Upload folder using huggingface_hub
Browse files- README.md +6 -0
- build.toml +3 -0
- build/torch-universal/triton_flash_attn_sink/__init__.py +3 -0
- build/torch-universal/triton_flash_attn_sink/__pycache__/__init__.cpython-313.pyc +0 -0
- build/torch-universal/triton_flash_attn_sink/__pycache__/attention.cpython-313.pyc +0 -0
- build/torch-universal/triton_flash_attn_sink/_ops.py +8 -0
- build/torch-universal/triton_flash_attn_sink/attention.py +803 -0
- flake.lock +169 -0
- flake.nix +17 -0
- torch-ext/triton_flash_attn_sink/__init__.py +3 -0
- torch-ext/triton_flash_attn_sink/attention.py +802 -0
README.md
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- kernel
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
OpenAI Triton flash-attention with attention sinks
|
build.toml
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[general]
|
| 2 |
+
name = "triton_flash_attn_sink"
|
| 3 |
+
universal = true
|
build/torch-universal/triton_flash_attn_sink/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .attention import attention
|
| 2 |
+
|
| 3 |
+
___all__ = ["attention"]
|
build/torch-universal/triton_flash_attn_sink/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (252 Bytes). View file
|
|
|
build/torch-universal/triton_flash_attn_sink/__pycache__/attention.cpython-313.pyc
ADDED
|
Binary file (24.1 kB). View file
|
|
|
build/torch-universal/triton_flash_attn_sink/_ops.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
ops = torch.ops._triton_flash_attn_sink_a266b56
|
| 3 |
+
|
| 4 |
+
def add_op_namespace_prefix(op_name: str):
|
| 5 |
+
"""
|
| 6 |
+
Prefix op by namespace.
|
| 7 |
+
"""
|
| 8 |
+
return f"_triton_flash_attn_sink_a266b56::{op_name}"
|
build/torch-universal/triton_flash_attn_sink/attention.py
ADDED
|
@@ -0,0 +1,803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""FlashAttention w/support for learned sinks and banded attention.
|
| 2 |
+
|
| 3 |
+
This is an expanded version of the Flash Attention v2 implementation (see https://tridao.me/publications/flash2/flash2.pdf)
|
| 4 |
+
which can be found at https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html.
|
| 5 |
+
|
| 6 |
+
This version has been extended to support banded attention and learned attention sinks.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
import triton
|
| 12 |
+
import triton.language as tl
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
| 16 |
+
# _attn_fwd_inner
|
| 17 |
+
# (thanks o3 for the help + kind comment strings....)
|
| 18 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
| 19 |
+
@triton.jit
|
| 20 |
+
def _attn_fwd_inner(
|
| 21 |
+
acc,
|
| 22 |
+
l_i,
|
| 23 |
+
m_i,
|
| 24 |
+
q,
|
| 25 |
+
K_block_ptr,
|
| 26 |
+
V_block_ptr,
|
| 27 |
+
start_m,
|
| 28 |
+
qk_scale,
|
| 29 |
+
BLOCK_M: tl.constexpr,
|
| 30 |
+
HEAD_DIM: tl.constexpr,
|
| 31 |
+
BLOCK_N: tl.constexpr,
|
| 32 |
+
STAGE: tl.constexpr,
|
| 33 |
+
offs_m: tl.constexpr,
|
| 34 |
+
offs_n: tl.constexpr,
|
| 35 |
+
N_CTX: tl.constexpr,
|
| 36 |
+
BANDWIDTH: tl.constexpr,
|
| 37 |
+
):
|
| 38 |
+
# ---------------- range of kv indices for this stage ---------------------
|
| 39 |
+
if STAGE == 1:
|
| 40 |
+
# off-band (used only when BANDWIDTH == 0)
|
| 41 |
+
lo, hi = 0, start_m * BLOCK_M
|
| 42 |
+
elif STAGE == 2:
|
| 43 |
+
# on-band **plus** the preceding tokens that fall inside `BANDWIDTH`
|
| 44 |
+
if BANDWIDTH == 0: # full context → current block only
|
| 45 |
+
lo = start_m * BLOCK_M
|
| 46 |
+
else: # local context
|
| 47 |
+
lo = tl.maximum(0, start_m * BLOCK_M - BANDWIDTH)
|
| 48 |
+
hi = (start_m + 1) * BLOCK_M
|
| 49 |
+
# make the compiler aware that `lo` is a multiple of BLOCK_N so that
|
| 50 |
+
# the first `tl.load` is aligned (matches what the large kernel does)
|
| 51 |
+
lo = tl.multiple_of(lo, BLOCK_N)
|
| 52 |
+
else: # STAGE == 3 (non-causal)
|
| 53 |
+
lo, hi = 0, N_CTX
|
| 54 |
+
|
| 55 |
+
# advance the KV block-pointers so they point at `lo`
|
| 56 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
| 57 |
+
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
| 58 |
+
|
| 59 |
+
# ---------------- main loop over K/V tiles -------------------------------
|
| 60 |
+
for start_n in range(lo, hi, BLOCK_N):
|
| 61 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 62 |
+
|
| 63 |
+
# ---- Q·Kᵀ ------------------------------------------------------------
|
| 64 |
+
k = tl.load(K_block_ptr)
|
| 65 |
+
qk = tl.dot(q, k)
|
| 66 |
+
|
| 67 |
+
# ------------- causal + bandwidth masking (STAGE == 2) ----------------
|
| 68 |
+
if STAGE == 2:
|
| 69 |
+
# causal mask (j ≤ i)
|
| 70 |
+
causal_ok = offs_m[:, None] >= (start_n + offs_n[None, :])
|
| 71 |
+
|
| 72 |
+
if BANDWIDTH == 0: # full causal attention
|
| 73 |
+
mask = causal_ok
|
| 74 |
+
else: # local causal attention
|
| 75 |
+
# j ≥ i − BANDWIDTH + 1 ⟺ i < j + BANDWIDTH
|
| 76 |
+
within_bw = offs_m[:, None] < (start_n + offs_n[None, :] + BANDWIDTH)
|
| 77 |
+
mask = causal_ok & within_bw
|
| 78 |
+
|
| 79 |
+
qk = qk * qk_scale + tl.where(mask, 0.0, -1.0e30)
|
| 80 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
| 81 |
+
qk -= m_ij[:, None]
|
| 82 |
+
else:
|
| 83 |
+
# STAGE 1 (when BANDWIDTH == 0) or STAGE 3 (non-causal)
|
| 84 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
|
| 85 |
+
qk = qk * qk_scale - m_ij[:, None]
|
| 86 |
+
|
| 87 |
+
# ---- softmax ---------------------------------------------------------
|
| 88 |
+
p = tl.math.exp2(qk)
|
| 89 |
+
l_ij = tl.sum(p, 1)
|
| 90 |
+
|
| 91 |
+
# ---- running numerically-stable accumulators -------------------------
|
| 92 |
+
alpha = tl.math.exp2(m_i - m_ij)
|
| 93 |
+
l_i = l_i * alpha + l_ij
|
| 94 |
+
acc = acc * alpha[:, None]
|
| 95 |
+
|
| 96 |
+
v = tl.load(V_block_ptr)
|
| 97 |
+
p = p.to(tl.float16)
|
| 98 |
+
acc = tl.dot(p, v, acc)
|
| 99 |
+
|
| 100 |
+
m_i = m_ij
|
| 101 |
+
|
| 102 |
+
# ---- advance pointers ------------------------------------------------
|
| 103 |
+
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
| 104 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
| 105 |
+
|
| 106 |
+
return acc, l_i, m_i
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@triton.jit
|
| 110 |
+
def _attn_fwd(
|
| 111 |
+
Q,
|
| 112 |
+
K,
|
| 113 |
+
V,
|
| 114 |
+
Sinks,
|
| 115 |
+
sm_scale,
|
| 116 |
+
M,
|
| 117 |
+
Out, #
|
| 118 |
+
stride_qz,
|
| 119 |
+
stride_qh,
|
| 120 |
+
stride_qm,
|
| 121 |
+
stride_qk, #
|
| 122 |
+
stride_kz,
|
| 123 |
+
stride_kh,
|
| 124 |
+
stride_kn,
|
| 125 |
+
stride_kk, #
|
| 126 |
+
stride_vz,
|
| 127 |
+
stride_vh,
|
| 128 |
+
stride_vk,
|
| 129 |
+
stride_vn, #
|
| 130 |
+
stride_oz,
|
| 131 |
+
stride_oh,
|
| 132 |
+
stride_om,
|
| 133 |
+
stride_on, #
|
| 134 |
+
Z,
|
| 135 |
+
H,
|
| 136 |
+
N_CTX, #
|
| 137 |
+
HEAD_DIM: tl.constexpr, #
|
| 138 |
+
BLOCK_M: tl.constexpr, #
|
| 139 |
+
BLOCK_N: tl.constexpr, #
|
| 140 |
+
STAGE: tl.constexpr, #
|
| 141 |
+
BANDWIDTH: tl.constexpr,
|
| 142 |
+
):
|
| 143 |
+
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
| 144 |
+
start_m = tl.program_id(0)
|
| 145 |
+
off_hz = tl.program_id(1)
|
| 146 |
+
off_z = off_hz // H
|
| 147 |
+
off_h = off_hz % H
|
| 148 |
+
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
| 149 |
+
|
| 150 |
+
# block pointers
|
| 151 |
+
Q_block_ptr = tl.make_block_ptr(
|
| 152 |
+
base=Q + qvk_offset,
|
| 153 |
+
shape=(N_CTX, HEAD_DIM),
|
| 154 |
+
strides=(stride_qm, stride_qk),
|
| 155 |
+
offsets=(start_m * BLOCK_M, 0),
|
| 156 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
| 157 |
+
order=(1, 0),
|
| 158 |
+
)
|
| 159 |
+
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
| 160 |
+
V_block_ptr = tl.make_block_ptr(
|
| 161 |
+
base=V + qvk_offset,
|
| 162 |
+
shape=(N_CTX, HEAD_DIM),
|
| 163 |
+
strides=(stride_vk, stride_vn),
|
| 164 |
+
offsets=(0, 0),
|
| 165 |
+
block_shape=(BLOCK_N, HEAD_DIM),
|
| 166 |
+
order=v_order,
|
| 167 |
+
)
|
| 168 |
+
K_block_ptr = tl.make_block_ptr(
|
| 169 |
+
base=K + qvk_offset,
|
| 170 |
+
shape=(HEAD_DIM, N_CTX),
|
| 171 |
+
strides=(stride_kk, stride_kn),
|
| 172 |
+
offsets=(0, 0),
|
| 173 |
+
block_shape=(HEAD_DIM, BLOCK_N),
|
| 174 |
+
order=(0, 1),
|
| 175 |
+
)
|
| 176 |
+
O_block_ptr = tl.make_block_ptr(
|
| 177 |
+
base=Out + qvk_offset,
|
