
|
262 |
+
Atomic_counters,
|
263 |
+
M,
|
264 |
+
Delta, #
|
265 |
+
Z,
|
266 |
+
H,
|
267 |
+
N_CTX, #
|
268 |
+
BLOCK_M: tl.constexpr,
|
269 |
+
HEAD_DIM: tl.constexpr, #
|
270 |
+
):
|
271 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
272 |
+
off_hz = tl.program_id(1)
|
273 |
+
off_n = tl.arange(0, HEAD_DIM)
|
274 |
+
off_z = off_hz // H
|
275 |
+
off_h = off_hz % H
|
276 |
+
# load
|
277 |
+
o = tl.load(
|
278 |
+
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
279 |
+
)
|
280 |
+
do = tl.load(
|
281 |
+
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
282 |
+
).to(tl.float32)
|
283 |
+
delta = tl.sum(o * do, axis=1)
|
284 |
+
# write-back
|
285 |
+
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
286 |
+
|
287 |
+
if Sinks is not None:
|
288 |
+
m = tl.load(M + off_z * H * N_CTX + off_h * N_CTX + off_m)
|
289 |
+
sink = tl.load(Sinks + off_h)
|
290 |
+
dl = tl.sum(tl.math.exp2(sink - m) * delta, axis=0)
|
291 |
+
|
292 |
+
depth = Z * (N_CTX // BLOCK_M)
|
293 |
+
|
294 |
+
tl.store(
|
295 |
+
DSinkstemp + (off_h * Z + off_z) * (N_CTX // BLOCK_M) + tl.program_id(0), dl
|
296 |
+
)
|
297 |
+
|
298 |
+
if tl.atomic_add(Atomic_counters + off_h, 1) == depth - 1:
|
299 |
+
dl_acc = 0.0
|
300 |
+
|
301 |
+
for i in range(0, depth, BLOCK_M):
|
302 |
+
idxs = i + tl.arange(0, BLOCK_M)
|
303 |
+
temps = tl.load(
|
304 |
+
DSinkstemp + off_h * depth + idxs, mask=(idxs < depth), other=0.0
|
305 |
+
)
|
306 |
+
dl_acc += tl.sum(temps, axis=0)
|
307 |
+
|
308 |
+
tl.store(DSinks + off_h, (-0.69314718) * dl_acc)
|
309 |
+
|
310 |
+
|
311 |
+
# The main inner-loop logic for computing dK and dV.
|
312 |
+
@triton.jit
|
313 |
+
def _attn_bwd_dkdv(
|
314 |
+
dk,
|
315 |
+
dv, #
|
316 |
+
Q,
|
317 |
+
k,
|
318 |
+
v,
|
319 |
+
sm_scale, #
|
320 |
+
DO, #
|
321 |
+
M,
|
322 |
+
D, #
|
323 |
+
# shared by Q/K/V/DO.
|
324 |
+
stride_tok,
|
325 |
+
stride_d, #
|
326 |
+
H,
|
327 |
+
N_CTX,
|
328 |
+
BLOCK_M1: tl.constexpr, #
|
329 |
+
BLOCK_N1: tl.constexpr, #
|
330 |
+
HEAD_DIM: tl.constexpr, #
|
331 |
+
# Filled in by the wrapper.
|
332 |
+
start_n,
|
333 |
+
start_m,
|
334 |
+
num_steps, #
|
335 |
+
MASK: tl.constexpr,
|
336 |
+
BANDWIDTH: tl.constexpr,
|
337 |
+
):
|
338 |
+
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
339 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
340 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
341 |
+
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
|
342 |
+
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
343 |
+
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
|
344 |
+
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
345 |
+
curr_m = start_m
|
346 |
+
step_m = BLOCK_M1
|
347 |
+
for blk_idx in range(num_steps):
|
348 |
+
qT = tl.load(qT_ptrs)
|
349 |
+
# Load m before computing qk to reduce pipeline stall.
|
350 |
+
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
351 |
+
m = tl.load(M + offs_m)
|
352 |
+
qkT = tl.dot(k, qT)
|
353 |
+
pT = tl.math.exp2(qkT - m[None, :])
|
354 |
+
# Autoregressive masking.
|
355 |
+
if MASK:
|
356 |
+
if BANDWIDTH == 0: # full causal
|
357 |
+
mask = offs_m[None, :] >= offs_n[:, None]
|
358 |
+
else: # local causal
|
359 |
+
mask = (offs_m[None, :] >= offs_n[:, None]) & (
|
360 |
+
offs_m[None, :] < offs_n[:, None] + BANDWIDTH
|
361 |
+
)
|
362 |
+
pT = tl.where(mask, pT, 0.0)
|
363 |
+
do = tl.load(do_ptrs)
|
364 |
+
# Compute dV.
|
365 |
+
ppT = pT
|
366 |
+
ppT = ppT.to(tl.float16)
|
367 |
+
dv += tl.dot(ppT, do)
|
368 |
+
# D (= delta) is pre-divided by ds_scale.
|
369 |
+
Di = tl.load(D + offs_m)
|
370 |
+
# Compute dP and dS.
|
371 |
+
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
|
372 |
+
dsT = pT * (dpT - Di[None, :])
|
373 |
+
dsT = dsT.to(tl.float16)
|
374 |
+
dk += tl.dot(dsT, tl.trans(qT))
|
375 |
+
# Increment pointers.
|
376 |
+
curr_m += step_m
|
377 |
+
qT_ptrs += step_m * stride_tok
|
378 |
+
do_ptrs += step_m * stride_tok
|
379 |
+
return dk, dv
|
380 |
+
|
381 |
+
|
382 |
+
# the main inner-loop logic for computing dQ
|
383 |
+
@triton.jit
|
384 |
+
def _attn_bwd_dq(
|
385 |
+
dq,
|
386 |
+
q,
|
387 |
+
K,
|
388 |
+
V, #
|
389 |
+
do,
|
390 |
+
m,
|
391 |
+
D,
|
392 |
+
# shared by Q/K/V/DO.
|
393 |
+
stride_tok,
|
394 |
+
stride_d, #
|
395 |
+
H,
|
396 |
+
N_CTX, #
|
397 |
+
BLOCK_M2: tl.constexpr, #
|
398 |
+
BLOCK_N2: tl.constexpr, #
|
399 |
+
HEAD_DIM: tl.constexpr,
|
400 |
+
BANDWIDTH: tl.constexpr,
|
401 |
+
# Filled in by the wrapper.
|
402 |
+
start_m,
|
403 |
+
start_n,
|
404 |
+
num_steps, #
|
405 |
+
MASK: tl.constexpr,
|
406 |
+
):
|
407 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
408 |
+
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
409 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
410 |
+
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
411 |
+
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
412 |
+
# D (= delta) is pre-divided by ds_scale.
|
413 |
+
Di = tl.load(D + offs_m)
|
414 |
+
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
|
415 |
+
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
416 |
+
curr_n = start_n
|
417 |
+
step_n = BLOCK_N2
|
418 |
+
for blk_idx in range(num_steps):
|
419 |
+
kT = tl.load(kT_ptrs)
|
420 |
+
vT = tl.load(vT_ptrs)
|
421 |
+
qk = tl.dot(q, kT)
|
422 |
+
p = tl.math.exp2(qk - m)
|
423 |
+
# Autoregressive masking.
|
424 |
+
if MASK:
|
425 |
+
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
426 |
+
if BANDWIDTH == 0: # full causal
|
427 |
+
mask = offs_m[:, None] >= offs_n[None, :]
|
428 |
+
else: # local causal
|
429 |
+
mask = (offs_m[:, None] >= offs_n[None, :]) & (
|
430 |
+
offs_m[:, None] < offs_n[None, :] + BANDWIDTH
|
431 |
+
)
|
432 |
+
p = tl.where(mask, p, 0.0)
|
433 |
+
# Compute dP and dS.
|
434 |
+
dp = tl.dot(do, vT).to(tl.float32)
|
435 |
+
ds = p * (dp - Di[:, None])
|
436 |
+
ds = ds.to(tl.float16)
