mephisto-chu commited on
Commit
9bdd717
·
verified ·
1 Parent(s): 5a17b70

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (8.2 kB). View file
 
AudioEncoder.mlcomputeplan.json ADDED
The diff for this file is too large to render. See raw diff
 
AudioEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eda760544d719e016c5810b65de13815e579cf084efc8b5a0e2ab9fac2bd4cc9
3
+ size 243
AudioEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:916acb62341e553a082ee7bef75561e7f6084a8949cb08d4db75ff7924e74a01
3
+ size 349
AudioEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1280, 1, 1500]",
13
+ "name" : "encoder_output_embeds",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Concat" : 672,
23
+ "Ios16.add" : 65,
24
+ "Ios16.mul" : 3840,
25
+ "SliceByIndex" : 5760,
26
+ "Transpose" : 32,
27
+ "Ios16.batchNorm" : 65,
28
+ "Ios16.gelu" : 34,
29
+ "Ios16.einsum" : 7680,
30
+ "Ios16.softmax" : 3840,
31
+ "Ios16.layerNorm" : 65,
32
+ "Ios16.conv" : 194
33
+ },
34
+ "computePrecision" : "Mixed (Float16, Int32)",
35
+ "isUpdatable" : "0",
36
+ "stateSchema" : [
37
+
38
+ ],
39
+ "availability" : {
40
+ "macOS" : "13.0",
41
+ "tvOS" : "16.0",
42
+ "visionOS" : "1.0",
43
+ "watchOS" : "9.0",
44
+ "iOS" : "16.0",
45
+ "macCatalyst" : "16.0"
46
+ },
47
+ "modelType" : {
48
+ "name" : "MLModelType_mlProgram"
49
+ },
50
+ "userDefinedMetadata" : {
51
+ "com.github.apple.coremltools.version" : "8.3.0",
52
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
53
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
54
+ },
55
+ "inputSchema" : [
56
+ {
57
+ "hasShapeFlexibility" : "0",
58
+ "isOptional" : "0",
59
+ "dataType" : "Float16",
60
+ "formattedType" : "MultiArray (Float16 1 × 80 × 1 × 3000)",
61
+ "shortDescription" : "",
62
+ "shape" : "[1, 80, 1, 3000]",
63
+ "name" : "melspectrogram_features",
64
+ "type" : "MultiArray"
65
+ }
66
+ ],
67
+ "generatedClassName" : "AudioEncoder",
68
+ "method" : "predict"
69
+ }
70
+ ]
AudioEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
AudioEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d35cf8342a4a6f271cdcfcfaaa292a0b40a0f96a5ca35b71b126398e4e2a6ac
3
+ size 1273605760
MelSpectrogram.mlcomputeplan.json ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "1_ios16.reshape_shape_x": {
3
+ "dispatch": "CPU",
4
+ "supported": [
5
+ "CPU",
6
+ "ANE"
7
+ ],
8
+ "cost": 2.2206
9
+ },
10
+ "5_pad_pad_x_constant_val_mode": {
11
+ "dispatch": "CPU",
12
+ "supported": [
13
+ "CPU"
14
+ ],
15
+ "cost": 2.2216
16
+ },
17
+ "7_ios16.reshape_shape_x": {
18
+ "dispatch": "CPU",
19
+ "supported": [
20
+ "CPU",
21
+ "ANE"
22
+ ],
23
+ "cost": 2.2225
24
+ },
25
+ "9_expand_dims_x_axes": {
26
+ "dispatch": "CPU",
27
+ "supported": [
28
+ "CPU",
29
+ "ANE"
30
+ ],
31
+ "cost": 2.2225
32
+ },
33
+ "12_expand_dims_x_axes": {
34
+ "dispatch": "CPU",
35
+ "supported": [
36
+ "CPU",
37
+ "ANE"
38
+ ],
39
+ "cost": 2.2225
40
+ },
41
+ "18_ios16.conv_groups_weight_x_dilations_strides_pad_pad_type": {
42
+ "dispatch": "CPU",
43
+ "supported": [
44
+ "CPU"
45
+ ],
46
+ "cost": 21.5236
47
+ },
48
+ "24_ios16.conv_groups_weight_x_dilations_strides_pad_pad_type": {
49
+ "dispatch": "CPU",
50
+ "supported": [
51
+ "CPU"
52
+ ],
53
+ "cost": 21.5236
54
+ },
55
+ "26_squeeze_x_axes": {
56
+ "dispatch": "CPU",
57
+ "supported": [
58
+ "CPU",
59
+ "ANE"
60
+ ],
61
+ "cost": 2.7906
62
+ },
63
+ "28_squeeze_x_axes": {
64
+ "dispatch": "CPU",
65
+ "supported": [
66
+ "CPU",
67
+ "ANE"
68
+ ],
69
+ "cost": 2.7906
70
+ },
71
+ "29_ios16.square_x": {
72
+ "dispatch": "CPU",