| 178 |
+
shape=(N_CTX, HEAD_DIM),
|
| 179 |
+
strides=(stride_om, stride_on),
|
| 180 |
+
offsets=(start_m * BLOCK_M, 0),
|
| 181 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
| 182 |
+
order=(1, 0),
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
# load attention sinks
|
| 186 |
+
if Sinks is not None:
|
| 187 |
+
sink = tl.load(Sinks + off_h).to(tl.float32)
|
| 188 |
+
else:
|
| 189 |
+
sink = -1.0e30
|
| 190 |
+
|
| 191 |
+
# initialize offsets
|
| 192 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 193 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 194 |
+
# initialize pointer to m and l
|
| 195 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + sink
|
| 196 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
| 197 |
+
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
| 198 |
+
# load scales
|
| 199 |
+
qk_scale = sm_scale
|
| 200 |
+
qk_scale *= 1.44269504 # 1/log(2)
|
| 201 |
+
# load q: it will stay in SRAM throughout
|
| 202 |
+
q = tl.load(Q_block_ptr)
|
| 203 |
+
# stage 1: off-band
|
| 204 |
+
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
| 205 |
+
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
| 206 |
+
if STAGE & 1 and (BANDWIDTH == 0):
|
| 207 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
| 208 |
+
acc,
|
| 209 |
+
l_i,
|
| 210 |
+
m_i,
|
| 211 |
+
q,
|
| 212 |
+
K_block_ptr,
|
| 213 |
+
V_block_ptr, #
|
| 214 |
+
start_m,
|
| 215 |
+
qk_scale, #
|
| 216 |
+
BLOCK_M,
|
| 217 |
+
HEAD_DIM,
|
| 218 |
+
BLOCK_N, #
|
| 219 |
+
4 - STAGE,
|
| 220 |
+
offs_m,
|
| 221 |
+
offs_n,
|
| 222 |
+
N_CTX,
|
| 223 |
+
BANDWIDTH,
|
| 224 |
+
)
|
| 225 |
+
# stage 2: on-band
|
| 226 |
+
if STAGE & 2:
|
| 227 |
+
# barrier makes it easier for compielr to schedule the
|
| 228 |
+
# two loops independently
|
| 229 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
| 230 |
+
acc,
|
| 231 |
+
l_i,
|
| 232 |
+
m_i,
|
| 233 |
+
q,
|
| 234 |
+
K_block_ptr,
|
| 235 |
+
V_block_ptr, #
|
| 236 |
+
start_m,
|
| 237 |
+
qk_scale, #
|
| 238 |
+
BLOCK_M,
|
| 239 |
+
HEAD_DIM,
|
| 240 |
+
BLOCK_N, #
|
| 241 |
+
2,
|
| 242 |
+
offs_m,
|
| 243 |
+
offs_n,
|
| 244 |
+
N_CTX,
|
| 245 |
+
BANDWIDTH,
|
| 246 |
+
)
|
| 247 |
+
# epilogue
|
| 248 |
+
m_i += tl.math.log2(l_i)
|
| 249 |
+
acc = acc / l_i[:, None]
|
| 250 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
| 251 |
+
tl.store(m_ptrs, m_i)
|
| 252 |
+
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
@triton.jit
|
| 256 |
+
def _attn_bwd_preprocess(
|
| 257 |
+
O,
|
| 258 |
+
DO, #
|
| 259 |
+
Sinks,
|
| 260 |
+
DSinks,
|
| 261 |
+
DSinkstemp,
|
| 262 |
+
Atomic_counters,
|
| 263 |
+
M,
|
| 264 |
+
Delta, #
|
| 265 |
+
Z,
|
| 266 |
+
H,
|
| 267 |
+
N_CTX, #
|
| 268 |
+
BLOCK_M: tl.constexpr,
|
| 269 |
+
HEAD_DIM: tl.constexpr, #
|
| 270 |
+
):
|
| 271 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 272 |
+
off_hz = tl.program_id(1)
|
| 273 |
+
off_n = tl.arange(0, HEAD_DIM)
|
| 274 |
+
off_z = off_hz // H
|
| 275 |
+
off_h = off_hz % H
|
| 276 |
+
# load
|
| 277 |
+
o = tl.load(
|
| 278 |
+
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
| 279 |
+
)
|
| 280 |
+
do = tl.load(
|
| 281 |
+
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
| 282 |
+
).to(tl.float32)
|
| 283 |
+
delta = tl.sum(o * do, axis=1)
|
| 284 |
+
# write-back
|
| 285 |
+
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
| 286 |
+
|
| 287 |
+
if Sinks is not None:
|
| 288 |
+
m = tl.load(M + off_z * H * N_CTX + off_h * N_CTX + off_m)
|
| 289 |
+
sink = tl.load(Sinks + off_h)
|
| 290 |
+
dl = tl.sum(tl.math.exp2(sink - m) * delta, axis=0)
|
| 291 |
+
|
| 292 |
+
depth = Z * (N_CTX // BLOCK_M)
|
| 293 |
+
|
| 294 |
+
tl.store(
|
| 295 |
+
DSinkstemp + (off_h * Z + off_z) * (N_CTX // BLOCK_M) + tl.program_id(0), dl
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
if tl.atomic_add(Atomic_counters + off_h, 1) == depth - 1:
|
| 299 |
+
dl_acc = 0.0
|
| 300 |
+
|
| 301 |
+
for i in range(0, depth, BLOCK_M):
|
| 302 |
+
idxs = i + tl.arange(0, BLOCK_M)
|
| 303 |
+
temps = tl.load(
|
| 304 |
+
DSinkstemp + off_h * depth + idxs, mask=(idxs < depth), other=0.0
|
| 305 |
+
)
|
| 306 |
+
dl_acc += tl.sum(temps, axis=0)
|
| 307 |
+
|
| 308 |
+
tl.store(DSinks + off_h, (-0.69314718) * dl_acc)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
# The main inner-loop logic for computing dK and dV.
|
| 312 |
+
@triton.jit
|
| 313 |
+
def _attn_bwd_dkdv(
|
| 314 |
+
dk,
|
| 315 |
+
dv, #
|
| 316 |
+
Q,
|
| 317 |
+
k,
|
| 318 |
+
v,
|
| 319 |
+
sm_scale, #
|
| 320 |
+
DO, #
|
| 321 |
+
M,
|
| 322 |
+
D, #
|
| 323 |
+
# shared by Q/K/V/DO.
|
| 324 |
+
stride_tok,
|
| 325 |
+
stride_d, #
|
| 326 |
+
H,
|
| 327 |
+
N_CTX,
|
| 328 |
+
BLOCK_M1: tl.constexpr, #
|
| 329 |
+
BLOCK_N1: tl.constexpr, #
|
| 330 |
+
HEAD_DIM: tl.constexpr, #
|
| 331 |
+
# Filled in by the wrapper.
|
| 332 |
+
start_n,
|
| 333 |
+
start_m,
|
| 334 |
+
num_steps, #
|
| 335 |
+
MASK: tl.constexpr,
|
| 336 |
+
BANDWIDTH: tl.constexpr,
|
| 337 |
+
):
|
| 338 |
+
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
| 339 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
| 340 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 341 |
+
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 342 |
+
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 343 |
+
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
|
| 344 |
+
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
| 345 |
+
curr_m = start_m
|
| 346 |
+
step_m = BLOCK_M1
|
| 347 |
+
for blk_idx in range(num_steps):
|
| 348 |
+
qT = tl.load(qT_ptrs)
|
| 349 |
+
# Load m before computing qk to reduce pipeline stall.
|
| 350 |
+
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
| 351 |
+
m = tl.load(M + offs_m)
|
| 352 |
+
qkT = tl.dot(k, qT)
|
| 353 |
+
pT = tl.math.exp2(qkT - m[None, :])
|
| 354 |
+
# Autoregressive masking.
|
| 355 |
+
if MASK:
|
| 356 |
+
if BANDWIDTH == 0: # full causal
|
| 357 |
+
mask = offs_m[None, :] >= offs_n[:, None]
|
| 358 |
+
else: # local causal
|
| 359 |
+
mask = (offs_m[None, :] >= offs_n[:, None]) & (
|
| 360 |
+
offs_m[None, :] < offs_n[:, None] + BANDWIDTH
|
| 361 |
+
)
|
| 362 |
+
pT = tl.where(mask, pT, 0.0)
|
| 363 |
+
do = tl.load(do_ptrs)
|
| 364 |
+
# Compute dV.
|
| 365 |
+
ppT = pT
|
| 366 |
+
ppT = ppT.to(tl.float16)
|
| 367 |
+
dv += tl.dot(ppT, do)
|
| 368 |
+
# D (= delta) is pre-divided by ds_scale.
|
| 369 |
+
Di = tl.load(D + offs_m)
|
| 370 |
+
# Compute dP and dS.
|
| 371 |
+
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
|
| 372 |
+
dsT = pT * (dpT - Di[None, :])
|
| 373 |
+
dsT = dsT.to(tl.float16)
|
| 374 |
+
dk += tl.dot(dsT, tl.trans(qT))
|
| 375 |
+
# Increment pointers.
|
| 376 |
+
curr_m += step_m
|
| 377 |
+
qT_ptrs += step_m * stride_tok
|
| 378 |
+
do_ptrs += step_m * stride_tok
|
| 379 |
+
return dk, dv
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
# the main inner-loop logic for computing dQ
|
| 383 |
+
@triton.jit
|
| 384 |
+
def _attn_bwd_dq(
|
| 385 |
+
dq,
|
| 386 |
+
q,
|
| 387 |
+
K,
|
| 388 |
+
V, #
|
| 389 |
+
do,
|
| 390 |
+
m,
|
| 391 |
+
D,
|
| 392 |
+
# shared by Q/K/V/DO.
|
| 393 |
+
stride_tok,
|
| 394 |
+
stride_d, #
|
| 395 |
+
H,
|
| 396 |
+
N_CTX, #
|
| 397 |
+
BLOCK_M2: tl.constexpr, #
|
| 398 |
+
BLOCK_N2: tl.constexpr, #
|
| 399 |
+
HEAD_DIM: tl.constexpr,
|
| 400 |
+
BANDWIDTH: tl.constexpr,
|
| 401 |
+
# Filled in by the wrapper.
|
| 402 |
+
start_m,
|
| 403 |
+
start_n,
|
| 404 |
+
num_steps, #
|
| 405 |
+
MASK: tl.constexpr,
|
| 406 |
+
):
|
| 407 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
| 408 |
+
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
| 409 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 410 |
+
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 411 |
+
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 412 |
+
# D (= delta) is pre-divided by ds_scale.
|
| 413 |
+
Di = tl.load(D + offs_m)
|
| 414 |
+
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
|
| 415 |
+
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
| 416 |
+
curr_n = start_n
|
| 417 |
+
step_n = BLOCK_N2
|
| 418 |
+
for blk_idx in range(num_steps):
|
| 419 |
+
kT = tl.load(kT_ptrs)
|
| 420 |
+
vT = tl.load(vT_ptrs)
|
| 421 |
+
qk = tl.dot(q, kT)
|
| 422 |
+
p = tl.math.exp2(qk - m)
