File size: 4,504 Bytes
253526b
 
 
 
 
 
 
6665c4d
253526b
 
 
6665c4d
 
 
253526b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: apache-2.0
base_model:
- stable-diffusion-v1-5/stable-diffusion-v1-5
---
<meta name="google-site-verification" content="-XQC-POJtlDPD3i2KSOxbFkSBde_Uq9obAIh_4mxTkM" />




<div align="center">
  
<h2>DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability</h2>
<h3>[ICCV 2025]</h3>

[Xirui Hu](https://openreview.net/profile?id=~Xirui_Hu1),
[Jiahao Wang](https://openreview.net/profile?id=~Jiahao_Wang14),
[Hao Chen](https://openreview.net/profile?id=~Hao_chen100),
[Weizhan Zhang](https://openreview.net/profile?id=~Weizhan_Zhang1),
[Benqi Wang](https://openreview.net/profile?id=~Benqi_Wang2),
[Yikun Li](https://openreview.net/profile?id=~Yikun_Li1),
[Haishun Nan](https://openreview.net/profile?id=~Haishun_Nan1),

[![arXiv](https://img.shields.io/badge/arXiv-2503.06505-b31b1b.svg)](https://arxiv.org/abs/2503.06505)
[![GitHub](https://img.shields.io/badge/GitHub-MTVCrafter-blue?logo=github)](https://github.com/ByteCat-bot/DynamicID)
</div>

---
This is the official implementation of DynamicID, a framework that generates visually harmonious image featuring **multiple individuals**. Each person in the image can be specified through user-provided reference images, and most notably, our method enables **independent control of each individual's facial expression** via text prompts. Hope you have fun with this demo!

---

## πŸ” Abstract

Recent advancements in text-to-image generation have spurred interest in personalized human image generation. Although existing methods achieve high-fidelity identity preservation, they often struggle with **limited multi-ID usability** and **inadequate facial editability**. 

We present DynamicID, a tuning-free framework that inherently facilitates both single-ID and multi-ID personalized generation with high fidelity and flexible facial editability. Our key innovations include: 

- Semantic-Activated Attention (SAA), which employs query-level activation gating to minimize disruption to the original model when injecting ID features and achieve multi-ID personalization without requiring multi-ID samples during training. 

- Identity-Motion Reconfigurator (IMR), which applies feature-space manipulation to effectively disentangle and reconfigure facial motion and identity features, supporting flexible facial editing.

- A task-decoupled training paradigm that reduces data dependency

- A curated VariFace-10k facial dataset, comprising 10k unique individuals, each represented by 35 distinct facial images. 

Experimental results demonstrate that DynamicID outperforms state-of-the-art methods in identity fidelity, facial editability, and multi-ID personalization capability.

## πŸ’‘ Method

<div align="center">
    <img src="assets/pipeline.jpg", width="1000">
</div>

The proposed framework is architected around two core components: SAA and IMR. (a) In the anchoring stage, we jointly optimize the SAA and a face encoder to establish robust single-ID and multi-ID personalized generation capabilities. (b) Subsequently in the reconfiguration stage, we freeze these optimized components and leverage them to train the IMR for flexible and fine-grained facial editing.

## πŸš€ Checkpoint

1. Download the pretrained Stable Diffusion v1.5 checkpoint from [Stable Diffusion v1.5 on Hugging Face](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5).

2. Download our SAA-related and IMR-related checkpoints from  [DynamicID Checkpoints on Hugging Face](https://huggingface.co/meteorite2023/DynamicID).


## 🌈 Gallery

<div align="center">
    <img src="assets/teaser.jpg", width="900">
    <br><br><br>
    <img src="assets/single.jpg", width="900">
    <br><br><br>
    <img src="assets/multi.jpg", width="900">
</div>

## πŸ“Œ ToDo List

- [x] Release technical report
- [x] Release **training and inference code**
- [x] Release **Dynamic-sd** (based on *stable diffusion v1.5*)  
- [ ] Release **Dynamic-flux** (based on *Flux-dev*)
- [ ] Release a Hugging Face Demo Space

## πŸ“– Citation
If you are inspired by our work, please cite our paper.
```bibtex
@inproceedings{dynamicid,
      title={DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability},
      author={Xirui Hu,
              Jiahao Wang,
              Hao Chen,
              Weizhan Zhang,
              Benqi Wang,
              Yikun Li,
              Haishun Nan
              },
      booktitle={International Conference on Computer Vision},
      year={2025}
    }
    
```