Upload 9 files
Browse files- config.json +325 -0
- config.yaml +325 -0
- events.out.tfevents.1681910385.906c2a3c48ac.2206.0 +3 -0
- events.out.tfevents.1681910424.906c2a3c48ac.2416.0 +3 -0
- events.out.tfevents.1681910486.906c2a3c48ac.2698.0 +3 -0
- last_checkpoint +1 -0
- log.txt +2758 -0
- metrics.json +15 -0
- model_final.pth +3 -0
config.json
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CUDNN_BENCHMARK: false
|
| 2 |
+
DATALOADER:
|
| 3 |
+
ASPECT_RATIO_GROUPING: true
|
| 4 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
| 5 |
+
NUM_WORKERS: 4
|
| 6 |
+
REPEAT_THRESHOLD: 0.0
|
| 7 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 8 |
+
DATASETS:
|
| 9 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 10 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 11 |
+
PROPOSAL_FILES_TEST: []
|
| 12 |
+
PROPOSAL_FILES_TRAIN: []
|
| 13 |
+
TEST:
|
| 14 |
+
- modele-val
|
| 15 |
+
TRAIN:
|
| 16 |
+
- modele-train
|
| 17 |
+
GLOBAL:
|
| 18 |
+
HACK: 1.0
|
| 19 |
+
INPUT:
|
| 20 |
+
CROP:
|
| 21 |
+
ENABLED: false
|
| 22 |
+
SIZE:
|
| 23 |
+
- 0.9
|
| 24 |
+
- 0.9
|
| 25 |
+
TYPE: relative_range
|
| 26 |
+
FORMAT: BGR
|
| 27 |
+
MASK_FORMAT: polygon
|
| 28 |
+
MAX_SIZE_TEST: 1333
|
| 29 |
+
MAX_SIZE_TRAIN: 1333
|
| 30 |
+
MIN_SIZE_TEST: 800
|
| 31 |
+
MIN_SIZE_TRAIN:
|
| 32 |
+
- 640
|
| 33 |
+
- 672
|
| 34 |
+
- 704
|
| 35 |
+
- 736
|
| 36 |
+
- 768
|
| 37 |
+
- 800
|
| 38 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 39 |
+
RANDOM_FLIP: horizontal
|
| 40 |
+
MODEL:
|
| 41 |
+
ANCHOR_GENERATOR:
|
| 42 |
+
ANGLES:
|
| 43 |
+
- - -90
|
| 44 |
+
- 0
|
| 45 |
+
- 90
|
| 46 |
+
ASPECT_RATIOS:
|
| 47 |
+
- - 0.5
|
| 48 |
+
- 1.0
|
| 49 |
+
- 2.0
|
| 50 |
+
NAME: DefaultAnchorGenerator
|
| 51 |
+
OFFSET: 0.0
|
| 52 |
+
SIZES:
|
| 53 |
+
- - 32
|
| 54 |
+
- - 64
|
| 55 |
+
- - 128
|
| 56 |
+
- - 256
|
| 57 |
+
- - 512
|
| 58 |
+
BACKBONE:
|
| 59 |
+
FREEZE_AT: 2
|
| 60 |
+
NAME: build_resnet_fpn_backbone
|
| 61 |
+
DEVICE: cuda
|
| 62 |
+
FPN:
|
| 63 |
+
FUSE_TYPE: sum
|
| 64 |
+
IN_FEATURES:
|
| 65 |
+
- res2
|
| 66 |
+
- res3
|
| 67 |
+
- res4
|
| 68 |
+
- res5
|
| 69 |
+
NORM: ''
|
| 70 |
+
OUT_CHANNELS: 256
|
| 71 |
+
KEYPOINT_ON: false
|
| 72 |
+
LOAD_PROPOSALS: false
|
| 73 |
+
MASK_ON: true
|
| 74 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 75 |
+
PANOPTIC_FPN:
|
| 76 |
+
COMBINE:
|
| 77 |
+
ENABLED: true
|
| 78 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 79 |
+
OVERLAP_THRESH: 0.5
|
| 80 |
+
STUFF_AREA_LIMIT: 4096
|
| 81 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 82 |
+
PIXEL_MEAN:
|
| 83 |
+
- 103.53
|
| 84 |
+
- 116.28
|
| 85 |
+
- 123.675
|
| 86 |
+