|
| 423 |
+
# Autoregressive masking.
|
| 424 |
+
if MASK:
|
| 425 |
+
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
| 426 |
+
if BANDWIDTH == 0: # full causal
|
| 427 |
+
mask = offs_m[:, None] >= offs_n[None, :]
|
| 428 |
+
else: # local causal
|
| 429 |
+
mask = (offs_m[:, None] >= offs_n[None, :]) & (
|
| 430 |
+
offs_m[:, None] < offs_n[None, :] + BANDWIDTH
|
| 431 |
+
)
|
| 432 |
+
p = tl.where(mask, p, 0.0)
|
| 433 |
+
# Compute dP and dS.
|
| 434 |
+
dp = tl.dot(do, vT).to(tl.float32)
|
| 435 |
+
ds = p * (dp - Di[:, None])
|
| 436 |
+
ds = ds.to(tl.float16)
|
| 437 |
+
# Compute dQ.
|
| 438 |
+
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
|
| 439 |
+
dq += tl.dot(ds, tl.trans(kT))
|
| 440 |
+
# Increment pointers.
|
| 441 |
+
curr_n += step_n
|
| 442 |
+
kT_ptrs += step_n * stride_tok
|
| 443 |
+
vT_ptrs += step_n * stride_tok
|
| 444 |
+
return dq
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
@triton.jit
|
| 448 |
+
def _attn_bwd(
|
| 449 |
+
Q,
|
| 450 |
+
K,
|
| 451 |
+
V,
|
| 452 |
+
sm_scale, #
|
| 453 |
+
DO, #
|
| 454 |
+
DQ,
|
| 455 |
+
DK,
|
| 456 |
+
DV, #
|
| 457 |
+
M,
|
| 458 |
+
D,
|
| 459 |
+
# shared by Q/K/V/DO.
|
| 460 |
+
stride_z,
|
| 461 |
+
stride_h,
|
| 462 |
+
stride_tok,
|
| 463 |
+
stride_d, #
|
| 464 |
+
H,
|
| 465 |
+
N_CTX, #
|
| 466 |
+
BANDWIDTH: tl.constexpr,
|
| 467 |
+
BLOCK_M1: tl.constexpr, #
|
| 468 |
+
BLOCK_N1: tl.constexpr, #
|
| 469 |
+
BLOCK_M2: tl.constexpr, #
|
| 470 |
+
BLOCK_N2: tl.constexpr, #
|
| 471 |
+
BLK_SLICE_FACTOR: tl.constexpr, #
|
| 472 |
+
HEAD_DIM: tl.constexpr,
|
| 473 |
+
):
|
| 474 |
+
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
|
| 475 |
+
|
| 476 |
+
bhid = tl.program_id(2)
|
| 477 |
+
off_chz = (bhid * N_CTX).to(tl.int64)
|
| 478 |
+
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
| 479 |
+
pid = tl.program_id(0)
|
| 480 |
+
|
| 481 |
+
# offset pointers for batch/head
|
| 482 |
+
Q += adj
|
| 483 |
+
K += adj
|
| 484 |
+
V += adj
|
| 485 |
+
DO += adj
|
| 486 |
+
DQ += adj
|
| 487 |
+
DK += adj
|
| 488 |
+
DV += adj
|
| 489 |
+
M += off_chz
|
| 490 |
+
D += off_chz
|
| 491 |
+
|
| 492 |
+
# load scales
|
| 493 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 494 |
+
|
| 495 |
+
start_n = pid * BLOCK_N1
|
| 496 |
+
start_m = start_n
|
| 497 |
+
|
| 498 |
+
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
| 499 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
| 500 |
+
|
| 501 |
+
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
| 502 |
+
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
| 503 |
+
|
| 504 |
+
# load K and V: they stay in SRAM throughout the inner loop.
|
| 505 |
+
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 506 |
+
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 507 |
+
|
| 508 |
+
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
| 509 |
+
|
| 510 |
+
dk, dv = _attn_bwd_dkdv(
|
| 511 |
+
dk,
|
| 512 |
+
dv, #
|
| 513 |
+
Q,
|
| 514 |
+
k,
|
| 515 |
+
v,
|
| 516 |
+
sm_scale, #
|
| 517 |
+
DO, #
|
| 518 |
+
M,
|
| 519 |
+
D, #
|
| 520 |
+
stride_tok,
|
| 521 |
+
stride_d, #
|
| 522 |
+
H,
|
| 523 |
+
N_CTX, #
|
| 524 |
+
MASK_BLOCK_M1,
|
| 525 |
+
BLOCK_N1,
|
| 526 |
+
HEAD_DIM, #
|
| 527 |
+
start_n,
|
| 528 |
+
start_m,
|
| 529 |
+
num_steps, #
|
| 530 |
+
MASK=True, #
|
| 531 |
+
BANDWIDTH=BANDWIDTH,
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
start_m += num_steps * MASK_BLOCK_M1
|
| 535 |
+
# how many *additional* rows may still attend to the current key block?
|
| 536 |
+
if BANDWIDTH == 0:
|
| 537 |
+
rows_left = N_CTX - start_m
|
| 538 |
+
else:
|
| 539 |
+
rows_left = min(N_CTX - start_m, BLOCK_N1)
|
| 540 |
+
num_steps = rows_left // BLOCK_M1
|
| 541 |
+
|
| 542 |
+
# Compute dK and dV for non-masked blocks.
|
| 543 |
+
dk, dv = _attn_bwd_dkdv( #
|
| 544 |
+
dk,
|
| 545 |
+
dv, #
|
| 546 |
+
Q,
|
| 547 |
+
k,
|
| 548 |
+
v,
|
| 549 |
+
sm_scale, #
|
| 550 |
+
DO, #
|
| 551 |
+
M,
|
| 552 |
+
D, #
|
| 553 |
+
stride_tok,
|
| 554 |
+
stride_d, #
|
| 555 |
+
H,
|
| 556 |
+
N_CTX, #
|
| 557 |
+
BLOCK_M1,
|
| 558 |
+
BLOCK_N1,
|
| 559 |
+
HEAD_DIM, #
|
| 560 |
+
start_n,
|
| 561 |
+
start_m,
|
| 562 |
+
num_steps, #
|
| 563 |
+
MASK=BANDWIDTH != 0, #
|
| 564 |
+
BANDWIDTH=BANDWIDTH,
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 568 |
+
tl.store(dv_ptrs, dv)
|
| 569 |
+
|
| 570 |
+
# Write back dK.
|
| 571 |
+
dk *= sm_scale
|
| 572 |
+
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 573 |
+
tl.store(dk_ptrs, dk)
|
| 574 |
+
|
| 575 |
+
# THIS BLOCK DOES DQ:
|
| 576 |
+
start_m = pid * BLOCK_M2
|
| 577 |
+
end_n = start_m + BLOCK_M2
|
| 578 |
+
|
| 579 |
+
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
| 580 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
| 581 |
+
|
| 582 |
+
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 583 |
+
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
|
| 584 |
+
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 585 |
+
|
| 586 |
+
m = tl.load(M + offs_m)
|
| 587 |
+
m = m[:, None]
|
| 588 |
+
|
| 589 |
+
# Compute dQ for masked (diagonal) blocks.
|
| 590 |
+
# NOTE: This code scans each row of QK^T backward (from right to left,
|
| 591 |
+
# but inside each call to _attn_bwd_dq, from left to right), but that's
|
| 592 |
+
# not due to anything important. I just wanted to reuse the loop
|
| 593 |
+
# structure for dK & dV above as much as possible.
|
| 594 |
+
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
| 595 |
+
dq = _attn_bwd_dq(
|
| 596 |
+
dq,
|
| 597 |
+
q,
|
| 598 |
+
K,
|
| 599 |
+
V, #
|
| 600 |
+
do,
|
| 601 |
+
m,
|
| 602 |
+
D, #
|
| 603 |
+
stride_tok,
|
| 604 |
+
stride_d, #
|
| 605 |
+
H,
|
| 606 |
+
N_CTX, #
|
| 607 |
+
BLOCK_M2,
|
| 608 |
+
MASK_BLOCK_N2,
|
| 609 |
+
HEAD_DIM, #
|
| 610 |
+
BANDWIDTH,
|
| 611 |
+
start_m,
|
| 612 |
+
end_n - num_steps * MASK_BLOCK_N2,
|
| 613 |
+
num_steps, #
|
| 614 |
+
MASK=True, #
|
| 615 |
+
)
|
| 616 |
+
end_n -= num_steps * MASK_BLOCK_N2
|
| 617 |
+
|
| 618 |
+
# stage-1 (rows that still fall inside the window)
|
| 619 |
+
if BANDWIDTH == 0:
|
| 620 |
+
cols_left = end_n
|
| 621 |
+
else:
|
| 622 |
+
cols_left = min(end_n, BLOCK_M2)
|
| 623 |
+
num_steps = cols_left // BLOCK_N2
|
| 624 |
+
dq = _attn_bwd_dq(
|
| 625 |
+
dq,
|
| 626 |
+
q,
|
| 627 |
+
K,
|
| 628 |
+
V, #
|
| 629 |
+
do,
|
| 630 |
+
m,
|
| 631 |
+
D, #
|
| 632 |
+
stride_tok,
|
| 633 |
+
stride_d, #
|
| 634 |
+
H,
|
| 635 |
+
N_CTX, #
|
| 636 |
+
BLOCK_M2,
|
| 637 |
+
BLOCK_N2,
|
| 638 |
+
HEAD_DIM, #
|
| 639 |
+
BANDWIDTH,
|
| 640 |
+
start_m,
|
| 641 |
+
end_n - num_steps * BLOCK_N2,
|
| 642 |
+
num_steps, #
|
| 643 |
+
MASK=BANDWIDTH != 0, #
|
| 644 |
+
)
|
| 645 |
+
# Write back dQ.
|
| 646 |
+
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 647 |
+
dq *= LN2
|
| 648 |
+
tl.store(dq_ptrs, dq)
|
| 649 |
+
|
| 650 |
+
|
| 651 |
+
class _attention(torch.autograd.Function):
|
| 652 |
+
@staticmethod
|
| 653 |
+
def forward(
|
| 654 |
+
ctx,
|
| 655 |
+
q,
|
| 656 |
+
k,
|
| 657 |
+
v,
|
| 658 |
+
sinks,
|
| 659 |
+
causal,
|
| 660 |
+
sm_scale,
|
| 661 |
+
bandwidth,
|
| 662 |
+
warp_specialize=True,
|
| 663 |
+
USE_TMA=True,
|
| 664 |
+
):