73
+ "supported": [
74
+ "CPU",
75
+ "ANE"
76
+ ],
77
+ "cost": 2.7906
78
+ },
79
+ "30_ios16.square_x": {
80
+ "dispatch": "CPU",
81
+ "supported": [
82
+ "CPU",
83
+ "ANE"
84
+ ],
85
+ "cost": 2.7906
86
+ },
87
+ "31_ios16.add_x_y": {
88
+ "dispatch": "CPU",
89
+ "supported": [
90
+ "CPU",
91
+ "ANE"
92
+ ],
93
+ "cost": 10.1532
94
+ },
95
+ "32_identity_x": {
96
+ "dispatch": "CPU",
97
+ "supported": [
98
+ "CPU",
99
+ "ANE"
100
+ ],
101
+ "cost": 2.7906
102
+ },
103
+ "36_slice_by_index_begin_end_end_mask_x": {
104
+ "dispatch": "CPU",
105
+ "supported": [
106
+ "CPU",
107
+ "ANE"
108
+ ],
109
+ "cost": 2.7901
110
+ },
111
+ "40_ios16.matmul_y_transpose_y_transpose_x_x": {
112
+ "dispatch": "CPU",
113
+ "supported": [
114
+ "CPU",
115
+ "ANE"
116
+ ],
117
+ "cost": 4.0374
118
+ },
119
+ "42_ios16.add_x_y": {
120
+ "dispatch": "CPU",
121
+ "supported": [
122
+ "CPU",
123
+ "ANE"
124
+ ],
125
+ "cost": 2.0199
126
+ },
127
+ "44_ios16.log_epsilon_x": {
128
+ "dispatch": "CPU",
129
+ "supported": [
130
+ "CPU",
131
+ "ANE"
132
+ ],
133
+ "cost": 1.1103
134
+ },
135
+ "46_ios16.mul_x_y": {
136
+ "dispatch": "CPU",
137
+ "supported": [
138
+ "CPU",
139
+ "ANE"
140
+ ],
141
+ "cost": 2.9367
142
+ },
143
+ "48_ios16.reduce_max_x_keep_dims": {
144
+ "dispatch": "CPU",
145
+ "supported": [
146
+ "CPU",
147
+ "ANE"
148
+ ],
149
+ "cost": 0.5552
150
+ },
151
+ "50_ios16.sub_x_y": {
152
+ "dispatch": "CPU",
153
+ "supported": [
154
+ "CPU",
155
+ "ANE"
156
+ ],
157
+ "cost": 0.0
158
+ },
159
+ "51_ios16.maximum_x_y": {
160
+ "dispatch": "CPU",
161
+ "supported": [
162
+ "CPU",
163
+ "ANE"
164
+ ],
165
+ "cost": 1.1103
166
+ },
167
+ "53_ios16.add_x_y": {
168
+ "dispatch": "CPU",
169
+ "supported": [
170
+ "CPU",
171
+ "ANE"
172
+ ],
173
+ "cost": 2.0199
174
+ },
175
+ "55_ios16.mul_x_y": {
176
+ "dispatch": "CPU",
177
+ "supported": [
178
+ "CPU",
179
+ "ANE"
180
+ ],
181
+ "cost": 2.9367
182
+ },
183
+ "57_expand_dims_x_axes": {
184
+ "dispatch": "CPU",
185
+ "supported": [
186
+ "CPU",
187
+ "ANE"
188
+ ],
189
+ "cost": 1.1103
190
+ },
191
+ "59_expand_dims_x_axes": {
192
+ "dispatch": "CPU",
193
+ "supported": [
194
+ "CPU",
195
+ "ANE"
196
+ ],
197
+ "cost": 1.1103
198
+ }
199
+ }
MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e956e295dc0fe24b0dc7035ab4d4240df5739ee07c6bc8c9728371887a0a47a5
3
+ size 243
MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5505452cb69b6ff7d83320e346c0aa48e90c768d189c0e634215a4c98ffc468c
3
+ size 330
MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 80 × 1 × 3000)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 80, 1, 3000]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Ios16.reshape" : 2,
23
+ "Ios16.mul" : 2,
24
+ "SliceByIndex" : 1,
25
+ "Ios16.sub" : 1,
26
+ "Ios16.log" : 1,
27
+ "Ios16.square" : 2,
28
+ "Ios16.add" : 3,
29
+ "Squeeze" : 2,
30
+ "Ios16.matmul" : 1,
31
+ "Ios16.conv" : 2,
32
+ "Ios16.maximum" : 1,
33
+ "ExpandDims" : 4,
34
+ "Ios16.reduceMax" : 1,
35
+ "Identity" : 1,
36
+ "Pad" : 1
37
+ },
38
+ "computePrecision" : "Mixed (Float16, Int32)",
39
+ "isUpdatable" : "0",
40
+ "stateSchema" : [
41
+
42
+ ],
43
+ "availability" : {
44
+ "macOS" : "13.0",
45
+ "tvOS" : "16.0",
46
+ "visionOS" : "1.0",
47
+ "watchOS" : "9.0",
48
+ "iOS" : "16.0",
49
+ "macCatalyst" : "16.0"
50
+ },
51
+ "modelType" : {
52
+ "name" : "MLModelType_mlProgram"
53
+ },
54
+ "userDefinedMetadata" : {
55
+ "com.github.apple.coremltools.version" : "8.3.0",
56
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
57
+ "com.github.apple.coremltools.source" : "torch==2.5.0"