|
437 |
+
# Compute dQ.
|
438 |
+
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
|
439 |
+
dq += tl.dot(ds, tl.trans(kT))
|
440 |
+
# Increment pointers.
|
441 |
+
curr_n += step_n
|
442 |
+
kT_ptrs += step_n * stride_tok
|
443 |
+
vT_ptrs += step_n * stride_tok
|
444 |
+
return dq
|
445 |
+
|
446 |
+
|
447 |
+
@triton.jit
|
448 |
+
def _attn_bwd(
|
449 |
+
Q,
|
450 |
+
K,
|
451 |
+
V,
|
452 |
+
sm_scale, #
|
453 |
+
DO, #
|
454 |
+
DQ,
|
455 |
+
DK,
|
456 |
+
DV, #
|
457 |
+
M,
|
458 |
+
D,
|
459 |
+
# shared by Q/K/V/DO.
|
460 |
+
stride_z,
|
461 |
+
stride_h,
|
462 |
+
stride_tok,
|
463 |
+
stride_d, #
|
464 |
+
H,
|
465 |
+
N_CTX, #
|
466 |
+
BANDWIDTH: tl.constexpr,
|
467 |
+
BLOCK_M1: tl.constexpr, #
|
468 |
+
BLOCK_N1: tl.constexpr, #
|
469 |
+
BLOCK_M2: tl.constexpr, #
|
470 |
+
BLOCK_N2: tl.constexpr, #
|
471 |
+
BLK_SLICE_FACTOR: tl.constexpr, #
|
472 |
+
HEAD_DIM: tl.constexpr,
|
473 |
+
):
|
474 |
+
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
|
475 |
+
|
476 |
+
bhid = tl.program_id(2)
|
477 |
+
off_chz = (bhid * N_CTX).to(tl.int64)
|
478 |
+
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
479 |
+
pid = tl.program_id(0)
|
480 |
+
|
481 |
+
# offset pointers for batch/head
|
482 |
+
Q += adj
|
483 |
+
K += adj
|
484 |
+
V += adj
|
485 |
+
DO += adj
|
486 |
+
DQ += adj
|
487 |
+
DK += adj
|
488 |
+
DV += adj
|
489 |
+
M += off_chz
|
490 |
+
D += off_chz
|
491 |
+
|
492 |
+
# load scales
|
493 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
494 |
+
|
495 |
+
start_n = pid * BLOCK_N1
|
496 |
+
start_m = start_n
|
497 |
+
|
498 |
+
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
499 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
500 |
+
|
501 |
+
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
502 |
+
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
503 |
+
|
504 |
+
# load K and V: they stay in SRAM throughout the inner loop.
|
505 |
+
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
506 |
+
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
507 |
+
|
508 |
+
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
509 |
+
|
510 |
+
dk, dv = _attn_bwd_dkdv(
|
511 |
+
dk,
|
512 |
+
dv, #
|
513 |
+
Q,
|
514 |
+
k,
|
515 |
+
v,
|
516 |
+
sm_scale, #
|
517 |
+
DO, #
|
518 |
+
M,
|
519 |
+
D, #
|
520 |
+
stride_tok,
|
521 |
+
stride_d, #
|
522 |
+
H,
|
523 |
+
N_CTX, #
|
524 |
+
MASK_BLOCK_M1,
|
525 |
+
BLOCK_N1,
|
526 |
+
HEAD_DIM, #
|
527 |
+
start_n,
|
528 |
+
start_m,
|
529 |
+
num_steps, #
|
530 |
+
MASK=True, #
|
531 |
+
BANDWIDTH=BANDWIDTH,
|
532 |
+
)
|
533 |
+
|
534 |
+
start_m += num_steps * MASK_BLOCK_M1
|
535 |
+
# how many *additional* rows may still attend to the current key block?
|
536 |
+
if BANDWIDTH == 0:
|
537 |
+
rows_left = N_CTX - start_m
|
538 |
+
else:
|
539 |
+
rows_left = min(N_CTX - start_m, BLOCK_N1)
|
540 |
+
num_steps = rows_left // BLOCK_M1
|
541 |
+
|
542 |
+
# Compute dK and dV for non-masked blocks.
|
543 |
+
dk, dv = _attn_bwd_dkdv( #
|
544 |
+
dk,
|
545 |
+
dv, #
|
546 |
+
Q,
|
547 |
+
k,
|
548 |
+
v,
|
549 |
+
sm_scale, #
|
550 |
+
DO, #
|
551 |
+
M,
|
552 |
+
D, #
|
553 |
+
stride_tok,
|
554 |
+
stride_d, #
|
555 |
+
H,
|
556 |
+
N_CTX, #
|
557 |
+
BLOCK_M1,
|
558 |
+
BLOCK_N1,
|
559 |
+
HEAD_DIM, #
|
560 |
+
start_n,
|
561 |
+
start_m,
|
562 |
+
num_steps, #
|
563 |
+
MASK=BANDWIDTH != 0, #
|
564 |
+
BANDWIDTH=BANDWIDTH,
|
565 |
+
)
|
566 |
+
|
567 |
+
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
568 |
+
tl.store(dv_ptrs, dv)
|
569 |
+
|
570 |
+
# Write back dK.
|
571 |
+
dk *= sm_scale
|
572 |
+
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
573 |
+
tl.store(dk_ptrs, dk)
|
574 |
+
|
575 |
+
# THIS BLOCK DOES DQ:
|
576 |
+
start_m = pid * BLOCK_M2
|
577 |
+
end_n = start_m + BLOCK_M2
|
578 |
+
|
579 |
+
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
580 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
581 |
+
|
582 |
+
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
583 |
+
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
|
584 |
+
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
585 |
+
|
586 |
+
m = tl.load(M + offs_m)
|
587 |
+
m = m[:, None]
|
588 |
+
|
589 |
+
# Compute dQ for masked (diagonal) blocks.
|
590 |
+
# NOTE: This code scans each row of QK^T backward (from right to left,
|
591 |
+
# but inside each call to _attn_bwd_dq, from left to right), but that's
|
592 |
+
# not due to anything important. I just wanted to reuse the loop
|
593 |
+
# structure for dK & dV above as much as possible.
|
594 |
+
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
595 |
+
dq = _attn_bwd_dq(
|
596 |
+
dq,
|
597 |
+
q,
|
598 |
+
K,
|
599 |
+
V, #
|
600 |
+
do,
|
601 |
+
m,
|
602 |
+
D, #
|
603 |
+
stride_tok,
|
604 |
+
stride_d, #
|
605 |
+
H,
|
606 |
+
N_CTX, #
|
607 |
+
BLOCK_M2,
|
608 |
+
MASK_BLOCK_N2,
|
609 |
+
HEAD_DIM, #
|
610 |
+
BANDWIDTH,
|
611 |
+
start_m,
|
612 |
+
end_n - num_steps * MASK_BLOCK_N2,
|
613 |
+
num_steps, #
|
614 |
+
MASK=True, #
|
615 |
+
)
|
616 |
+
end_n -= num_steps * MASK_BLOCK_N2
|
617 |
+
|
618 |
+
# stage-1 (rows that still fall inside the window)
|
619 |
+
if BANDWIDTH == 0:
|
620 |
+
cols_left = end_n
|
621 |
+
else:
|
622 |
+
cols_left = min(end_n, BLOCK_M2)
|
623 |
+
num_steps = cols_left // BLOCK_N2
|
624 |
+
dq = _attn_bwd_dq(
|
625 |
+
dq,
|
626 |
+
q,
|
627 |
+
K,
|
628 |
+
V, #
|
629 |
+
do,
|
630 |
+
m,
|
631 |
+
D, #
|
632 |
+
stride_tok,
|
633 |
+
stride_d, #
|
634 |
+
H,
|
635 |
+
N_CTX, #
|
636 |
+
BLOCK_M2,
|
637 |
+
BLOCK_N2,
|
638 |
+
HEAD_DIM, #
|
639 |
+
BANDWIDTH,
|
640 |
+
start_m,
|
641 |
+
end_n - num_steps * BLOCK_N2,
|
642 |
+
num_steps, #
|
643 |
+
MASK=BANDWIDTH != 0, #
|
644 |
+
)