|
| 665 |
+
# shape constraints
|
| 666 |
+
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
| 667 |
+
# when v is in float8_e5m2 it is transposed.
|
| 668 |
+
HEAD_DIM_V = v.shape[-1]
|
| 669 |
+
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
| 670 |
+
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
| 671 |
+
o = torch.empty_like(q)
|
| 672 |
+
stage = 3 if causal else 1
|
| 673 |
+
extra_kern_args = {}
|
| 674 |
+
M = torch.empty(
|
| 675 |
+
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
|
| 676 |
+
)
|
| 677 |
+
BLOCK_M = 128
|
| 678 |
+
grid = (
|
| 679 |
+
triton.cdiv(q.shape[2], BLOCK_M),
|
| 680 |
+
q.shape[0] * q.shape[1],
|
| 681 |
+
1,
|
| 682 |
+
)
|
| 683 |
+
_attn_fwd[grid](
|
| 684 |
+
q,
|
| 685 |
+
k,
|
| 686 |
+
v,
|
| 687 |
+
sinks,
|
| 688 |
+
sm_scale,
|
| 689 |
+
M,
|
| 690 |
+
o, #
|
| 691 |
+
q.stride(0),
|
| 692 |
+
q.stride(1),
|
| 693 |
+
q.stride(2),
|
| 694 |
+
q.stride(3), #
|
| 695 |
+
k.stride(0),
|
| 696 |
+
k.stride(1),
|
| 697 |
+
k.stride(2),
|
| 698 |
+
k.stride(3), #
|
| 699 |
+
v.stride(0),
|
| 700 |
+
v.stride(1),
|
| 701 |
+
v.stride(2),
|
| 702 |
+
v.stride(3), #
|
| 703 |
+
o.stride(0),
|
| 704 |
+
o.stride(1),
|
| 705 |
+
o.stride(2),
|
| 706 |
+
o.stride(3), #
|
| 707 |
+
q.shape[0],
|
| 708 |
+
q.shape[1], #
|
| 709 |
+
N_CTX=q.shape[2], #
|
| 710 |
+
HEAD_DIM=HEAD_DIM_K, #
|
| 711 |
+
STAGE=stage, #
|
| 712 |
+
BANDWIDTH=bandwidth,
|
| 713 |
+
BLOCK_M=BLOCK_M,
|
| 714 |
+
BLOCK_N=64,
|
| 715 |
+
**extra_kern_args,
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
ctx.save_for_backward(q, k, v, sinks, o, M)
|
| 719 |
+
ctx.sm_scale = sm_scale
|
| 720 |
+
ctx.HEAD_DIM = HEAD_DIM_K
|
| 721 |
+
ctx.causal = causal
|
| 722 |
+
ctx.bandwidth = bandwidth
|
| 723 |
+
return o
|
| 724 |
+
|
| 725 |
+
@staticmethod
|
| 726 |
+
def backward(ctx, do):
|
| 727 |
+
q, k, v, sinks, o, M = ctx.saved_tensors
|
| 728 |
+
do = do.contiguous()
|
| 729 |
+
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
| 730 |
+
dq = torch.empty_like(q)
|
| 731 |
+
dk = torch.empty_like(k)
|
| 732 |
+
dv = torch.empty_like(v)
|
| 733 |
+
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
| 734 |
+
PRE_BLOCK = 128
|
| 735 |
+
NUM_WARPS, NUM_STAGES = 4, 5
|
| 736 |
+
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
|
| 737 |
+
BLK_SLICE_FACTOR = 2
|
| 738 |
+
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
|
| 739 |
+
arg_k = k
|
| 740 |
+
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
| 741 |
+
PRE_BLOCK = 128
|
| 742 |
+
assert N_CTX % PRE_BLOCK == 0
|
| 743 |
+
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
| 744 |
+
delta = torch.empty_like(M)
|
| 745 |
+
if sinks is not None:
|
| 746 |
+
dsinks = torch.empty_like(sinks)
|
| 747 |
+
dsinkstemp = torch.empty(pre_grid, dtype=torch.float32, device=sinks.device)
|
| 748 |
+
atomic_counters = torch.zeros(
|
| 749 |
+
N_HEAD, dtype=torch.int32, device=sinks.device
|
| 750 |
+
)
|
| 751 |
+
else:
|
| 752 |
+
dsinks, dsinkstemp, atomic_counters = None, None, None
|
| 753 |
+
_attn_bwd_preprocess[pre_grid](
|
| 754 |
+
o,
|
| 755 |
+
do, #
|
| 756 |
+
# Info for attention sinks.
|
| 757 |
+
sinks,
|
| 758 |
+
dsinks,
|
| 759 |
+
dsinkstemp,
|
| 760 |
+
atomic_counters,
|
| 761 |
+
M,
|
| 762 |
+
######
|
| 763 |
+
delta, #
|
| 764 |
+
BATCH,
|
| 765 |
+
N_HEAD,
|
| 766 |
+
N_CTX, #
|
| 767 |
+
BLOCK_M=PRE_BLOCK,
|
| 768 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
| 769 |
+
)
|
| 770 |
+
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
|
| 771 |
+
_attn_bwd[grid](
|
| 772 |
+
q,
|
| 773 |
+
arg_k,
|
| 774 |
+
v,
|
| 775 |
+
ctx.sm_scale,
|
| 776 |
+
do,
|
| 777 |
+
dq,
|
| 778 |
+
dk,
|
| 779 |
+
dv, #
|
| 780 |
+
M,
|
| 781 |
+
delta, #
|
| 782 |
+
q.stride(0),
|
| 783 |
+
q.stride(1),
|
| 784 |
+
q.stride(2),
|
| 785 |
+
q.stride(3), #
|
| 786 |
+
N_HEAD,
|
| 787 |
+
N_CTX, #
|
| 788 |
+
BANDWIDTH=ctx.bandwidth,
|
| 789 |
+
BLOCK_M1=BLOCK_M1,
|
| 790 |
+
BLOCK_N1=BLOCK_N1, #
|
| 791 |
+
BLOCK_M2=BLOCK_M2,
|
| 792 |
+
BLOCK_N2=BLOCK_N2, #
|
| 793 |
+
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
|
| 794 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
| 795 |
+
num_warps=NUM_WARPS, #
|
| 796 |
+
num_stages=NUM_STAGES, #
|
| 797 |
+
)
|
| 798 |
+
|
| 799 |
+
return dq, dk, dv, dsinks, None, None, None, None, None
|
| 800 |
+
|
| 801 |
+
|
| 802 |
+
attention = _attention.apply
|
| 803 |
+
|
flake.lock
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nodes": {
|
| 3 |
+
"flake-compat": {
|
| 4 |
+
"locked": {
|
| 5 |
+
"lastModified": 1747046372,
|
| 6 |
+
"narHash": "sha256-CIVLLkVgvHYbgI2UpXvIIBJ12HWgX+fjA8Xf8PUmqCY=",
|
| 7 |
+
"owner": "edolstra",
|
| 8 |
+
"repo": "flake-compat",
|
| 9 |
+
"rev": "9100a0f413b0c601e0533d1d94ffd501ce2e7885",
|
| 10 |
+
"type": "github"
|
| 11 |
+
},
|
| 12 |
+
"original": {
|
| 13 |
+
"owner": "edolstra",
|
| 14 |
+
"repo": "flake-compat",
|
| 15 |
+
"type": "github"
|
| 16 |
+
}
|
| 17 |
+
},
|
| 18 |
+
"flake-compat_2": {
|
| 19 |
+
"locked": {
|
| 20 |
+
"lastModified": 1733328505,
|
| 21 |
+
"narHash": "sha256-NeCCThCEP3eCl2l/+27kNNK7QrwZB1IJCrXfrbv5oqU=",
|
| 22 |
+
"owner": "edolstra",
|
| 23 |
+
"repo": "flake-compat",
|
| 24 |
+
"rev": "ff81ac966bb2cae68946d5ed5fc4994f96d0ffec",
|
| 25 |
+
"type": "github"
|
| 26 |
+
},
|
| 27 |
+
"original": {
|
| 28 |
+
"owner": "edolstra",
|
| 29 |
+
"repo": "flake-compat",
|
| 30 |
+
"type": "github"
|
| 31 |
+
}
|
| 32 |
+
},
|
| 33 |
+
"flake-utils": {
|
| 34 |
+
"inputs": {
|
| 35 |
+
"systems": "systems"
|
| 36 |
+
},
|
| 37 |
+
"locked": {
|
| 38 |
+
"lastModified": 1731533236,
|
| 39 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 40 |
+
"owner": "numtide",
|
| 41 |
+
"repo": "flake-utils",
|
| 42 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 43 |
+
"type": "github"
|
| 44 |
+
},
|
| 45 |
+
"original": {
|
| 46 |
+
"owner": "numtide",
|
| 47 |
+
"repo": "flake-utils",
|
| 48 |
+
"type": "github"
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"flake-utils_2": {
|
| 52 |
+
"inputs": {
|
| 53 |
+
"systems": "systems_2"
|
| 54 |
+
},
|
| 55 |
+
"locked": {
|
| 56 |
+
"lastModified": 1731533236,
|
| 57 |
+
"narHash": "sha256-l0KFg5HjrsfsO/JpG+r7fRrqm12kzFHyUHqHCVpMMbI=",
|
| 58 |
+
"owner": "numtide",
|
| 59 |
+
"repo": "flake-utils",
|
| 60 |
+
"rev": "11707dc2f618dd54ca8739b309ec4fc024de578b",
|
| 61 |
+
"type": "github"
|
| 62 |
+
},
|
| 63 |
+
"original": {
|
| 64 |
+
"owner": "numtide",
|
| 65 |
+
"repo": "flake-utils",
|
| 66 |
+
"type": "github"
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
"hf-nix": {
|
| 70 |
+
"inputs": {
|
| 71 |
+
"flake-compat": "flake-compat_2",
|
| 72 |
+
"flake-utils": "flake-utils_2",
|
| 73 |
+
"nixpkgs": "nixpkgs"
|
| 74 |
+
},
|
| 75 |
+
"locked": {
|
| 76 |
+
"lastModified": 1753354560,
|
| 77 |
+
"narHash": "sha256-vmOfRmr0Qm/IbZTWB2sBn+UFrABSTTA/cTg+m27Yt/E=",
|
| 78 |
+
"owner": "huggingface",
|
| 79 |
+
"repo": "hf-nix",
|
| 80 |
+
"rev": "7f2aceda2a2e72cd573bdb25e5c0667fd75f89d3",
|
| 81 |
+
"type": "github"
|
| 82 |
+
},
|
| 83 |
+
"original": {
|
| 84 |
+
"owner": "huggingface",
|
| 85 |
+
"repo": "hf-nix",
|
| 86 |
+
"type": "github"
|
| 87 |
+
}
|
| 88 |
+
},
|
| 89 |
+
"kernel-builder": {
|
| 90 |
+
"inputs": {
|
| 91 |
+
"flake-compat": "flake-compat",
|
| 92 |
+
"flake-utils": "flake-utils",
|
| 93 |
+
"hf-nix": "hf-nix",
|
| 94 |
+
"nixpkgs": [
|
| 95 |
+
"kernel-builder",
|
| 96 |
+
"hf-nix",
|
| 97 |
+
"nixpkgs"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
"locked": {
|
| 101 |
+
"lastModified": 1753354632,
|
| 102 |
+
"narHash": "sha256-31SX3Raiyx0qCuY9JSlx9ZZgxljeUxvW+JdujjxbofQ=",
|
| 103 |
+
"owner": "huggingface",
|
| 104 |
+
"repo": "kernel-builder",
|
| 105 |
+