PIXEL_STD:
|
| 87 |
+
- 1.0
|
| 88 |
+
- 1.0
|
| 89 |
+
- 1.0
|
| 90 |
+
PROPOSAL_GENERATOR:
|
| 91 |
+
MIN_SIZE: 0
|
| 92 |
+
NAME: RPN
|
| 93 |
+
RESNETS:
|
| 94 |
+
DEFORM_MODULATED: false
|
| 95 |
+
DEFORM_NUM_GROUPS: 1
|
| 96 |
+
DEFORM_ON_PER_STAGE:
|
| 97 |
+
- false
|
| 98 |
+
- false
|
| 99 |
+
- false
|
| 100 |
+
- false
|
| 101 |
+
DEPTH: 50
|
| 102 |
+
NORM: FrozenBN
|
| 103 |
+
NUM_GROUPS: 1
|
| 104 |
+
OUT_FEATURES:
|
| 105 |
+
- res2
|
| 106 |
+
- res3
|
| 107 |
+
- res4
|
| 108 |
+
- res5
|
| 109 |
+
RES2_OUT_CHANNELS: 256
|
| 110 |
+
RES5_DILATION: 1
|
| 111 |
+
STEM_OUT_CHANNELS: 64
|
| 112 |
+
STRIDE_IN_1X1: true
|
| 113 |
+
WIDTH_PER_GROUP: 64
|
| 114 |
+
RETINANET:
|
| 115 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 116 |
+
BBOX_REG_WEIGHTS:
|
| 117 |
+
- 1.0
|
| 118 |
+
- 1.0
|
| 119 |
+
- 1.0
|
| 120 |
+
- 1.0
|
| 121 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 122 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 123 |
+
IN_FEATURES:
|
| 124 |
+
- p3
|
| 125 |
+
- p4
|
| 126 |
+
- p5
|
| 127 |
+
- p6
|
| 128 |
+
- p7
|
| 129 |
+
IOU_LABELS:
|
| 130 |
+
- 0
|
| 131 |
+
- -1
|
| 132 |
+
- 1
|
| 133 |
+
IOU_THRESHOLDS:
|
| 134 |
+
- 0.4
|
| 135 |
+
- 0.5
|
| 136 |
+
NMS_THRESH_TEST: 0.5
|
| 137 |
+
NORM: ''
|
| 138 |
+
NUM_CLASSES: 80
|
| 139 |
+
NUM_CONVS: 4
|
| 140 |
+
PRIOR_PROB: 0.01
|
| 141 |
+
SCORE_THRESH_TEST: 0.05
|
| 142 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 143 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 144 |
+
ROI_BOX_CASCADE_HEAD:
|
| 145 |
+
BBOX_REG_WEIGHTS:
|
| 146 |
+
- - 10.0
|
| 147 |
+
- 10.0
|
| 148 |
+
- 5.0
|
| 149 |
+
- 5.0
|
| 150 |
+
- - 20.0
|
| 151 |
+
- 20.0
|
| 152 |
+
- 10.0
|
| 153 |
+
- 10.0
|
| 154 |
+
- - 30.0
|
| 155 |
+
- 30.0
|
| 156 |
+
- 15.0
|
| 157 |
+
- 15.0
|
| 158 |
+
IOUS:
|
| 159 |
+
- 0.5
|
| 160 |
+
- 0.6
|
| 161 |
+
- 0.7
|
| 162 |
+
ROI_BOX_HEAD:
|
| 163 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 164 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 165 |
+
BBOX_REG_WEIGHTS:
|
| 166 |
+
- 10.0
|
| 167 |
+
- 10.0
|
| 168 |
+
- 5.0
|
| 169 |
+
- 5.0
|
| 170 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
| 171 |
+
CONV_DIM: 256
|
| 172 |
+
FC_DIM: 1024
|
| 173 |
+
NAME: FastRCNNConvFCHead
|
| 174 |
+
NORM: ''
|
| 175 |
+
NUM_CONV: 0
|
| 176 |
+
NUM_FC: 2
|
| 177 |
+
POOLER_RESOLUTION: 7
|
| 178 |
+
POOLER_SAMPLING_RATIO: 0
|
| 179 |
+
POOLER_TYPE: ROIAlignV2
|
| 180 |
+
SMOOTH_L1_BETA: 0.0
|
| 181 |
+
TRAIN_ON_PRED_BOXES: false
|
| 182 |
+
ROI_HEADS:
|
| 183 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 184 |
+
IN_FEATURES:
|
| 185 |
+
- p2
|
| 186 |
+
- p3
|