|
645 |
+
# Write back dQ.
|
646 |
+
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
647 |
+
dq *= LN2
|
648 |
+
tl.store(dq_ptrs, dq)
|
649 |
+
|
650 |
+
|
651 |
+
class _attention(torch.autograd.Function):
|
652 |
+
@staticmethod
|
653 |
+
def forward(
|
654 |
+
ctx,
|
655 |
+
q,
|
656 |
+
k,
|
657 |
+
v,
|
658 |
+
sinks,
|
659 |
+
causal,
|
660 |
+
sm_scale,
|
661 |
+
bandwidth,
|
662 |
+
warp_specialize=True,
|
663 |
+
USE_TMA=True,
|
664 |
+
):
|
665 |
+
# shape constraints
|
666 |
+
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
667 |
+
# when v is in float8_e5m2 it is transposed.
|
668 |
+
HEAD_DIM_V = v.shape[-1]
|
669 |
+
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
670 |
+
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
671 |
+
o = torch.empty_like(q)
|
672 |
+
stage = 3 if causal else 1
|
673 |
+
extra_kern_args = {}
|
674 |
+
M = torch.empty(
|
675 |
+
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
|
676 |
+
)
|
677 |
+
BLOCK_M = 128
|
678 |
+
grid = (
|
679 |
+
triton.cdiv(q.shape[2], BLOCK_M),
|
680 |
+
q.shape[0] * q.shape[1],
|
681 |
+
1,
|
682 |
+
)
|
683 |
+
_attn_fwd[grid](
|
684 |
+
q,
|
685 |
+
k,
|
686 |
+
v,
|
687 |
+
sinks,
|
688 |
+
sm_scale,
|
689 |
+
M,
|
690 |
+
o, #
|
691 |
+
q.stride(0),
|
692 |
+
q.stride(1),
|
693 |
+
q.stride(2),
|
694 |
+
q.stride(3), #
|
695 |
+
k.stride(0),
|
696 |
+
k.stride(1),
|
697 |
+
k.stride(2),
|
698 |
+
k.stride(3), #
|
699 |
+
v.stride(0),
|
700 |
+
v.stride(1),
|
701 |
+
v.stride(2),
|
702 |
+
v.stride(3), #
|
703 |
+
o.stride(0),
|
704 |
+
o.stride(1),
|
705 |
+
o.stride(2),
|
706 |
+
o.stride(3), #
|
707 |
+
q.shape[0],
|
708 |
+
q.shape[1], #
|
709 |
+
N_CTX=q.shape[2], #
|
710 |
+
HEAD_DIM=HEAD_DIM_K, #
|
711 |
+
STAGE=stage, #
|
712 |
+
BANDWIDTH=bandwidth,
|
713 |
+
BLOCK_M=BLOCK_M,
|
714 |
+
BLOCK_N=64,
|
715 |
+
**extra_kern_args,
|
716 |
+
)
|
717 |
+
|
718 |
+
ctx.save_for_backward(q, k, v, sinks, o, M)
|
719 |
+
ctx.sm_scale = sm_scale
|
720 |
+
ctx.HEAD_DIM = HEAD_DIM_K
|
721 |
+
ctx.causal = causal
|
722 |
+
ctx.bandwidth = bandwidth
|
723 |
+
return o
|
724 |
+
|
725 |
+
@staticmethod
|
726 |
+
def backward(ctx, do):
|
727 |
+
q, k, v, sinks, o, M = ctx.saved_tensors
|
728 |
+
do = do.contiguous()
|
729 |
+
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
730 |
+
dq = torch.empty_like(q)
|
731 |
+
dk = torch.empty_like(k)
|
732 |
+
dv = torch.empty_like(v)
|
733 |
+
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
734 |
+
PRE_BLOCK = 128
|
735 |
+
NUM_WARPS, NUM_STAGES = 4, 5
|
736 |
+
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
|
737 |
+
BLK_SLICE_FACTOR = 2
|
738 |
+
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
|
739 |
+
arg_k = k
|
740 |
+
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
741 |
+
PRE_BLOCK = 128
|
742 |
+
assert N_CTX % PRE_BLOCK == 0
|
743 |
+
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
744 |
+
delta = torch.empty_like(M)
|
745 |
+
if sinks is not None:
|
746 |
+
dsinks = torch.empty_like(sinks)
|
747 |
+
dsinkstemp = torch.empty(pre_grid, dtype=torch.float32, device=sinks.device)
|
748 |
+
atomic_counters = torch.zeros(
|
749 |
+
N_HEAD, dtype=torch.int32, device=sinks.device
|
750 |
+
)
|
751 |
+
else:
|
752 |
+
dsinks, dsinkstemp, atomic_counters = None, None, None
|
753 |
+
_attn_bwd_preprocess[pre_grid](
|
754 |
+
o,
|
755 |
+
do, #
|
756 |
+
# Info for attention sinks.
|
757 |
+
sinks,
|
758 |
+
dsinks,
|
759 |
+
dsinkstemp,
|
760 |
+
atomic_counters,
|
761 |
+
M,
|
762 |
+
######
|
763 |
+
delta, #
|
764 |
+
BATCH,
|
765 |
+
N_HEAD,
|
766 |
+
N_CTX, #
|
767 |
+
BLOCK_M=PRE_BLOCK,
|
768 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
769 |
+
)
|
770 |
+
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
|
771 |
+
_attn_bwd[grid](
|
772 |
+
q,
|
773 |
+
arg_k,
|
774 |
+
v,
|
775 |
+
ctx.sm_scale,
|
776 |
+
do,
|
777 |
+
dq,
|
778 |
+
dk,
|
779 |
+
dv, #
|
780 |
+
M,
|
781 |
+
delta, #
|
782 |
+
q.stride(0),
|
783 |
+
q.stride(1),
|
784 |
+
q.stride(2),
|
785 |
+
q.stride(3), #
|
786 |
+
N_HEAD,
|
787 |
+
N_CTX, #
|
788 |
+
BANDWIDTH=ctx.bandwidth,
|
789 |
+
BLOCK_M1=BLOCK_M1,
|
790 |
+
BLOCK_N1=BLOCK_N1, #
|
791 |
+
BLOCK_M2=BLOCK_M2,
|
792 |
+
BLOCK_N2=BLOCK_N2, #
|
793 |
+
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
|
794 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
795 |
+
num_warps=NUM_WARPS, #
|
796 |
+
num_stages=NUM_STAGES, #
|
797 |
+
)
|
798 |
+
|
799 |
+
return dq, dk, dv, dsinks, None, None, None, None, None
|
800 |
+
|
801 |
+
|
802 |
+
attention = _attention.apply
|
803 |
+
|
flake.lock
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nodes": {
|
3 |
+
"flake-compat": {
|
4 |
+
"locked": {
|
5 |
+
"lastModified": 1747046372,
|
6 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
7 |
+
"owner": "edolstra",
|
8 |
+
"repo": "flake-compat",
|
9 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
10 |
+
"type": "github"
|
11 |
+
},
|
12 |
+
"original": {
|
13 |
+
"owner": "edolstra",
|
14 |
+
"repo": "flake-compat",
|
15 |
+
"type": "github"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"flake-compat_2": {
|
19 |
+
"locked": {
|
20 |
+
"lastModified": 1733328505,
|
21 |
+
"narHash": "sha256-NeCCThCEP3eCl2l/+27kNNK7QrwZB1IJCrXfrbv5oqU=",
|
22 |
+
"owner": "edolstra",
|
23 |
+
"repo": "flake-compat",
|
24 |
+
"rev": "ff81ac966bb2cae68946d5ed5fc4994f96d0ffec",
|
25 |
+
"type": "github"