"rev": "524b628fd8e58525dbd28455bffb0628092c5265",
|
| 106 |
+
"type": "github"
|
| 107 |
+
},
|
| 108 |
+
"original": {
|
| 109 |
+
"owner": "huggingface",
|
| 110 |
+
"ref": "torch-2.8",
|
| 111 |
+
"repo": "kernel-builder",
|
| 112 |
+
"type": "github"
|
| 113 |
+
}
|
| 114 |
+
},
|
| 115 |
+
"nixpkgs": {
|
| 116 |
+
"locked": {
|
| 117 |
+
"lastModified": 1752785354,
|
| 118 |
+
"narHash": "sha256-Y33ryUz7MPqKrZwlbQcsYCUz2jAJCacRf8jbs0tYUlA=",
|
| 119 |
+
"owner": "nixos",
|
| 120 |
+
"repo": "nixpkgs",
|
| 121 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
| 122 |
+
"type": "github"
|
| 123 |
+
},
|
| 124 |
+
"original": {
|
| 125 |
+
"owner": "nixos",
|
| 126 |
+
"repo": "nixpkgs",
|
| 127 |
+
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
| 128 |
+
"type": "github"
|
| 129 |
+
}
|
| 130 |
+
},
|
| 131 |
+
"root": {
|
| 132 |
+
"inputs": {
|
| 133 |
+
"kernel-builder": "kernel-builder"
|
| 134 |
+
}
|
| 135 |
+
},
|
| 136 |
+
"systems": {
|
| 137 |
+
"locked": {
|
| 138 |
+
"lastModified": 1681028828,
|
| 139 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 140 |
+
"owner": "nix-systems",
|
| 141 |
+
"repo": "default",
|
| 142 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 143 |
+
"type": "github"
|
| 144 |
+
},
|
| 145 |
+
"original": {
|
| 146 |
+
"owner": "nix-systems",
|
| 147 |
+
"repo": "default",
|
| 148 |
+
"type": "github"
|
| 149 |
+
}
|
| 150 |
+
},
|
| 151 |
+
"systems_2": {
|
| 152 |
+
"locked": {
|
| 153 |
+
"lastModified": 1681028828,
|
| 154 |
+
"narHash": "sha256-Vy1rq5AaRuLzOxct8nz4T6wlgyUR7zLU309k9mBC768=",
|
| 155 |
+
"owner": "nix-systems",
|
| 156 |
+
"repo": "default",
|
| 157 |
+
"rev": "da67096a3b9bf56a91d16901293e51ba5b49a27e",
|
| 158 |
+
"type": "github"
|
| 159 |
+
},
|
| 160 |
+
"original": {
|
| 161 |
+
"owner": "nix-systems",
|
| 162 |
+
"repo": "default",
|
| 163 |
+
"type": "github"
|
| 164 |
+
}
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
"root": "root",
|
| 168 |
+
"version": 7
|
| 169 |
+
}
|
flake.nix
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
description = "Flake for Triton flash attention with attention sinks";
|
| 3 |
+
|
| 4 |
+
inputs = {
|
| 5 |
+
kernel-builder.url = "github:huggingface/kernel-builder/torch-2.8";
|
| 6 |
+
};
|
| 7 |
+
|
| 8 |
+
outputs =
|
| 9 |
+
{
|
| 10 |
+
self,
|
| 11 |
+
kernel-builder,
|
| 12 |
+
}:
|
| 13 |
+
kernel-builder.lib.genFlakeOutputs {
|
| 14 |
+
path = ./.;
|
| 15 |
+
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
| 16 |
+
};
|
| 17 |
+
}
|
torch-ext/triton_flash_attn_sink/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .attention import attention
|
| 2 |
+
|
| 3 |
+
___all__ = ["attention"]
|
torch-ext/triton_flash_attn_sink/attention.py
ADDED
|
@@ -0,0 +1,802 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""FlashAttention w/support for learned sinks and banded attention.
|
| 2 |
+
|
| 3 |
+
This is an expanded version of the Flash Attention v2 implementation (see https://tridao.me/publications/flash2/flash2.pdf)
|
| 4 |
+
which can be found at https://triton-lang.org/main/getting-started/tutorials/06-fused-attention.html.
|
| 5 |
+
|
| 6 |
+
This version has been extended to support banded attention and learned attention sinks.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
|
| 11 |
+
import triton
|
| 12 |
+
import triton.language as tl
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
| 16 |
+
# _attn_fwd_inner
|
| 17 |
+
# (thanks o3 for the help + kind comment strings....)
|
| 18 |
+
# ──────────────────────────────────────────────────────────────────────────────
|
| 19 |
+
@triton.jit
|
| 20 |
+
def _attn_fwd_inner(
|
| 21 |
+
acc,
|
| 22 |
+
l_i,
|
| 23 |
+
m_i,
|
| 24 |
+
q,
|
| 25 |
+
K_block_ptr,
|
| 26 |
+
V_block_ptr,
|
| 27 |
+
start_m,
|
| 28 |
+
qk_scale,
|
| 29 |
+
BLOCK_M: tl.constexpr,
|
| 30 |
+
HEAD_DIM: tl.constexpr,
|
| 31 |
+
BLOCK_N: tl.constexpr,
|
| 32 |
+
STAGE: tl.constexpr,
|
| 33 |
+
offs_m: tl.constexpr,
|
| 34 |
+
offs_n: tl.constexpr,
|
| 35 |
+
N_CTX: tl.constexpr,
|
| 36 |
+
BANDWIDTH: tl.constexpr,
|
| 37 |
+
):
|
| 38 |
+
# ---------------- range of kv indices for this stage ---------------------
|
| 39 |
+
if STAGE == 1:
|
| 40 |
+
# off-band (used only when BANDWIDTH == 0)
|
| 41 |
+
lo, hi = 0, start_m * BLOCK_M
|
| 42 |
+
elif STAGE == 2:
|
| 43 |
+
# on-band **plus** the preceding tokens that fall inside `BANDWIDTH`
|
| 44 |
+
if BANDWIDTH == 0: # full context → current block only
|
| 45 |
+
lo = start_m * BLOCK_M
|
| 46 |
+
else: # local context
|
| 47 |
+
lo = tl.maximum(0, start_m * BLOCK_M - BANDWIDTH)
|
| 48 |
+
hi = (start_m + 1) * BLOCK_M
|
| 49 |
+
# make the compiler aware that `lo` is a multiple of BLOCK_N so that
|
| 50 |
+
# the first `tl.load` is aligned (matches what the large kernel does)
|
| 51 |
+
lo = tl.multiple_of(lo, BLOCK_N)
|
| 52 |
+
else: # STAGE == 3 (non-causal)
|
| 53 |
+
lo, hi = 0, N_CTX
|
| 54 |
+
|
| 55 |
+
# advance the KV block-pointers so they point at `lo`
|
| 56 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, lo))
|
| 57 |
+
V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
|
| 58 |
+
|
| 59 |
+
# ---------------- main loop over K/V tiles -------------------------------
|
| 60 |
+
for start_n in range(lo, hi, BLOCK_N):
|
| 61 |
+
start_n = tl.multiple_of(start_n, BLOCK_N)
|
| 62 |
+
|
| 63 |
+
# ---- Q·Kᵀ ------------------------------------------------------------
|
| 64 |
+
k = tl.load(K_block_ptr)
|
| 65 |
+
qk = tl.dot(q, k)
|
| 66 |
+
|
| 67 |
+
# ------------- causal + bandwidth masking (STAGE == 2) ----------------
|
| 68 |
+
if STAGE == 2:
|
| 69 |
+
# causal mask (j ≤ i)
|
| 70 |
+
causal_ok = offs_m[:, None] >= (start_n + offs_n[None, :])
|
| 71 |
+
|
| 72 |
+
if BANDWIDTH == 0: # full causal attention
|
| 73 |
+
mask = causal_ok
|
| 74 |
+
else: # local causal attention
|
| 75 |
+
# j ≥ i − BANDWIDTH + 1 ⟺ i < j + BANDWIDTH
|
| 76 |
+
within_bw = offs_m[:, None] < (start_n + offs_n[None, :] + BANDWIDTH)
|
| 77 |
+
mask = causal_ok & within_bw
|
| 78 |
+
|
| 79 |
+
qk = qk * qk_scale + tl.where(mask, 0.0, -1.0e30)
|
| 80 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1))
|
| 81 |
+
qk -= m_ij[:, None]
|
| 82 |
+
else:
|
| 83 |
+
# STAGE 1 (when BANDWIDTH == 0) or STAGE 3 (non-causal)
|
| 84 |
+
m_ij = tl.maximum(m_i, tl.max(qk, 1) * qk_scale)
|
| 85 |
+
qk = qk * qk_scale - m_ij[:, None]
|
| 86 |
+
|
| 87 |
+
# ---- softmax ---------------------------------------------------------
|
| 88 |
+
p = tl.math.exp2(qk)
|
| 89 |
+
l_ij = tl.sum(p, 1)
|
| 90 |
+
|
| 91 |
+
# ---- running numerically-stable accumulators -------------------------
|
| 92 |
+
alpha = tl.math.exp2(m_i - m_ij)
|
| 93 |
+
l_i = l_i * alpha + l_ij
|
| 94 |
+
acc = acc * alpha[:, None]
|
| 95 |
+
|
| 96 |
+
v = tl.load(V_block_ptr)
|
| 97 |
+
acc = tl.dot(p, v, acc)
|
| 98 |
+
|
| 99 |
+
m_i = m_ij
|
| 100 |
+
|
| 101 |
+
# ---- advance pointers ------------------------------------------------
|
| 102 |
+
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
|
| 103 |
+
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
|
| 104 |
+
|
| 105 |
+
return acc, l_i, m_i
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@triton.jit
|
| 109 |
+
def _attn_fwd(
|
| 110 |
+
Q,
|
| 111 |
+
K,
|
| 112 |
+
V,
|
| 113 |
+
Sinks,
|
| 114 |
+
sm_scale,
|
| 115 |
+
M,
|
| 116 |
+
Out, #
|
| 117 |
+
stride_qz,
|
| 118 |
+
stride_qh,
|
| 119 |
+
stride_qm,
|
| 120 |
+
stride_qk, #
|
| 121 |
+
stride_kz,
|
| 122 |
+
stride_kh,
|
| 123 |
+
stride_kn,
|
| 124 |
+
stride_kk, #
|
| 125 |
+
stride_vz,
|
| 126 |
+
stride_vh,
|
| 127 |
+
stride_vk,
|
| 128 |
+
stride_vn, #
|
| 129 |
+
stride_oz,
|
| 130 |
+
stride_oh,
|
| 131 |
+
stride_om,
|
| 132 |
+
stride_on, #
|
| 133 |
+
Z,
|
| 134 |
+
H,
|
| 135 |
+