58
+ },
59
+ "inputSchema" : [
60
+ {
61
+ "hasShapeFlexibility" : "0",
62
+ "isOptional" : "0",
63
+ "dataType" : "Float16",
64
+ "formattedType" : "MultiArray (Float16 480000)",
65
+ "shortDescription" : "",
66
+ "shape" : "[480000]",
67
+ "name" : "audio",
68
+ "type" : "MultiArray"
69
+ }
70
+ ],
71
+ "generatedClassName" : "MelSpectrogram",
72
+ "method" : "predict"
73
+ }
74
+ ]
MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3405.2.1"}, {"coremlc-version", "3404.23.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.3.0"}})]
3
+ {
4
+ func main<ios16>(tensor<fp16, [480000]> audio) {
5
+ tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
+ tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
+ tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
+ tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
+ tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
+ tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
+ tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
14
+ tensor<fp16, [1, 480400]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
15
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
16
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<fp16, [1, 1, 480400]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
18
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
19
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
20
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
21
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
22
+ tensor<fp16, [201, 1, 400]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
23
+ tensor<fp16, [1, 201, 3001]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
24
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
25
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
26
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
27
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
28
+ tensor<fp16, [201, 1, 400]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160960)))];
29
+ tensor<fp16, [1, 201, 3001]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
30
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
31
+ tensor<fp16, [201, 3001]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
32
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [201, 3001]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
34
+ tensor<fp16, [201, 3001]> square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
35
+ tensor<fp16, [201, 3001]> square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
36
+ tensor<fp16, [201, 3001]> add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
37
+ tensor<fp16, [201, 3001]> magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_1_cast_fp16")];
38
+ tensor<int32, [2]> magnitudes_begin_0 = const()[name = tensor<string, []>("magnitudes_begin_0"), val = tensor<int32, [2]>([0, 0])];
39
+ tensor<int32, [2]> magnitudes_end_0 = const()[name = tensor<string, []>("magnitudes_end_0"), val = tensor<int32, [2]>([201, 3000])];
40
+ tensor<bool, [2]> magnitudes_end_mask_0 = const()[name = tensor<string, []>("magnitudes_end_mask_0"), val = tensor<bool, [2]>([true, false])];
41
+ tensor<fp16, [201, 3000]> magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
42
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
43
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
44
+ tensor<fp16, [80, 201]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [80, 201]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(321856)))];
45