|
26 |
+
},
|
27 |
+
"original": {
|
28 |
+
"owner": "edolstra",
|
29 |
+
"repo": "flake-compat",
|
30 |
+
"type": "github"
|
31 |
+
}
|
32 |
+
},
|
33 |
+
"flake-utils": {
|
34 |
+
"inputs": {
|
35 |
+
"systems": "systems"
|
36 |
+
},
|
37 |
+
"locked": {
|
38 |
+
"lastModified": 1731533236,
|
39 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
40 |
+
"owner": "numtide",
|
41 |
+
"repo": "flake-utils",
|
42 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
43 |
+
"type": "github"
|
44 |
+
},
|
45 |
+
"original": {
|
46 |
+
"owner": "numtide",
|
47 |
+
"repo": "flake-utils",
|
48 |
+
"type": "github"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"flake-utils_2": {
|
52 |
+
"inputs": {
|
53 |
+
"systems": "systems_2"
|
54 |
+
},
|
55 |
+
"locked": {
|
56 |
+
"lastModified": 1731533236,
|
57 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
58 |
+
"owner": "numtide",
|
59 |
+
"repo": "flake-utils",
|
60 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
61 |
+
"type": "github"
|
62 |
+
},
|
63 |
+
"original": {
|
64 |
+
"owner": "numtide",
|
65 |
+
"repo": "flake-utils",
|
66 |
+
"type": "github"
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"hf-nix": {
|
70 |
+
"inputs": {
|
71 |
+
"flake-compat": "flake-compat_2",
|
72 |
+
"flake-utils": "flake-utils_2",
|
73 |
+
"nixpkgs": "nixpkgs"
|
74 |
+
},
|
75 |
+
"locked": {
|
76 |
+
"lastModified": 1753354560,
|
77 |
+
"narHash": "sha256-vmOfRmr0Qm/IbZTWB2sBn+UFrABSTTA/cTg+m27Yt/E=",
|
78 |
+
"owner": "huggingface",
|
79 |
+
"repo": "hf-nix",
|
80 |
+
"rev": "7f2aceda2a2e72cd573bdb25e5c0667fd75f89d3",
|
81 |
+
"type": "github"
|
82 |
+
},
|
83 |
+
"original": {
|
84 |
+
"owner": "huggingface",
|
85 |
+
"repo": "hf-nix",
|
86 |
+
"type": "github"
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"kernel-builder": {
|
90 |
+
"inputs": {
|
91 |
+
"flake-compat": "flake-compat",
|
92 |
+
"flake-utils": "flake-utils",
|
93 |
+
"hf-nix": "hf-nix",
|
94 |
+
"nixpkgs": [
|
95 |
+
"kernel-builder",
|
96 |
+
"hf-nix",
|
97 |
+
"nixpkgs"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
"locked": {
|
101 |
+
"lastModified": 1753354632,
|
102 |
+
"narHash": "sha256-31SX3Raiyx0qCuY9JSlx9ZZgxljeUxvW+JdujjxbofQ=",
|
103 |
+
"owner": "huggingface",
|
104 |
+
"repo": "kernel-builder",
|
105 |
+
"rev": "524b628fd8e58525dbd28455bffb0628092c5265",
|
106 |
+
"type": "github"
|
107 |
+
},
|
108 |
+
"original": {
|
109 |
+
"owner": "huggingface",
|
110 |
+
"ref": "torch-2.8",
|
111 |
+
"repo": "kernel-builder",
|
112 |
+
"type": "github"
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"nixpkgs": {
|
116 |
+
"locked": {
|
117 |
+
"lastModified": 1752785354,
|
118 |
+
"narHash": "sha256-Y33ryUz7MPqKrZwlbQcsYCUz2jAJCacRf8jbs0tYUlA=",
|
119 |
+
"owner": "nixos",
|
120 |
+
"repo": "nixpkgs",
|
121 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
122 |
+
"type": "github"
|
123 |
+
},
|
124 |
+
"original": {
|
125 |
+
"owner": "nixos",
|
126 |
+
"repo": "nixpkgs",
|
127 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
128 |
+
"type": "github"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"root": {
|
132 |
+
"inputs": {
|
133 |
+
"kernel-builder": "kernel-builder"
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"systems": {
|
137 |
+
"locked": {
|
138 |
+
"lastModified": 1681028828,
|
139 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
140 |
+
"owner": "nix-systems",
|
141 |
+
"repo": "default",
|
142 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
143 |
+
"type": "github"
|
144 |
+
},
|
145 |
+
"original": {
|
146 |
+
"owner": "nix-systems",
|
147 |
+
"repo": "default",
|
148 |
+
"type": "github"
|
149 |
+
}
|
150 |
+
},
|
151 |
+
"systems_2": {
|
152 |
+
"locked": {
|
153 |
+
"lastModified": 1681028828,
|
154 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
155 |
+
"owner": "nix-systems",
|
156 |
+
"repo": "default",
|
157 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
158 |
+
"type": "github"
|
159 |
+
},
|
160 |
+
"original": {
|
161 |
+
"owner": "nix-systems",
|
162 |
+
"repo": "default",
|
163 |
+
"type": "github"
|
164 |
+
}
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"root": "root",
|
168 |
+
"version": 7
|
169 |
+
}
|
flake.nix
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
description = "Flake for Triton flash attention with attention sinks";
|
3 |
+
|
4 |
+
inputs = {
|
5 |
+
kernel-builder.url = "github:huggingface/kernel-builder/torch-2.8";
|
6 |
+
};
|
7 |
+
|
8 |
+
outputs =
|
9 |
+
{
|
10 |
+
self,
|
11 |
+
kernel-builder,
|
12 |
+
}:
|
13 |
+
kernel-builder.lib.genFlakeOutputs {
|
14 |
+
path = ./.;
|
15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
};
|
17 |
+
}
|
torch-ext/triton_flash_attn_sink/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .attention import attention
|
2 |
+
|
3 |
+
___all__ = ["attention"]
|
torch-ext/triton_flash_attn_sink/attention.py
ADDED
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""FlashAttention w/support for learned sinks and banded attention.
|
2 |
+
|
3 |
+
This is an expanded version of the Flash Attention v2 implementation (see https://tridao.me/publications/flash2/flash2.pdf)
|
4 |
+
which can be found at https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html.
|
5 |
+
|
6 |
+
This version has been extended to support banded attention and learned attention sinks.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