N_CTX, #
|
| 136 |
+
HEAD_DIM: tl.constexpr, #
|
| 137 |
+
BLOCK_M: tl.constexpr, #
|
| 138 |
+
BLOCK_N: tl.constexpr, #
|
| 139 |
+
STAGE: tl.constexpr, #
|
| 140 |
+
BANDWIDTH: tl.constexpr,
|
| 141 |
+
):
|
| 142 |
+
tl.static_assert(BLOCK_N <= HEAD_DIM)
|
| 143 |
+
start_m = tl.program_id(0)
|
| 144 |
+
off_hz = tl.program_id(1)
|
| 145 |
+
off_z = off_hz // H
|
| 146 |
+
off_h = off_hz % H
|
| 147 |
+
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh
|
| 148 |
+
|
| 149 |
+
# block pointers
|
| 150 |
+
Q_block_ptr = tl.make_block_ptr(
|
| 151 |
+
base=Q + qvk_offset,
|
| 152 |
+
shape=(N_CTX, HEAD_DIM),
|
| 153 |
+
strides=(stride_qm, stride_qk),
|
| 154 |
+
offsets=(start_m * BLOCK_M, 0),
|
| 155 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
| 156 |
+
order=(1, 0),
|
| 157 |
+
)
|
| 158 |
+
v_order: tl.constexpr = (0, 1) if V.dtype.element_ty == tl.float8e5 else (1, 0)
|
| 159 |
+
V_block_ptr = tl.make_block_ptr(
|
| 160 |
+
base=V + qvk_offset,
|
| 161 |
+
shape=(N_CTX, HEAD_DIM),
|
| 162 |
+
strides=(stride_vk, stride_vn),
|
| 163 |
+
offsets=(0, 0),
|
| 164 |
+
block_shape=(BLOCK_N, HEAD_DIM),
|
| 165 |
+
order=v_order,
|
| 166 |
+
)
|
| 167 |
+
K_block_ptr = tl.make_block_ptr(
|
| 168 |
+
base=K + qvk_offset,
|
| 169 |
+
shape=(HEAD_DIM, N_CTX),
|
| 170 |
+
strides=(stride_kk, stride_kn),
|
| 171 |
+
offsets=(0, 0),
|
| 172 |
+
block_shape=(HEAD_DIM, BLOCK_N),
|
| 173 |
+
order=(0, 1),
|
| 174 |
+
)
|
| 175 |
+
O_block_ptr = tl.make_block_ptr(
|
| 176 |
+
base=Out + qvk_offset,
|
| 177 |
+
shape=(N_CTX, HEAD_DIM),
|
| 178 |
+
strides=(stride_om, stride_on),
|
| 179 |
+
offsets=(start_m * BLOCK_M, 0),
|
| 180 |
+
block_shape=(BLOCK_M, HEAD_DIM),
|
| 181 |
+
order=(1, 0),
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# load attention sinks
|
| 185 |
+
if Sinks is not None:
|
| 186 |
+
sink = tl.load(Sinks + off_h).to(tl.float32)
|
| 187 |
+
else:
|
| 188 |
+
sink = -1.0e30
|
| 189 |
+
|
| 190 |
+
# initialize offsets
|
| 191 |
+
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 192 |
+
offs_n = tl.arange(0, BLOCK_N)
|
| 193 |
+
# initialize pointer to m and l
|
| 194 |
+
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + sink
|
| 195 |
+
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
|
| 196 |
+
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
|
| 197 |
+
# load scales
|
| 198 |
+
qk_scale = sm_scale
|
| 199 |
+
qk_scale *= 1.44269504 # 1/log(2)
|
| 200 |
+
# load q: it will stay in SRAM throughout
|
| 201 |
+
q = tl.load(Q_block_ptr)
|
| 202 |
+
# stage 1: off-band
|
| 203 |
+
# For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
|
| 204 |
+
# For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
|
| 205 |
+
if STAGE & 1 and (BANDWIDTH == 0):
|
| 206 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
| 207 |
+
acc,
|
| 208 |
+
l_i,
|
| 209 |
+
m_i,
|
| 210 |
+
q,
|
| 211 |
+
K_block_ptr,
|
| 212 |
+
V_block_ptr, #
|
| 213 |
+
start_m,
|
| 214 |
+
qk_scale, #
|
| 215 |
+
BLOCK_M,
|
| 216 |
+
HEAD_DIM,
|
| 217 |
+
BLOCK_N, #
|
| 218 |
+
4 - STAGE,
|
| 219 |
+
offs_m,
|
| 220 |
+
offs_n,
|
| 221 |
+
N_CTX,
|
| 222 |
+
BANDWIDTH,
|
| 223 |
+
)
|
| 224 |
+
# stage 2: on-band
|
| 225 |
+
if STAGE & 2:
|
| 226 |
+
# barrier makes it easier for compielr to schedule the
|
| 227 |
+
# two loops independently
|
| 228 |
+
acc, l_i, m_i = _attn_fwd_inner(
|
| 229 |
+
acc,
|
| 230 |
+
l_i,
|
| 231 |
+
m_i,
|
| 232 |
+
q,
|
| 233 |
+
K_block_ptr,
|
| 234 |
+
V_block_ptr, #
|
| 235 |
+
start_m,
|
| 236 |
+
qk_scale, #
|
| 237 |
+
BLOCK_M,
|
| 238 |
+
HEAD_DIM,
|
| 239 |
+
BLOCK_N, #
|
| 240 |
+
2,
|
| 241 |
+
offs_m,
|
| 242 |
+
offs_n,
|
| 243 |
+
N_CTX,
|
| 244 |
+
BANDWIDTH,
|
| 245 |
+
)
|
| 246 |
+
# epilogue
|
| 247 |
+
m_i += tl.math.log2(l_i)
|
| 248 |
+
acc = acc / l_i[:, None]
|
| 249 |
+
m_ptrs = M + off_hz * N_CTX + offs_m
|
| 250 |
+
tl.store(m_ptrs, m_i)
|
| 251 |
+
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
@triton.jit
|
| 255 |
+
def _attn_bwd_preprocess(
|
| 256 |
+
O,
|
| 257 |
+
DO, #
|
| 258 |
+
Sinks,
|
| 259 |
+
DSinks,
|
| 260 |
+
DSinkstemp,
|
| 261 |
+
Atomic_counters,
|
| 262 |
+
M,
|
| 263 |
+
Delta, #
|
| 264 |
+
Z,
|
| 265 |
+
H,
|
| 266 |
+
N_CTX, #
|
| 267 |
+
BLOCK_M: tl.constexpr,
|
| 268 |
+
HEAD_DIM: tl.constexpr, #
|
| 269 |
+
):
|
| 270 |
+
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 271 |
+
off_hz = tl.program_id(1)
|
| 272 |
+
off_n = tl.arange(0, HEAD_DIM)
|
| 273 |
+
off_z = off_hz // H
|
| 274 |
+
off_h = off_hz % H
|
| 275 |
+
# load
|
| 276 |
+
o = tl.load(
|
| 277 |
+
O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
| 278 |
+
)
|
| 279 |
+
do = tl.load(
|
| 280 |
+
DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM + off_n[None, :]
|
| 281 |
+
).to(tl.float32)
|
| 282 |
+
delta = tl.sum(o * do, axis=1)
|
| 283 |
+
# write-back
|
| 284 |
+
tl.store(Delta + off_hz * N_CTX + off_m, delta)
|
| 285 |
+
|
| 286 |
+
if Sinks is not None:
|
| 287 |
+
m = tl.load(M + off_z * H * N_CTX + off_h * N_CTX + off_m)
|
| 288 |
+
sink = tl.load(Sinks + off_h)
|
| 289 |
+
dl = tl.sum(tl.math.exp2(sink - m) * delta, axis=0)
|
| 290 |
+
|
| 291 |
+
depth = Z * (N_CTX // BLOCK_M)
|
| 292 |
+
|
| 293 |
+
tl.store(
|
| 294 |
+
DSinkstemp + (off_h * Z + off_z) * (N_CTX // BLOCK_M) + tl.program_id(0), dl
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
if tl.atomic_add(Atomic_counters + off_h, 1) == depth - 1:
|
| 298 |
+
dl_acc = 0.0
|
| 299 |
+
|
| 300 |
+
for i in range(0, depth, BLOCK_M):
|
| 301 |
+
idxs = i + tl.arange(0, BLOCK_M)
|
| 302 |
+
temps = tl.load(
|
| 303 |
+
DSinkstemp + off_h * depth + idxs, mask=(idxs < depth), other=0.0
|
| 304 |
+
)
|
| 305 |
+
dl_acc += tl.sum(temps, axis=0)
|
| 306 |
+
|
| 307 |
+
tl.store(DSinks + off_h, (-0.69314718) * dl_acc)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
# The main inner-loop logic for computing dK and dV.
|
| 311 |
+
@triton.jit
|
| 312 |
+
def _attn_bwd_dkdv(
|
| 313 |
+
dk,
|
| 314 |
+
dv, #
|
| 315 |
+
Q,
|
| 316 |
+
k,
|
| 317 |
+
v,
|
| 318 |
+
sm_scale, #
|
| 319 |
+
DO, #
|
| 320 |
+
M,
|
| 321 |
+
D, #
|
| 322 |
+
# shared by Q/K/V/DO.
|
| 323 |
+
stride_tok,
|
| 324 |
+
stride_d, #
|
| 325 |
+
H,
|
| 326 |
+
N_CTX,
|
| 327 |
+
BLOCK_M1: tl.constexpr, #
|
| 328 |
+
BLOCK_N1: tl.constexpr, #
|
| 329 |
+
HEAD_DIM: tl.constexpr, #
|
| 330 |
+
# Filled in by the wrapper.
|
| 331 |
+
start_n,
|
| 332 |
+
start_m,
|
| 333 |
+
num_steps, #
|
| 334 |
+
MASK: tl.constexpr,
|
| 335 |
+
BANDWIDTH: tl.constexpr,
|
| 336 |
+
):
|
| 337 |
+
offs_m = start_m + tl.arange(0, BLOCK_M1)
|
| 338 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
| 339 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 340 |
+
qT_ptrs = Q + offs_m[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 341 |
+
do_ptrs = DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 342 |
+
# BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
|
| 343 |
+
tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
|
| 344 |
+
curr_m = start_m
|
| 345 |
+
step_m = BLOCK_M1
|
| 346 |
+
for blk_idx in range(num_steps):
|
| 347 |
+
qT = tl.load(qT_ptrs)
|
| 348 |
+
# Load m before computing qk to reduce pipeline stall.
|
| 349 |
+
offs_m = curr_m + tl.arange(0, BLOCK_M1)
|
| 350 |
+
m = tl.load(M + offs_m)
|
| 351 |
+
qkT = tl.dot(k, qT)
|
| 352 |
+
pT = tl.math.exp2(qkT - m[None, :])
|
| 353 |
+
# Autoregressive masking.
|
| 354 |
+
if MASK:
|
| 355 |
+
if BANDWIDTH == 0: # full causal
|
| 356 |
+
mask = offs_m[None, :] >= offs_n[:, None]
|
| 357 |
+
else: # local causal
|
| 358 |
+
mask = (offs_m[None, :] >= offs_n[:, None]) & (
|
| 359 |
+
offs_m[None, :] < offs_n[:, None] + BANDWIDTH
|
| 360 |
+
)
|
| 361 |
+
pT = tl.where(mask, pT, 0.0)
|
| 362 |
+
do = tl.load(do_ptrs)