+ tensor<fp16, [80, 3000]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
46
+ tensor<fp16, []> var_41_to_fp16 = const()[name = tensor<string, []>("op_41_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
47
+ tensor<fp16, [80, 3000]> mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
48
+ tensor<fp16, []> log_0_epsilon_0_to_fp16 = const()[name = tensor<string, []>("log_0_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
49
+ tensor<fp16, [80, 3000]> log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor<string, []>("log_0_cast_fp16")];
50
+ tensor<fp16, []> mul_0_y_0_to_fp16 = const()[name = tensor<string, []>("mul_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.bccp-2)];
51
+ tensor<fp16, [80, 3000]> mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
52
+ tensor<bool, []> var_44_keep_dims_0 = const()[name = tensor<string, []>("op_44_keep_dims_0"), val = tensor<bool, []>(false)];
53
+ tensor<fp16, []> var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
54
+ tensor<fp16, []> var_46_to_fp16 = const()[name = tensor<string, []>("op_46_to_fp16"), val = tensor<fp16, []>(0x1p+3)];
55
+ tensor<fp16, []> var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor<string, []>("op_47_cast_fp16")];
56
+ tensor<fp16, [80, 3000]> log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor<string, []>("log_spec_3_cast_fp16")];
57
+ tensor<fp16, []> var_50_to_fp16 = const()[name = tensor<string, []>("op_50_to_fp16"), val = tensor<fp16, []>(0x1p+2)];
58
+ tensor<fp16, [80, 3000]> var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
59
+ tensor<fp16, []> _inversed_log_spec_y_0_to_fp16 = const()[name = tensor<string, []>("_inversed_log_spec_y_0_to_fp16"), val = tensor<fp16, []>(0x1p-2)];
60
+ tensor<fp16, [80, 3000]> _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor<string, []>("_inversed_log_spec_cast_fp16")];
61
+ tensor<int32, [1]> var_55_axes_0 = const()[name = tensor<string, []>("op_55_axes_0"), val = tensor<int32, [1]>([0])];
62
+ tensor<fp16, [1, 80, 3000]> var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
63
+ tensor<int32, [1]> var_62_axes_0 = const()[name = tensor<string, []>("op_62_axes_0"), val = tensor<int32, [1]>([2])];
64
+ tensor<fp16, [1, 80, 1, 3000]> melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
65
+ } -> (melspectrogram_features);
66
+ }
MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:801024dbc7a89c677be1f8b285de3409e35f7d1786c9c8d9d0d6842ac57a1c83
3
+ size 354080
TextDecoder.mlcomputeplan.json ADDED
The diff for this file is too large to render. See raw diff
 
TextDecoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c44620aab48aa3144be164f0edbe1176d68e2ba826f24adc31056ab962082de
3
+ size 243
TextDecoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f19c5ebd24019e778c718c58d6e524b4fb2dd69e72c8c7cf17dc4467141b4b0a
3
+ size 639
TextDecoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1 × 51865)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 51865]",
13
+ "name" : "logits",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 40960, 1, 1]",
23
+ "name" : "key_cache_updates",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float16",
30
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1, 40960, 1, 1]",
33
+ "name" : "value_cache_updates",
34
+ "type" : "MultiArray"
35
+ },
36
+ {
37
+ "hasShapeFlexibility" : "0",
38
+ "isOptional" : "0",
39
+ "dataType" : "Float16",
40
+ "formattedType" : "MultiArray (Float16 1 × 1500)",
41
+ "shortDescription" : "",
42
+ "shape" : "[1, 1500]",
43
+ "name" : "alignment_heads_weights",