|
15 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
16 |
+
# _attn_fwd_inner
|
17 |
+
# (thanks o3 for the help + kind comment strings....)
|
18 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
19 |
+
@triton.jit
|
20 |
+
def _attn_fwd_inner(
|
21 |
+
acc,
|
22 |
+
l_i,
|
23 |
+
m_i,
|
24 |
+
q,
|
25 |
+
K_block_ptr,
|
26 |
+
V_block_ptr,
|
27 |
+
start_m,
|
28 |
+
qk_scale,
|
29 |
+
BLOCK_M: tl.constexpr,
|
30 |
+
HEAD_DIM: tl.constexpr,
|
31 |
+
BLOCK_N: tl.constexpr,
|
32 |
+
STAGE: tl.constexpr,
|
33 |
+
offs_m: tl.constexpr,
|
34 |
+
offs_n: tl.constexpr,
|
35 |
+
N_CTX: tl.constexpr,
|
36 |
+
BANDWIDTH: tl.constexpr,
|
37 |
+
):
|
38 |
+
# ---------------- range of kv indices for this stage ---------------------
|
39 |
+
if STAGE == 1:
|
40 |
+
# off-band (used only when BANDWIDTH == 0)
|
41 |
+
lo, hi = 0, start_m * BLOCK_M
|
42 |
+
elif STAGE == 2:
|
43 |
+
# on-band **plus** the preceding tokens that fall inside `BANDWIDTH`
|
44 |
+
if BANDWIDTH == 0: # full context → current block only
|
45 |
+
lo = start_m * BLOCK_M
|
46 |
+
else: # local context
|
47 |
+
lo = tl.maximum(0, start_m * BLOCK_M - BANDWIDTH)
|
48 |
+
hi = (start_m + 1) * BLOCK_M
|
49 |
+
# make the compiler aware that `lo` is a multiple of BLOCK_N so that
|
50 |
+
# the first `tl.load` is aligned (matches what the large kernel does)
|
51 |
+
lo = tl.multiple_of(lo, BLOCK_N)
|
52 |
+
else: # STAGE == 3 (non-causal)
|
53 |
+
lo, hi = 0, N_CTX
|
54 |
+
|
55 |
+
# advance the KV block-pointers so they point at `lo`
|
56 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
57 |
+
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
58 |
+
|
59 |
+
# ---------------- main loop over K/V tiles -------------------------------
|
60 |
+
for start_n in range(lo, hi, BLOCK_N):
|
61 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
62 |
+
|
63 |
+
# ---- Q·Kᵀ ------------------------------------------------------------
|
64 |
+
k = tl.load(K_block_ptr)
|
65 |
+
qk = tl.dot(q, k)
|
66 |
+
|
67 |
+
# ------------- causal + bandwidth masking (STAGE == 2) ----------------
|
68 |
+
if STAGE == 2:
|
69 |
+
# causal mask (j ≤ i)
|
70 |
+
causal_ok = offs_m[:, None] >= (start_n + offs_n[None, :])
|
71 |
+
|
72 |
+
if BANDWIDTH == 0: # full causal attention
|
73 |
+
mask = causal_ok
|
74 |
+
else: # local causal attention
|
75 |
+
# j ≥ i − BANDWIDTH + 1 ⟺ i < j + BANDWIDTH
|
76 |
+
within_bw = offs_m[:, None] < (start_n + offs_n[None, :] + BANDWIDTH)
|
77 |
+
mask = causal_ok & within_bw
|
78 |
+
|
79 |
+
qk = qk * qk_scale + tl.where(mask, 0.0, -1.0e30)
|
80 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
81 |
+
qk -= m_ij[:, None]
|
82 |
+
else:
|
83 |
+
# STAGE 1 (when BANDWIDTH == 0) or STAGE 3 (non-causal)
|
84 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
|
85 |
+
qk = qk * qk_scale - m_ij[:, None]
|
86 |
+
|
87 |
+
# ---- softmax ---------------------------------------------------------
|
88 |
+
p = tl.math.exp2(qk)
|
89 |
+
l_ij = tl.sum(p, 1)
|
90 |
+
|
91 |
+
# ---- running numerically-stable accumulators -------------------------
|
92 |
+
alpha = tl.math.exp2(m_i - m_ij)
|
93 |
+
l_i = l_i * alpha + l_ij
|
94 |
+
acc = acc * alpha[:, None]
|
95 |
+
|
96 |
+
v = tl.load(V_block_ptr)
|
97 |
+
acc = tl.dot(p, v, acc)
|
98 |
+
|
99 |
+
m_i = m_ij
|
100 |
+
|
101 |
+
# ---- advance pointers ------------------------------------------------
|
102 |
+
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
103 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
104 |
+
|
105 |
+
return acc, l_i, m_i
|
106 |
+
|
107 |
+
|
108 |
+
@triton.jit
|
109 |
+
def _attn_fwd(
|
110 |
+
Q,
|
111 |
+
K,
|
112 |
+
V,
|
113 |
+
Sinks,
|
114 |
+
sm_scale,
|
115 |
+
M,
|
116 |
+
Out, #
|
117 |
+
stride_qz,
|
118 |
+
stride_qh,
|
119 |
+
stride_qm,
|
120 |
+
stride_qk, #
|
121 |
+
stride_kz,
|
122 |
+
stride_kh,
|
123 |
+
stride_kn,
|
124 |
+
stride_kk, #
|
125 |
+
stride_vz,
|
126 |
+
stride_vh,
|
127 |
+
stride_vk,
|
128 |
+
stride_vn, #
|
129 |
+
stride_oz,
|
130 |
+
stride_oh,
|
131 |
+
stride_om,
|
132 |
+
stride_on, #
|
133 |
+
Z,
|
134 |
+
H,
|
135 |
+
N_CTX, #
|
136 |
+
HEAD_DIM: tl.constexpr, #
|
137 |
+
BLOCK_M: tl.constexpr, #
|
138 |
+
BLOCK_N: tl.constexpr, #
|
139 |
+
STAGE: tl.constexpr, #
|
140 |
+
BANDWIDTH: tl.constexpr,
|
141 |
+
):
|
142 |
+
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
143 |
+
start_m = tl.program_id(0)
|
144 |
+
off_hz = tl.program_id(1)
|
145 |
+
off_z = off_hz // H
|
146 |
+
off_h = off_hz % H
|
147 |
+
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
148 |
+
|
149 |
+
# block pointers
|
150 |
+
Q_block_ptr = tl.make_block_ptr(
|
151 |
+
base=Q + qvk_offset,
|
152 |
+
shape=(N_CTX, HEAD_DIM),
|
153 |
+
strides=(stride_qm, stride_qk),
|
154 |
+
offsets=(start_m * BLOCK_M, 0),
|
155 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
156 |
+
order=(1, 0),
|
157 |
+
)
|
158 |
+
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
159 |
+
V_block_ptr = tl.make_block_ptr(
|
160 |
+
base=V + qvk_offset,
|
161 |
+
shape=(N_CTX, HEAD_DIM),
|
162 |
+
strides=(stride_vk, stride_vn),
|
163 |
+
offsets=(0, 0),
|
164 |
+
block_shape=(BLOCK_N, HEAD_DIM),
|
165 |
+
order=v_order,
|
166 |
+
)
|
167 |
+
K_block_ptr = tl.make_block_ptr(
|
168 |
+
base=K + qvk_offset,
|
169 |
+
shape=(HEAD_DIM, N_CTX),
|
170 |
+
strides=(stride_kk, stride_kn),
|
171 |
+
offsets=(0, 0),
|
172 |
+
block_shape=(HEAD_DIM, BLOCK_N),
|
173 |
+
order=(0, 1),
|
174 |
+
)
|
175 |
+
O_block_ptr = tl.make_block_ptr(
|
176 |
+
base=Out + qvk_offset,
|
177 |
+
shape=(N_CTX, HEAD_DIM),
|
178 |
+
strides=(stride_om, stride_on),
|
179 |
+
offsets=(start_m * BLOCK_M, 0),
|
180 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
181 |
+
order=(1, 0),
|
182 |
+
)
|
183 |
+
|
184 |
+
# load attention sinks
|
185 |
+
if Sinks is not None:
|
186 |
+
sink = tl.load(Sinks + off_h).to(tl.float32)
|
187 |
+
else:
|
188 |
+
sink = -1.0e30
|
189 |
+
|
190 |
+
# initialize offsets
|
191 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
192 |
+
offs_n = tl.arange(0, BLOCK_N)
|
193 |
+
# initialize pointer to m and l
|
194 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + sink
|
195 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
196 |
+
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