|
| 363 |
+
# Compute dV.
|
| 364 |
+
ppT = pT
|
| 365 |
+
ppT = ppT.to(tl.float16)
|
| 366 |
+
dv += tl.dot(ppT, do)
|
| 367 |
+
# D (= delta) is pre-divided by ds_scale.
|
| 368 |
+
Di = tl.load(D + offs_m)
|
| 369 |
+
# Compute dP and dS.
|
| 370 |
+
dpT = tl.dot(v, tl.trans(do)).to(tl.float32)
|
| 371 |
+
dsT = pT * (dpT - Di[None, :])
|
| 372 |
+
dsT = dsT.to(tl.float16)
|
| 373 |
+
dk += tl.dot(dsT, tl.trans(qT))
|
| 374 |
+
# Increment pointers.
|
| 375 |
+
curr_m += step_m
|
| 376 |
+
qT_ptrs += step_m * stride_tok
|
| 377 |
+
do_ptrs += step_m * stride_tok
|
| 378 |
+
return dk, dv
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
# the main inner-loop logic for computing dQ
|
| 382 |
+
@triton.jit
|
| 383 |
+
def _attn_bwd_dq(
|
| 384 |
+
dq,
|
| 385 |
+
q,
|
| 386 |
+
K,
|
| 387 |
+
V, #
|
| 388 |
+
do,
|
| 389 |
+
m,
|
| 390 |
+
D,
|
| 391 |
+
# shared by Q/K/V/DO.
|
| 392 |
+
stride_tok,
|
| 393 |
+
stride_d, #
|
| 394 |
+
H,
|
| 395 |
+
N_CTX, #
|
| 396 |
+
BLOCK_M2: tl.constexpr, #
|
| 397 |
+
BLOCK_N2: tl.constexpr, #
|
| 398 |
+
HEAD_DIM: tl.constexpr,
|
| 399 |
+
BANDWIDTH: tl.constexpr,
|
| 400 |
+
# Filled in by the wrapper.
|
| 401 |
+
start_m,
|
| 402 |
+
start_n,
|
| 403 |
+
num_steps, #
|
| 404 |
+
MASK: tl.constexpr,
|
| 405 |
+
):
|
| 406 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
| 407 |
+
offs_n = start_n + tl.arange(0, BLOCK_N2)
|
| 408 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 409 |
+
kT_ptrs = K + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 410 |
+
vT_ptrs = V + offs_n[None, :] * stride_tok + offs_k[:, None] * stride_d
|
| 411 |
+
# D (= delta) is pre-divided by ds_scale.
|
| 412 |
+
Di = tl.load(D + offs_m)
|
| 413 |
+
# BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
|
| 414 |
+
tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
|
| 415 |
+
curr_n = start_n
|
| 416 |
+
step_n = BLOCK_N2
|
| 417 |
+
for blk_idx in range(num_steps):
|
| 418 |
+
kT = tl.load(kT_ptrs)
|
| 419 |
+
vT = tl.load(vT_ptrs)
|
| 420 |
+
qk = tl.dot(q, kT)
|
| 421 |
+
p = tl.math.exp2(qk - m)
|
| 422 |
+
# Autoregressive masking.
|
| 423 |
+
if MASK:
|
| 424 |
+
offs_n = curr_n + tl.arange(0, BLOCK_N2)
|
| 425 |
+
if BANDWIDTH == 0: # full causal
|
| 426 |
+
mask = offs_m[:, None] >= offs_n[None, :]
|
| 427 |
+
else: # local causal
|
| 428 |
+
mask = (offs_m[:, None] >= offs_n[None, :]) & (
|
| 429 |
+
offs_m[:, None] < offs_n[None, :] + BANDWIDTH
|
| 430 |
+
)
|
| 431 |
+
p = tl.where(mask, p, 0.0)
|
| 432 |
+
# Compute dP and dS.
|
| 433 |
+
dp = tl.dot(do, vT).to(tl.float32)
|
| 434 |
+
ds = p * (dp - Di[:, None])
|
| 435 |
+
ds = ds.to(tl.float16)
|
| 436 |
+
# Compute dQ.
|
| 437 |
+
# NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
|
| 438 |
+
dq += tl.dot(ds, tl.trans(kT))
|
| 439 |
+
# Increment pointers.
|
| 440 |
+
curr_n += step_n
|
| 441 |
+
kT_ptrs += step_n * stride_tok
|
| 442 |
+
vT_ptrs += step_n * stride_tok
|
| 443 |
+
return dq
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
@triton.jit
|
| 447 |
+
def _attn_bwd(
|
| 448 |
+
Q,
|
| 449 |
+
K,
|
| 450 |
+
V,
|
| 451 |
+
sm_scale, #
|
| 452 |
+
DO, #
|
| 453 |
+
DQ,
|
| 454 |
+
DK,
|
| 455 |
+
DV, #
|
| 456 |
+
M,
|
| 457 |
+
D,
|
| 458 |
+
# shared by Q/K/V/DO.
|
| 459 |
+
stride_z,
|
| 460 |
+
stride_h,
|
| 461 |
+
stride_tok,
|
| 462 |
+
stride_d, #
|
| 463 |
+
H,
|
| 464 |
+
N_CTX, #
|
| 465 |
+
BANDWIDTH: tl.constexpr,
|
| 466 |
+
BLOCK_M1: tl.constexpr, #
|
| 467 |
+
BLOCK_N1: tl.constexpr, #
|
| 468 |
+
BLOCK_M2: tl.constexpr, #
|
| 469 |
+
BLOCK_N2: tl.constexpr, #
|
| 470 |
+
BLK_SLICE_FACTOR: tl.constexpr, #
|
| 471 |
+
HEAD_DIM: tl.constexpr,
|
| 472 |
+
):
|
| 473 |
+
LN2: tl.constexpr = 0.6931471824645996 # = ln(2)
|
| 474 |
+
|
| 475 |
+
bhid = tl.program_id(2)
|
| 476 |
+
off_chz = (bhid * N_CTX).to(tl.int64)
|
| 477 |
+
adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
|
| 478 |
+
pid = tl.program_id(0)
|
| 479 |
+
|
| 480 |
+
# offset pointers for batch/head
|
| 481 |
+
Q += adj
|
| 482 |
+
K += adj
|
| 483 |
+
V += adj
|
| 484 |
+
DO += adj
|
| 485 |
+
DQ += adj
|
| 486 |
+
DK += adj
|
| 487 |
+
DV += adj
|
| 488 |
+
M += off_chz
|
| 489 |
+
D += off_chz
|
| 490 |
+
|
| 491 |
+
# load scales
|
| 492 |
+
offs_k = tl.arange(0, HEAD_DIM)
|
| 493 |
+
|
| 494 |
+
start_n = pid * BLOCK_N1
|
| 495 |
+
start_m = start_n
|
| 496 |
+
|
| 497 |
+
MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
|
| 498 |
+
offs_n = start_n + tl.arange(0, BLOCK_N1)
|
| 499 |
+
|
| 500 |
+
dv = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
| 501 |
+
dk = tl.zeros([BLOCK_N1, HEAD_DIM], dtype=tl.float32)
|
| 502 |
+
|
| 503 |
+
# load K and V: they stay in SRAM throughout the inner loop.
|
| 504 |
+
k = tl.load(K + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 505 |
+
v = tl.load(V + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 506 |
+
|
| 507 |
+
num_steps = BLOCK_N1 // MASK_BLOCK_M1
|
| 508 |
+
|
| 509 |
+
dk, dv = _attn_bwd_dkdv(
|
| 510 |
+
dk,
|
| 511 |
+
dv, #
|
| 512 |
+
Q,
|
| 513 |
+
k,
|
| 514 |
+
v,
|
| 515 |
+
sm_scale, #
|
| 516 |
+
DO, #
|
| 517 |
+
M,
|
| 518 |
+
D, #
|
| 519 |
+
stride_tok,
|
| 520 |
+
stride_d, #
|
| 521 |
+
H,
|
| 522 |
+
N_CTX, #
|
| 523 |
+
MASK_BLOCK_M1,
|
| 524 |
+
BLOCK_N1,
|
| 525 |
+
HEAD_DIM, #
|
| 526 |
+
start_n,
|
| 527 |
+
start_m,
|
| 528 |
+
num_steps, #
|
| 529 |
+
MASK=True, #
|
| 530 |
+
BANDWIDTH=BANDWIDTH,
|
| 531 |
+
)
|
| 532 |
+
|
| 533 |
+
start_m += num_steps * MASK_BLOCK_M1
|
| 534 |
+
# how many *additional* rows may still attend to the current key block?
|
| 535 |
+
if BANDWIDTH == 0:
|
| 536 |
+
rows_left = N_CTX - start_m
|
| 537 |
+
else:
|
| 538 |
+
rows_left = min(N_CTX - start_m, BLOCK_N1)
|
| 539 |
+
num_steps = rows_left // BLOCK_M1
|
| 540 |
+
|
| 541 |
+
# Compute dK and dV for non-masked blocks.
|
| 542 |
+
dk, dv = _attn_bwd_dkdv( #
|
| 543 |
+
dk,
|
| 544 |
+
dv, #
|
| 545 |
+
Q,
|
| 546 |
+
k,
|
| 547 |
+
v,
|
| 548 |
+
sm_scale, #
|
| 549 |
+
DO, #
|
| 550 |
+
M,
|
| 551 |
+
D, #
|
| 552 |
+
stride_tok,
|
| 553 |
+
stride_d, #
|
| 554 |
+
H,
|
| 555 |
+
N_CTX, #
|
| 556 |
+
BLOCK_M1,
|
| 557 |
+
BLOCK_N1,
|
| 558 |
+
HEAD_DIM, #
|
| 559 |
+
start_n,
|
| 560 |
+
start_m,
|
| 561 |
+
num_steps, #
|
| 562 |
+
MASK=BANDWIDTH != 0, #
|
| 563 |
+
BANDWIDTH=BANDWIDTH,
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
dv_ptrs = DV + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 567 |
+
tl.store(dv_ptrs, dv)
|
| 568 |
+
|
| 569 |
+
# Write back dK.
|
| 570 |
+
dk *= sm_scale
|
| 571 |
+
dk_ptrs = DK + offs_n[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 572 |
+
tl.store(dk_ptrs, dk)
|
| 573 |
+
|
| 574 |
+
# THIS BLOCK DOES DQ:
|
| 575 |
+
start_m = pid * BLOCK_M2
|
| 576 |
+
end_n = start_m + BLOCK_M2
|
| 577 |
+
|
| 578 |
+
MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
|
| 579 |
+
offs_m = start_m + tl.arange(0, BLOCK_M2)
|
| 580 |
+
|
| 581 |
+
q = tl.load(Q + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 582 |
+
dq = tl.zeros([BLOCK_M2, HEAD_DIM], dtype=tl.float32)
|
| 583 |
+
do = tl.load(DO + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d)
|
| 584 |
+
|
| 585 |
+
m = tl.load(M + offs_m)
|
| 586 |
+
m = m[:, None]