| 187 |
+
- p4
|
| 188 |
+
- p5
|
| 189 |
+
IOU_LABELS:
|
| 190 |
+
- 0
|
| 191 |
+
- 1
|
| 192 |
+
IOU_THRESHOLDS:
|
| 193 |
+
- 0.5
|
| 194 |
+
NAME: StandardROIHeads
|
| 195 |
+
NMS_THRESH_TEST: 0.5
|
| 196 |
+
NUM_CLASSES: 2
|
| 197 |
+
POSITIVE_FRACTION: 0.25
|
| 198 |
+
PROPOSAL_APPEND_GT: true
|
| 199 |
+
SCORE_THRESH_TEST: 0.05
|
| 200 |
+
ROI_KEYPOINT_HEAD:
|
| 201 |
+
CONV_DIMS:
|
| 202 |
+
- 512
|
| 203 |
+
- 512
|
| 204 |
+
- 512
|
| 205 |
+
- 512
|
| 206 |
+
- 512
|
| 207 |
+
- 512
|
| 208 |
+
- 512
|
| 209 |
+
- 512
|
| 210 |
+
LOSS_WEIGHT: 1.0
|
| 211 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 212 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 213 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
| 214 |
+
NUM_KEYPOINTS: 17
|
| 215 |
+
POOLER_RESOLUTION: 14
|
| 216 |
+
POOLER_SAMPLING_RATIO: 0
|
| 217 |
+
POOLER_TYPE: ROIAlignV2
|
| 218 |
+
ROI_MASK_HEAD:
|
| 219 |
+
CLS_AGNOSTIC_MASK: false
|
| 220 |
+
CONV_DIM: 256
|
| 221 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 222 |
+
NORM: ''
|
| 223 |
+
NUM_CONV: 4
|
| 224 |
+
POOLER_RESOLUTION: 14
|
| 225 |
+
POOLER_SAMPLING_RATIO: 0
|
| 226 |
+
POOLER_TYPE: ROIAlignV2
|
| 227 |
+
RPN:
|
| 228 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 229 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 230 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 231 |
+
BBOX_REG_WEIGHTS:
|
| 232 |
+
- 1.0
|
| 233 |
+
- 1.0
|
| 234 |
+
- 1.0
|
| 235 |
+
- 1.0
|
| 236 |
+
BOUNDARY_THRESH: -1
|
| 237 |
+
HEAD_NAME: StandardRPNHead
|
| 238 |
+
IN_FEATURES:
|
| 239 |
+
- p2
|
| 240 |
+
- p3
|
| 241 |
+
- p4
|
| 242 |
+
- p5
|
| 243 |
+
- p6
|
| 244 |
+
IOU_LABELS:
|
| 245 |
+
- 0
|
| 246 |
+
- -1
|
| 247 |
+
- 1
|
| 248 |
+
IOU_THRESHOLDS:
|
| 249 |
+
- 0.3
|
| 250 |
+
- 0.7
|
| 251 |
+
LOSS_WEIGHT: 1.0
|
| 252 |
+
NMS_THRESH: 0.7
|
| 253 |
+
POSITIVE_FRACTION: 0.5
|
| 254 |
+
POST_NMS_TOPK_TEST: 1000
|
| 255 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 256 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 257 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 258 |
+
SMOOTH_L1_BETA: 0.0
|
| 259 |
+
SEM_SEG_HEAD:
|
| 260 |
+
COMMON_STRIDE: 4
|
| 261 |
+
CONVS_DIM: 128
|
| 262 |
+
IGNORE_VALUE: 255
|
| 263 |
+
IN_FEATURES:
|
| 264 |
+
- p2
|
| 265 |
+
- p3
|
| 266 |
+
- p4
|
| 267 |
+
- p5
|
| 268 |
+
LOSS_WEIGHT: 1.0
|
| 269 |
+
NAME: SemSegFPNHead
|
| 270 |
+
NORM: GN
|
| 271 |
+
NUM_CLASSES: 54
|
| 272 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
| 273 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
| 274 |
+
SEED: -1
|
| 275 |
+
SOLVER:
|
| 276 |
+
AMP:
|
| 277 |
+
ENABLED: false
|
| 278 |