197 |
+
# load scales
|
198 |
+
qk_scale = sm_scale
|
199 |
+
qk_scale *= 1.44269504 # 1/log(2)
|
200 |
+
# load q: it will stay in SRAM throughout
|
201 |
+
q = tl.load(Q_block_ptr)
|
202 |
+
# stage 1: off-band
|
203 |
+
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
204 |
+
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
205 |
+
if STAGE & 1 and (BANDWIDTH == 0):
|
206 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
207 |
+
acc,
|
208 |
+
l_i,
|
209 |
+
m_i,
|
210 |
+
q,
|
211 |
+
K_block_ptr,
|
212 |
+
V_block_ptr, #
|
213 |
+
start_m,
|
214 |
+
qk_scale, #
|
215 |
+
BLOCK_M,
|
216 |
+
HEAD_DIM,
|
217 |
+
BLOCK_N, #
|
218 |
+
4 - STAGE,
|
219 |
+
offs_m,
|
220 |
+
offs_n,
|
221 |
+
N_CTX,
|
222 |
+
BANDWIDTH,
|
223 |
+
)
|
224 |
+
# stage 2: on-band
|
225 |
+
if STAGE & 2:
|
226 |
+
# barrier makes it easier for compielr to schedule the
|
227 |
+
# two loops independently
|
228 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
229 |
+
acc,
|
230 |
+
l_i,
|
231 |
+
m_i,
|
232 |
+
q,
|
233 |
+
K_block_ptr,
|
234 |
+
V_block_ptr, #
|
235 |
+
start_m,
|
236 |
+
qk_scale, #
|
237 |
+
BLOCK_M,
|
238 |
+
HEAD_DIM,
|
239 |
+
BLOCK_N, #
|
240 |
+
2,
|
241 |
+
offs_m,
|
242 |
+
offs_n,
|
243 |
+
N_CTX,
|
244 |
+
BANDWIDTH,
|
245 |
+
)
|
246 |
+
# epilogue
|
247 |
+
m_i += tl.math.log2(l_i)
|
248 |
+
acc = acc / l_i[:, None]
|
249 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
250 |
+
tl.store(m_ptrs, m_i)
|
251 |
+
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
252 |
+
|
253 |
+
|
254 |
+
@triton.jit
|
255 |
+
def _attn_bwd_preprocess(
|
256 |
+
O,
|
257 |
+
DO, #
|
258 |
+
Sinks,
|
259 |
+
DSinks,
|
260 |
+
DSinkstemp,
|
261 |
+
Atomic_counters,
|
262 |
+
M,
|
263 |
+
Delta, #
|
264 |
+
Z,
|
265 |
+
H,
|
266 |
+
N_CTX, #
|
267 |
+
BLOCK_M: tl.constexpr,
|
268 |
+
HEAD_DIM: tl.constexpr, #
|
269 |
+
):
|
270 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
271 |
+
off_hz = tl.program_id(1)
|
272 |
+
off_n = tl.arange(0, HEAD_DIM)
|
273 |
+
off_z = off_hz // H
|
274 |
+
off_h = off_hz % H
|
275 |
+
# load
|
276 |
+
o = tl.load(
|
277 |
+
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
278 |
+
)
|
279 |
+
do = tl.load(
|
280 |
+
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
281 |
+
).to(tl.float32)
|
282 |
+
delta = tl.sum(o * do, axis=1)
|
283 |
+
# write-back
|
284 |
+
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
285 |
+
|
286 |
+
if Sinks is not None:
|
287 |
+
m = tl.load(M + off_z * H * N_CTX + off_h * N_CTX + off_m)
|
288 |
+
sink = tl.load(Sinks + off_h)
|
289 |
+
dl = tl.sum(tl.math.exp2(sink - m) * delta, axis=0)
|
290 |
+
|
291 |
+
depth = Z * (N_CTX // BLOCK_M)
|
292 |
+
|
293 |
+
tl.store(
|
294 |
+
DSinkstemp + (off_h * Z + off_z) * (N_CTX // BLOCK_M) + tl.program_id(0), dl
|
295 |
+
)
|
296 |
+
|
297 |
+
if tl.atomic_add(Atomic_counters + off_h, 1) == depth - 1:
|
298 |
+
dl_acc = 0.0
|
299 |
+
|
300 |
+
for i in range(0, depth, BLOCK_M):
|
301 |
+
idxs = i + tl.arange(0, BLOCK_M)
|
302 |
+
temps = tl.load(
|
303 |
+
DSinkstemp + off_h * depth + idxs, mask=(idxs < depth), other=0.0
|
304 |
+
)
|
305 |
+
dl_acc += tl.sum(temps, axis=0)
|
306 |
+
|
307 |
+
tl.store(DSinks + off_h, (-0.69314718) * dl_acc)
|
308 |
+
|
309 |
+
|
310 |
+
# The main inner-loop logic for computing dK and dV.
|
311 |
+
@triton.jit
|
312 |
+
def _attn_bwd_dkdv(
|
313 |
+
dk,
|
314 |
+
dv, #
|
315 |
+
Q,
|
316 |
+
k,
|
317 |
+
v,
|
318 |
+
sm_scale, #
|
319 |
+
DO, #
|
320 |
+
M,
|
321 |
+
D, #
|
322 |
+
# shared by Q/K/V/DO.
|
323 |
+
stride_tok,
|
324 |
+
stride_d, #
|
325 |
+
H,
|
326 |
+
N_CTX,
|
327 |
+
BLOCK_M1: tl.constexpr, #
|
328 |
+
BLOCK_N1: tl.constexpr, #
|
329 |
+
HEAD_DIM: tl.constexpr, #
|
330 |
+
# Filled in by the wrapper.
|
331 |
+
start_n,
|
332 |
+
start_m,
|
333 |
+
num_steps, #
|
334 |
+
MASK: tl.constexpr,
|
335 |
+
BANDWIDTH: tl.constexpr,
|
336 |
+
):
|
337 |
+
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
338 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
339 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
340 |
+
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
|
341 |
+
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
342 |
+
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
|
343 |
+
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
344 |
+
curr_m = start_m
|
345 |
+
step_m = BLOCK_M1
|
346 |
+
for blk_idx in range(num_steps):
|
347 |
+
qT = tl.load(qT_ptrs)
|
348 |
+
# Load m before computing qk to reduce pipeline stall.
|
349 |
+
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
350 |
+
m = tl.load(M + offs_m)
|
351 |
+
qkT = tl.dot(k, qT)
|
352 |
+
pT = tl.math.exp2(qkT - m[None, :])
|
353 |
+
# Autoregressive masking.
|
354 |
+
if MASK:
|
355 |
+
if BANDWIDTH == 0: # full causal
|
356 |
+
mask = offs_m[None, :] >= offs_n[:, None]
|
357 |
+
else: # local causal
|
358 |
+
mask = (offs_m[None, :] >= offs_n[:, None]) & (
|
359 |
+
offs_m[None, :] < offs_n[:, None] + BANDWIDTH
|
360 |
+
)
|
361 |
+
pT = tl.where(mask, pT, 0.0)
|
362 |
+
do = tl.load(do_ptrs)
|
363 |
+
# Compute dV.
|
364 |
+
ppT = pT
|
365 |
+
ppT = ppT.to(tl.float16)
|
366 |
+
dv += tl.dot(ppT, do)
|
367 |
+
# D (= delta) is pre-divided by ds_scale.
|
368 |
+
Di = tl.load(D + offs_m)
|
369 |
+
# Compute dP and dS.
|
370 |
+
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
|
371 |
+
dsT = pT * (dpT - Di[None, :])
|
372 |
+
dsT = dsT.to(tl.float16)
|
373 |
+
dk += tl.dot(dsT, tl.trans(qT))
|
374 |
+
# Increment pointers.
|
375 |
+
curr_m += step_m
|
376 |
+
qT_ptrs += step_m * stride_tok
|
377 |
+
do_ptrs += step_m * stride_tok
|
378 |
+
return dk, dv
|
379 |
+
|
380 |
+
|
381 |
+
# the main inner-loop logic for computing dQ
|
382 |
+
@triton.jit
|
383 |
+
def _attn_bwd_dq(
|
384 |
+
dq,
|
385 |
+
q,
|
386 |
+
K,
|
387 |
+
V, #
|
388 |
+
do,
|
389 |
+
m,
|
390 |
+
D,
|
391 |
+
# shared by Q/K/V/DO.
|
392 |
+
stride_tok,
|
393 |
+
stride_d, #
|
394 |
+
H,
|
395 |
+
N_CTX, #
|
396 |
+
BLOCK_M2: tl.constexpr, #
|
397 |
+
BLOCK_N2: tl.constexpr, #
|
398 |
+
HEAD_DIM: tl.constexpr,
|
399 |
+
BANDWIDTH: tl.constexpr,
|
400 |
+
# Filled in by the wrapper.
|
401 |
+
start_m,
|
402 |
+
start_n,
|
403 |
+
num_steps, #
|
404 |
+
MASK: tl.constexpr,
|
405 |
+
):