|
| 587 |
+
|
| 588 |
+
# Compute dQ for masked (diagonal) blocks.
|
| 589 |
+
# NOTE: This code scans each row of QK^T backward (from right to left,
|
| 590 |
+
# but inside each call to _attn_bwd_dq, from left to right), but that's
|
| 591 |
+
# not due to anything important. I just wanted to reuse the loop
|
| 592 |
+
# structure for dK & dV above as much as possible.
|
| 593 |
+
num_steps = BLOCK_M2 // MASK_BLOCK_N2
|
| 594 |
+
dq = _attn_bwd_dq(
|
| 595 |
+
dq,
|
| 596 |
+
q,
|
| 597 |
+
K,
|
| 598 |
+
V, #
|
| 599 |
+
do,
|
| 600 |
+
m,
|
| 601 |
+
D, #
|
| 602 |
+
stride_tok,
|
| 603 |
+
stride_d, #
|
| 604 |
+
H,
|
| 605 |
+
N_CTX, #
|
| 606 |
+
BLOCK_M2,
|
| 607 |
+
MASK_BLOCK_N2,
|
| 608 |
+
HEAD_DIM, #
|
| 609 |
+
BANDWIDTH,
|
| 610 |
+
start_m,
|
| 611 |
+
end_n - num_steps * MASK_BLOCK_N2,
|
| 612 |
+
num_steps, #
|
| 613 |
+
MASK=True, #
|
| 614 |
+
)
|
| 615 |
+
end_n -= num_steps * MASK_BLOCK_N2
|
| 616 |
+
|
| 617 |
+
# stage-1 (rows that still fall inside the window)
|
| 618 |
+
if BANDWIDTH == 0:
|
| 619 |
+
cols_left = end_n
|
| 620 |
+
else:
|
| 621 |
+
cols_left = min(end_n, BLOCK_M2)
|
| 622 |
+
num_steps = cols_left // BLOCK_N2
|
| 623 |
+
dq = _attn_bwd_dq(
|
| 624 |
+
dq,
|
| 625 |
+
q,
|
| 626 |
+
K,
|
| 627 |
+
V, #
|
| 628 |
+
do,
|
| 629 |
+
m,
|
| 630 |
+
D, #
|
| 631 |
+
stride_tok,
|
| 632 |
+
stride_d, #
|
| 633 |
+
H,
|
| 634 |
+
N_CTX, #
|
| 635 |
+
BLOCK_M2,
|
| 636 |
+
BLOCK_N2,
|
| 637 |
+
HEAD_DIM, #
|
| 638 |
+
BANDWIDTH,
|
| 639 |
+
start_m,
|
| 640 |
+
end_n - num_steps * BLOCK_N2,
|
| 641 |
+
num_steps, #
|
| 642 |
+
MASK=BANDWIDTH != 0, #
|
| 643 |
+
)
|
| 644 |
+
# Write back dQ.
|
| 645 |
+
dq_ptrs = DQ + offs_m[:, None] * stride_tok + offs_k[None, :] * stride_d
|
| 646 |
+
dq *= LN2
|
| 647 |
+
tl.store(dq_ptrs, dq)
|
| 648 |
+
|
| 649 |
+
|
| 650 |
+
class _attention(torch.autograd.Function):
|
| 651 |
+
@staticmethod
|
| 652 |
+
def forward(
|
| 653 |
+
ctx,
|
| 654 |
+
q,
|
| 655 |
+
k,
|
| 656 |
+
v,
|
| 657 |
+
sinks,
|
| 658 |
+
causal,
|
| 659 |
+
sm_scale,
|
| 660 |
+
bandwidth,
|
| 661 |
+
warp_specialize=True,
|
| 662 |
+
USE_TMA=True,
|
| 663 |
+
):
|
| 664 |
+
# shape constraints
|
| 665 |
+
HEAD_DIM_Q, HEAD_DIM_K = q.shape[-1], k.shape[-1]
|
| 666 |
+
# when v is in float8_e5m2 it is transposed.
|
| 667 |
+
HEAD_DIM_V = v.shape[-1]
|
| 668 |
+
assert HEAD_DIM_Q == HEAD_DIM_K and HEAD_DIM_K == HEAD_DIM_V
|
| 669 |
+
assert HEAD_DIM_K in {16, 32, 64, 128, 256}
|
| 670 |
+
o = torch.empty_like(q)
|
| 671 |
+
stage = 3 if causal else 1
|
| 672 |
+
extra_kern_args = {}
|
| 673 |
+
M = torch.empty(
|
| 674 |
+
(q.shape[0], q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
|
| 675 |
+
)
|
| 676 |
+
BLOCK_M = 128
|
| 677 |
+
grid = (
|
| 678 |
+
triton.cdiv(q.shape[2], BLOCK_M),
|
| 679 |
+
q.shape[0] * q.shape[1],
|
| 680 |
+
1,
|
| 681 |
+
)
|
| 682 |
+
_attn_fwd[grid](
|
| 683 |
+
q,
|
| 684 |
+
k,
|
| 685 |
+
v,
|
| 686 |
+
sinks,
|
| 687 |
+
sm_scale,
|
| 688 |
+
M,
|
| 689 |
+
o, #
|
| 690 |
+
q.stride(0),
|
| 691 |
+
q.stride(1),
|
| 692 |
+
q.stride(2),
|
| 693 |
+
q.stride(3), #
|
| 694 |
+
k.stride(0),
|
| 695 |
+
k.stride(1),
|
| 696 |
+
k.stride(2),
|
| 697 |
+
k.stride(3), #
|
| 698 |
+
v.stride(0),
|
| 699 |
+
v.stride(1),
|
| 700 |
+
v.stride(2),
|
| 701 |
+
v.stride(3), #
|
| 702 |
+
o.stride(0),
|
| 703 |
+
o.stride(1),
|
| 704 |
+
o.stride(2),
|
| 705 |
+
o.stride(3), #
|
| 706 |
+
q.shape[0],
|
| 707 |
+
q.shape[1], #
|
| 708 |
+
N_CTX=q.shape[2], #
|
| 709 |
+
HEAD_DIM=HEAD_DIM_K, #
|
| 710 |
+
STAGE=stage, #
|
| 711 |
+
BANDWIDTH=bandwidth,
|
| 712 |
+
BLOCK_M=BLOCK_M,
|
| 713 |
+
BLOCK_N=64,
|
| 714 |
+
**extra_kern_args,
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
ctx.save_for_backward(q, k, v, sinks, o, M)
|
| 718 |
+
ctx.sm_scale = sm_scale
|
| 719 |
+
ctx.HEAD_DIM = HEAD_DIM_K
|
| 720 |
+
ctx.causal = causal
|
| 721 |
+
ctx.bandwidth = bandwidth
|
| 722 |
+
return o
|
| 723 |
+
|
| 724 |
+
@staticmethod
|
| 725 |
+
def backward(ctx, do):
|
| 726 |
+
q, k, v, sinks, o, M = ctx.saved_tensors
|
| 727 |
+
do = do.contiguous()
|
| 728 |
+
assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
|
| 729 |
+
dq = torch.empty_like(q)
|
| 730 |
+
dk = torch.empty_like(k)
|
| 731 |
+
dv = torch.empty_like(v)
|
| 732 |
+
BATCH, N_HEAD, N_CTX = q.shape[:3]
|
| 733 |
+
PRE_BLOCK = 128
|
| 734 |
+
NUM_WARPS, NUM_STAGES = 4, 5
|
| 735 |
+
BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 128, 128, 32
|
| 736 |
+
BLK_SLICE_FACTOR = 2
|
| 737 |
+
RCP_LN2 = 1.4426950408889634 # = 1.0 / ln(2)
|
| 738 |
+
arg_k = k
|
| 739 |
+
arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
|
| 740 |
+
PRE_BLOCK = 128
|
| 741 |
+
assert N_CTX % PRE_BLOCK == 0
|
| 742 |
+
pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
|
| 743 |
+
delta = torch.empty_like(M)
|
| 744 |
+
if sinks is not None:
|
| 745 |
+
dsinks = torch.empty_like(sinks)
|
| 746 |
+
dsinkstemp = torch.empty(pre_grid, dtype=torch.float32, device=sinks.device)
|
| 747 |
+
atomic_counters = torch.zeros(
|
| 748 |
+
N_HEAD, dtype=torch.int32, device=sinks.device
|
| 749 |
+
)
|
| 750 |
+
else:
|
| 751 |
+
dsinks, dsinkstemp, atomic_counters = None, None, None
|
| 752 |
+
_attn_bwd_preprocess[pre_grid](
|
| 753 |
+
o,
|
| 754 |
+
do, #
|
| 755 |
+
# Info for attention sinks.
|
| 756 |
+
sinks,
|
| 757 |
+
dsinks,
|
| 758 |
+
dsinkstemp,
|
| 759 |
+
atomic_counters,
|
| 760 |
+
M,
|
| 761 |
+
######
|
| 762 |
+
delta, #
|
| 763 |
+
BATCH,
|
| 764 |
+
N_HEAD,
|
| 765 |
+
N_CTX, #
|
| 766 |
+
BLOCK_M=PRE_BLOCK,
|
| 767 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
| 768 |
+
)
|
| 769 |
+
grid = (N_CTX // BLOCK_N1, 1, BATCH * N_HEAD)
|
| 770 |
+
_attn_bwd[grid](
|
| 771 |
+
q,
|
| 772 |
+
arg_k,
|
| 773 |
+
v,
|
| 774 |
+
ctx.sm_scale,
|
| 775 |
+
do,
|
| 776 |
+
dq,
|
| 777 |
+
dk,
|
| 778 |
+
dv, #
|
| 779 |
+
M,
|
| 780 |
+
delta, #
|
| 781 |
+
q.stride(0),
|
| 782 |
+
q.stride(1),
|
| 783 |
+
q.stride(2),
|
| 784 |
+
q.stride(3), #
|
| 785 |
+
N_HEAD,
|
| 786 |
+
N_CTX, #
|
| 787 |
+
BANDWIDTH=ctx.bandwidth,
|
| 788 |
+
BLOCK_M1=BLOCK_M1,
|
| 789 |
+
BLOCK_N1=BLOCK_N1, #
|
| 790 |
+
BLOCK_M2=BLOCK_M2,
|
| 791 |
+
BLOCK_N2=BLOCK_N2, #
|
| 792 |
+
BLK_SLICE_FACTOR=BLK_SLICE_FACTOR, #
|
| 793 |
+
HEAD_DIM=ctx.HEAD_DIM, #
|
| 794 |
+
num_warps=NUM_WARPS, #
|
| 795 |
+
num_stages=NUM_STAGES, #
|
| 796 |
+
)
|
| 797 |
+
|
| 798 |
+
return dq, dk, dv, dsinks, None, None, None, None, None
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
attention = _attention.apply
|
| 802 |
+
|