44
+ "type" : "MultiArray"
45
+ }
46
+ ],
47
+ "modelParameters" : [
48
+
49
+ ],
50
+ "specificationVersion" : 7,
51
+ "mlProgramOperationTypeHistogram" : {
52
+ "Ios16.linear" : 1,
53
+ "Concat" : 3,
54
+ "Ios16.reduceMean" : 1,
55
+ "Ios16.mul" : 192,
56
+ "Ios16.layerNorm" : 97,
57
+ "SliceByIndex" : 46,
58
+ "Ios16.sub" : 1,
59
+ "Transpose" : 1,
60
+ "Ios16.conv" : 320,
61
+ "Ios16.add" : 193,
62
+ "Squeeze" : 1,
63
+ "Ios16.matmul" : 128,
64
+ "Ios16.softmax" : 64,
65
+ "Ios16.gelu" : 32,
66
+ "ExpandDims" : 6,
67
+ "Ios16.batchNorm" : 97,
68
+ "Split" : 2,
69
+ "Ios16.gather" : 2,
70
+ "Ios16.reshape" : 256
71
+ },
72
+ "computePrecision" : "Mixed (Float16, Int32)",
73
+ "isUpdatable" : "0",
74
+ "stateSchema" : [
75
+
76
+ ],
77
+ "availability" : {
78
+ "macOS" : "13.0",
79
+ "tvOS" : "16.0",
80
+ "visionOS" : "1.0",
81
+ "watchOS" : "9.0",
82
+ "iOS" : "16.0",
83
+ "macCatalyst" : "16.0"
84
+ },
85
+ "modelType" : {
86
+ "name" : "MLModelType_mlProgram"
87
+ },
88
+ "userDefinedMetadata" : {
89
+ "com.github.apple.coremltools.version" : "8.3.0",
90
+ "com.github.apple.coremltools.source" : "torch==2.5.0",
91
+ "com.github.apple.coremltools.source_dialect" : "TorchScript"
92
+ },
93
+ "inputSchema" : [
94
+ {
95
+ "hasShapeFlexibility" : "0",
96
+ "isOptional" : "0",
97
+ "dataType" : "Int32",
98
+ "formattedType" : "MultiArray (Int32 1)",
99
+ "shortDescription" : "",
100
+ "shape" : "[1]",
101
+ "name" : "input_ids",
102
+ "type" : "MultiArray"
103
+ },
104
+ {
105
+ "hasShapeFlexibility" : "0",
106
+ "isOptional" : "0",
107
+ "dataType" : "Int32",
108
+ "formattedType" : "MultiArray (Int32 1)",
109
+ "shortDescription" : "",
110
+ "shape" : "[1]",
111
+ "name" : "cache_length",
112
+ "type" : "MultiArray"
113
+ },
114
+ {
115
+ "hasShapeFlexibility" : "0",
116
+ "isOptional" : "0",
117
+ "dataType" : "Float16",
118
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 448)",
119
+ "shortDescription" : "",
120
+ "shape" : "[1, 40960, 1, 448]",
121
+ "name" : "key_cache",
122
+ "type" : "MultiArray"
123
+ },
124
+ {
125
+ "hasShapeFlexibility" : "0",
126
+ "isOptional" : "0",
127
+ "dataType" : "Float16",
128
+ "formattedType" : "MultiArray (Float16 1 × 40960 × 1 × 448)",
129
+ "shortDescription" : "",
130
+ "shape" : "[1, 40960, 1, 448]",
131
+ "name" : "value_cache",
132
+ "type" : "MultiArray"
133
+ },
134
+ {
135
+ "hasShapeFlexibility" : "0",
136
+ "isOptional" : "0",
137
+ "dataType" : "Float16",
138
+ "formattedType" : "MultiArray (Float16 1 × 448)",
139
+ "shortDescription" : "",
140
+ "shape" : "[1, 448]",
141
+ "name" : "kv_cache_update_mask",
142
+ "type" : "MultiArray"
143
+ },
144
+ {
145
+ "hasShapeFlexibility" : "0",
146
+ "isOptional" : "0",
147
+ "dataType" : "Float16",
148
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
149
+ "shortDescription" : "",
150
+ "shape" : "[1, 1280, 1, 1500]",
151
+ "name" : "encoder_output_embeds",
152
+ "type" : "MultiArray"
153
+ },
154
+ {
155
+ "hasShapeFlexibility" : "0",
156
+ "isOptional" : "0",
157
+ "dataType" : "Float16",
158
+ "formattedType" : "MultiArray (Float16 1 × 448)",
159
+ "shortDescription" : "",
160
+ "shape" : "[1, 448]",
161
+ "name" : "decoder_key_padding_mask",
162
+ "type" : "MultiArray"
163
+ }
164
+ ],
165
+ "generatedClassName" : "TextDecoder",
166
+ "method" : "predict"
167
+ }
168
+ ]
TextDecoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
TextDecoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9207237470a7a8318d92f84e74f5ddc09d69ba9f2ba3b8a94a4fe440b256c8ac
3
+ size 1813199154