|
406 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
407 |
+
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
408 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
409 |
+
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
410 |
+
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
411 |
+
# D (= delta) is pre-divided by ds_scale.
|
412 |
+
Di = tl.load(D + offs_m)
|
413 |
+
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
|
414 |
+
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
415 |
+
curr_n = start_n
|
416 |
+
step_n = BLOCK_N2
|
417 |
+
for blk_idx in range(num_steps):
|
418 |
+
kT = tl.load(kT_ptrs)
|
419 |
+
vT = tl.load(vT_ptrs)
|
420 |
+
qk = tl.dot(q, kT)
|
421 |
+
p = tl.math.exp2(qk - m)
|
422 |
+
# Autoregressive masking.
|
423 |
+
if MASK:
|
424 |
+
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
425 |
+
if BANDWIDTH == 0: # full causal
|
426 |
+
mask = offs_m[:, None] >= offs_n[None, :]
|
427 |
+
else: # local causal
|
428 |
+
mask = (offs_m[:, None] >= offs_n[None, :]) & (
|
429 |
+
offs_m[:, None] < offs_n[None, :] + BANDWIDTH
|
430 |
+
)
|
431 |
+
p = tl.where(mask, p, 0.0)
|
432 |
+
# Compute dP and dS.
|
433 |
+
dp = tl.dot(do, vT).to(tl.float32)
|
434 |
+
ds = p * (dp - Di[:, None])
|
435 |
+
ds = ds.to(tl.float16)
|
436 |
+
# Compute dQ.
|
437 |
+
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
|
438 |
+
dq += tl.dot(ds, tl.trans(kT))
|
439 |
+
# Increment pointers.
|
440 |
+
curr_n += step_n
|
441 |
+
kT_ptrs += step_n * stride_tok
|
442 |
+
vT_ptrs += step_n * stride_tok
|
443 |
+
return dq
|
444 |
+
|
445 |
+
|
446 |
+
@triton.jit
|
447 |
+
def _attn_bwd(
|
448 |
+
Q,
|
449 |
+
K,
|
450 |
+
V,
|
451 |
+
sm_scale, #
|
452 |
+
DO, #
|
453 |
+
DQ,
|
454 |
+
DK,
|
455 |
+
DV, #
|
456 |
+
M,
|
457 |
+
D,
|
458 |
+
# shared by Q/K/V/DO.
|
459 |
+
stride_z,
|
460 |
+
stride_h,
|
461 |
+
stride_tok,
|
462 |
+
stride_d, #
|
463 |
+
H,
|
464 |
+
N_CTX, #
|
465 |
+
BANDWIDTH: tl.constexpr,
|
466 |
+
BLOCK_M1: tl.constexpr, #
|
467 |
+
BLOCK_N1: tl.constexpr, #
|
468 |
+
BLOCK_M2: tl.constexpr, #
|
469 |
+
BLOCK_N2: tl.constexpr, #
|
470 |
+
BLK_SLICE_FACTOR: tl.constexpr, #
|
471 |
+
HEAD_DIM: tl.constexpr,
|
472 |
+
):
|
473 |
+
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
|
474 |
+
|
475 |
+
bhid = tl.program_id(2)
|
476 |
+
off_chz = (bhid * N_CTX).to(tl.int64)
|
477 |
+
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
478 |
+
pid = tl.program_id(0)
|
479 |
+
|
480 |
+
# offset pointers for batch/head
|
481 |
+
Q += adj
|
482 |
+
K += adj
|
483 |
+
V += adj
|
484 |
+
DO += adj
|
485 |
+
DQ += adj
|
486 |
+
DK += adj
|
487 |
+
DV += adj
|
488 |
+
M += off_chz
|
489 |
+
D += off_chz
|
490 |
+
|
491 |
+
# load scales
|
492 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
493 |
+
|
494 |
+
start_n = pid * BLOCK_N1
|
495 |
+
start_m = start_n
|
496 |
+
|
497 |
+
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
498 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
499 |
+
|
500 |
+
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
501 |
+
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
502 |
+
|
503 |
+
# load K and V: they stay in SRAM throughout the inner loop.
|
504 |
+
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
505 |
+
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
506 |
+
|
507 |
+
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
508 |
+
|
509 |
+
dk, dv = _attn_bwd_dkdv(
|
510 |
+
dk,
|
511 |
+
dv, #
|
512 |
+
Q,
|
513 |
+
k,
|
514 |
+
v,
|
515 |
+
sm_scale, #
|
516 |
+
DO, #
|
517 |
+
M,
|
518 |
+
D, #
|
519 |
+
stride_tok,
|
520 |
+
stride_d, #
|
521 |
+
H,
|
522 |
+
N_CTX, #
|
523 |
+
MASK_BLOCK_M1,
|
524 |
+
BLOCK_N1,
|
525 |
+
HEAD_DIM, #
|
526 |
+
start_n,
|
527 |
+
start_m,
|
528 |
+
num_steps, #
|
529 |
+
MASK=True, #
|
530 |
+
BANDWIDTH=BANDWIDTH,
|
531 |
+
)
|
532 |
+
|
533 |
+
start_m += num_steps * MASK_BLOCK_M1
|
534 |
+
# how many *additional* rows may still attend to the current key block?
|
535 |
+
if BANDWIDTH == 0:
|
536 |
+
rows_left = N_CTX - start_m
|
537 |
+
else:
|
538 |
+
rows_left = min(N_CTX - start_m, BLOCK_N1)
|
539 |
+
num_steps = rows_left // BLOCK_M1
|
540 |
+
|
541 |
+
# Compute dK and dV for non-masked blocks.
|
542 |
+
dk, dv = _attn_bwd_dkdv( #
|
543 |
+
dk,
|
544 |
+
dv, #
|
545 |
+
Q,
|
546 |
+
k,
|
547 |
+
v,
|
548 |
+
sm_scale, #
|
549 |
+
DO, #
|
550 |
+
M,
|
551 |
+
D, #
|
552 |
+
stride_tok,
|
553 |
+
stride_d, #
|
554 |
+
H,
|
555 |
+
N_CTX, #
|
556 |
+
BLOCK_M1,
|
557 |
+
BLOCK_N1,
|
558 |
+
HEAD_DIM, #
|
559 |
+
start_n,
|
560 |
+
start_m,
|
561 |
+
num_steps, #
|
562 |
+
MASK=BANDWIDTH != 0, #
|
563 |
+
BANDWIDTH=BANDWIDTH,
|
564 |
+
)
|
565 |
+
|
566 |
+
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
567 |
+
tl.store(dv_ptrs, dv)
|
568 |
+
|
569 |
+
# Write back dK.
|
570 |
+
dk *= sm_scale
|
571 |
+
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
572 |
+
tl.store(dk_ptrs, dk)
|
573 |
+
|
574 |
+
# THIS BLOCK DOES DQ:
|
575 |
+
start_m = pid * BLOCK_M2
|
576 |
+
end_n = start_m + BLOCK_M2
|
577 |
+
|
578 |
+
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
579 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
580 |
+
|
581 |
+
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
582 |
+
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
|
583 |
+
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
584 |
+
|
585 |
+
m = tl.load(M + offs_m)
|
586 |
+
m = m[:, None]
|
587 |
+
|
588 |
+
# Compute dQ for masked (diagonal) blocks.
|
589 |
+
# NOTE: This code scans each row of QK^T backward (from right to left,
|
590 |
+
# but inside each call to _attn_bwd_dq, from left to right), but that's
|
591 |
+
# not due to anything important. I just wanted to reuse the loop
|
592 |
+
# structure for dK & dV above as much as possible.
|
593 |
+
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
594 |
+
dq = _attn_bwd_dq(
|
595 |
+
dq,
|
596 |
+
q,
|
597 |
+
K,
|
598 |
+
V, #
|
599 |
+
do,
|
600 |
+
m,
|
601 |
+
D, #
|
602 |
+
stride_tok,
|
603 |
+
stride_d, #
|
604 |
+
H,
|
605 |
+
N_CTX, #
|
606 |
+
BLOCK_M2,
|
607 |
+
MASK_BLOCK_N2,
|
608 |
+
HEAD_DIM, #
|
609 |
+
BANDWIDTH,
|
610 |
+
start_m,
|
611 |
+
end_n - num_steps * MASK_BLOCK_N2,
|
612 |
+
num_steps, #
|
613 |
+
MASK=True, #
|
614 |
+
)
|
615 |
+
end_n -= num_steps * MASK_BLOCK_N2
|
616 |
+
|
617 |
+
# stage-1 (rows that still fall inside the window)
|
618 |
+
if BANDWIDTH == 0:
|
619 |
+
cols_left = end_n
|
620 |
+
else:
|
621 |
+
cols_left = min(end_n, BLOCK_M2)
|
622 |
+
num_steps = cols_left // BLOCK_N2
|
623 |
+
dq = _attn_bwd_dq(
|
624 |
+
dq,
|
625 |
+
q,
|
626 |
+
K,
|
627 |
+
V, #
|
628 |
+
do,
|
629 |
+
m,
|
630 |
+
D, #
|
631 |
+
stride_tok,
|
632 |
+
stride_d, #
|
633 |
+
H,
|
634 |
+
N_CTX, #
|
635 |
+
BLOCK_M2,
|
636 |
+
BLOCK_N2,
|
637 |
+
HEAD_DIM, #
|
638 |
+
BANDWIDTH,
|
639 |
+
start_m,
|
640 |
+
end_n - num_steps * BLOCK_N2,
|
641 |
+
num_steps, #
|
642 |
+
MASK=BANDWIDTH != 0, #
|
643 |
+
)
|
644 |
+
# Write back dQ.
|
645 |
+
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
646 |
+
dq *= LN2
|
647 |
+
tl.store(dq_ptrs, dq)
|
648 |
+
|
649 |
+
|
650 |
+
class _attention(torch.autograd.Function):
|
651 |
+
@staticmethod
|
652 |
+
def forward(
|
653 |
+
ctx,
|
654 |
+
q,
|
655 |
+
k,
|
656 |
+
v,
|
657 |
+
sinks,
|
658 |
+
causal,
|
659 |
+
sm_scale,
|
660 |
+
bandwidth,
|
661 |
+
warp_specialize=True,
|
662 |
+
USE_TMA=True,
|
663 |
+
):
|
664 |
+
# shape constraints
|
665 |
+
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
666 |
+
# when v is in float8_e5m2 it is transposed.
|
667 |
+
HEAD_DIM_V = v.shape[-1]
|
668 |
+
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
669 |
+
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
670 |
+
o = torch.empty_like(q)
|
671 |
+
stage = 3 if causal else 1
|
672 |
+
extra_kern_args = {}
|
673 |
+
M = torch.empty(
|
674 |
+
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
|
675 |
+
)
|
676 |
+
BLOCK_M = 128
|
677 |
+
grid = (
|
678 |
+
triton.cdiv(q.shape[2], BLOCK_M),
|
679 |
+
q.shape[0] * q.shape[1],
|
680 |
+
1,
|
681 |
+
)
|
682 |
+
_attn_fwd[grid](
|
683 |
+
q,
|
684 |
+
k,
|
685 |
+
v,
|
686 |
+
sinks,
|
687 |
+
sm_scale,
|
688 |
+
M,
|
689 |
+
o, #
|
690 |
+
q.stride(0),
|
691 |
+
q.stride(1),
|
692 |
+
q.stride(2),
|
693 |
+
q.stride(3), #
|
694 |
+
k.stride(0),
|
695 |
+
k.stride(1),
|
696 |
+
k.stride(2),
|
697 |
+
k.stride(3), #
|
698 |
+
v.stride(0),
|
699 |
+
v.stride(1),
|
700 |
+
v.stride(2),
|
701 |
+
v.stride(3), #
|
702 |
+
o.stride(0),
|
703 |
+
o.stride(1),
|
704 |
+
o.stride(2),
|
705 |
+
o.stride(3), #
|
706 |
+
q.shape[0],
|
707 |
+
q.shape[1], #
|
708 |
+
N_CTX=q.shape[2], #
|
709 |
+
HEAD_DIM=HEAD_DIM_K, #
|
710 |
+
STAGE=stage, #
|
711 |
+
BANDWIDTH=bandwidth,
|
712 |
+
BLOCK_M=BLOCK_M,
|
713 |
+
BLOCK_N=64,
|
714 |
+
**extra_kern_args,
|
715 |
+
)
|
716 |
+
|
717 |
+
ctx.save_for_backward(q, k, v, sinks, o, M)
|
718 |
+
ctx.sm_scale = sm_scale
|
719 |
+
ctx.HEAD_DIM = HEAD_DIM_K
|
720 |
+
ctx.causal = causal
|
721 |
+
ctx.bandwidth = bandwidth
|
722 |
+
return o
|
723 |
+
|
724 |
+
@staticmethod
|
725 |
+
def backward(ctx, do):
|
726 |
+
q, k, v, sinks, o, M = ctx.saved_tensors
|
727 |
+
do = do.contiguous()
|
728 |
+
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
729 |
+
dq = torch.empty_like(q)
|
730 |
+
dk = torch.empty_like(k)
|
731 |
+
dv = torch.empty_like(v)
|
732 |
+
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
733 |
+
PRE_BLOCK = 128
|
734 |
+
NUM_WARPS, NUM_STAGES = 4, 5
|
735 |
+
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
|
736 |
+
BLK_SLICE_FACTOR = 2
|
737 |
+
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
|
738 |
+
arg_k = k
|
739 |
+
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
740 |
+
PRE_BLOCK = 128
|
741 |
+
assert N_CTX % PRE_BLOCK == 0
|
742 |
+
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
743 |
+
delta = torch.empty_like(M)
|
744 |
+
if sinks is not None:
|
745 |
+
dsinks = torch.empty_like(sinks)
|
746 |
+
dsinkstemp = torch.empty(pre_grid, dtype=torch.float32, device=sinks.device)
|
747 |
+
atomic_counters = torch.zeros(
|
748 |
+
N_HEAD, dtype=torch.int32, device=sinks.device
|
749 |
+
)
|
750 |
+
else:
|
751 |
+
dsinks, dsinkstemp, atomic_counters = None, None, None
|
752 |
+
_attn_bwd_preprocess[pre_grid](
|
753 |
+
o,
|
754 |
+
do, #
|
755 |
+
# Info for attention sinks.
|
756 |
+
sinks,
|
757 |
+
dsinks,
|
758 |
+
dsinkstemp,
|
759 |
+
atomic_counters,
|
760 |
+
M,
|
761 |
+
######
|
762 |
+
delta, #
|
763 |
+
BATCH,
|
764 |
+
N_HEAD,
|
765 |
+
N_CTX, #
|
766 |
+
BLOCK_M=PRE_BLOCK,
|
767 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
768 |
+
)
|
769 |
+
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
|
770 |
+
_attn_bwd[grid](
|
771 |
+
q,
|
772 |
+
arg_k,
|
773 |
+
v,
|
774 |
+
ctx.sm_scale,
|
775 |
+
do,
|
776 |
+
dq,
|
777 |
+
dk,
|
778 |
+
dv, #
|
779 |
+
M,
|
780 |
+
delta, #
|
781 |
+
q.stride(0),
|
782 |
+
q.stride(1),
|
783 |
+
q.stride(2),
|
784 |
+
q.stride(3), #
|
785 |
+
N_HEAD,
|
786 |
+
N_CTX, #
|
787 |
+
BANDWIDTH=ctx.bandwidth,
|
788 |
+
BLOCK_M1=BLOCK_M1,
|
789 |
+
BLOCK_N1=BLOCK_N1, #
|
790 |
+
BLOCK_M2=BLOCK_M2,
|
791 |
+
BLOCK_N2=BLOCK_N2, #
|
792 |
+
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
|
793 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
794 |
+
num_warps=NUM_WARPS, #
|
795 |
+
num_stages=NUM_STAGES, #
|
796 |
+
)
|
797 |
+
|
798 |
+
return dq, dk, dv, dsinks, None, None, None, None, None
|
799 |
+
|
800 |
+
|
801 |
+
attention = _attention.apply
|
802 |
+
|