+
BASE_LR: 0.00025
|
| 279 |
+
BIAS_LR_FACTOR: 1.0
|
| 280 |
+
CHECKPOINT_PERIOD: 50
|
| 281 |
+
CLIP_GRADIENTS:
|
| 282 |
+
CLIP_TYPE: value
|
| 283 |
+
CLIP_VALUE: 1.0
|
| 284 |
+
ENABLED: false
|
| 285 |
+
NORM_TYPE: 2.0
|
| 286 |
+
GAMMA: 0.1
|
| 287 |
+
IMS_PER_BATCH: 2
|
| 288 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 289 |
+
MAX_ITER: 300
|
| 290 |
+
MOMENTUM: 0.9
|
| 291 |
+
NESTEROV: false
|
| 292 |
+
REFERENCE_WORLD_SIZE: 0
|
| 293 |
+
STEPS:
|
| 294 |
+
- 210000
|
| 295 |
+
- 250000
|
| 296 |
+
WARMUP_FACTOR: 0.001
|
| 297 |
+
WARMUP_ITERS: 1000
|
| 298 |
+
WARMUP_METHOD: linear
|
| 299 |
+
WEIGHT_DECAY: 0.0001
|
| 300 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 301 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 302 |
+
TEST:
|
| 303 |
+
AUG:
|
| 304 |
+
ENABLED: false
|
| 305 |
+
FLIP: true
|
| 306 |
+
MAX_SIZE: 4000
|
| 307 |
+
MIN_SIZES:
|
| 308 |
+
- 400
|
| 309 |
+
- 500
|
| 310 |
+
- 600
|
| 311 |
+
- 700
|
| 312 |
+
- 800
|
| 313 |
+
- 900
|
| 314 |
+
- 1000
|
| 315 |
+
- 1100
|
| 316 |
+
- 1200
|
| 317 |
+
DETECTIONS_PER_IMAGE: 100
|
| 318 |
+
EVAL_PERIOD: 0
|
| 319 |
+
EXPECTED_RESULTS: []
|
| 320 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 321 |
+
PRECISE_BN:
|
| 322 |
+
ENABLED: false
|
| 323 |
+
NUM_ITER: 200
|
| 324 |
+
VERSION: 2
|
| 325 |
+
VIS_PERIOD: 0
|
config.yaml
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CUDNN_BENCHMARK: false
|
| 2 |
+
DATALOADER:
|
| 3 |
+
ASPECT_RATIO_GROUPING: true
|
| 4 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
| 5 |
+
NUM_WORKERS: 4
|
| 6 |
+
REPEAT_THRESHOLD: 0.0
|
| 7 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 8 |
+
DATASETS:
|
| 9 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 10 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 11 |
+
PROPOSAL_FILES_TEST: []
|
| 12 |
+
PROPOSAL_FILES_TRAIN: []
|
| 13 |
+
TEST:
|
| 14 |
+
- modele-val
|
| 15 |
+
TRAIN:
|
| 16 |
+
- modele-train
|
| 17 |
+
GLOBAL:
|
| 18 |
+
HACK: 1.0
|
| 19 |
+
INPUT:
|
| 20 |
+
CROP:
|
| 21 |
+
ENABLED: false
|
| 22 |
+
SIZE:
|
| 23 |
+
- 0.9
|
| 24 |
+
- 0.9
|
| 25 |
+
TYPE: relative_range
|
| 26 |
+
FORMAT: BGR
|
| 27 |
+
MASK_FORMAT: polygon
|
| 28 |
+
MAX_SIZE_TEST: 1333
|
| 29 |
+
MAX_SIZE_TRAIN: 1333
|
| 30 |
+
MIN_SIZE_TEST: 800
|
| 31 |
+
MIN_SIZE_TRAIN:
|
| 32 |
+
- 640
|
| 33 |
+
- 672
|
| 34 |
+
- 704
|
| 35 |
+
- 736
|
| 36 |
+
- 768
|
| 37 |
+
- 800
|
| 38 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 39 |
+
RANDOM_FLIP: horizontal
|
| 40 |
+
MODEL:
|
| 41 |
+
ANCHOR_GENERATOR:
|
| 42 |
+
ANGLES:
|
| 43 |
+
- - -90
|
| 44 |
+
- 0
|
| 45 |
+
- 90
|
| 46 |
+
ASPECT_RATIOS:
|
| 47 |
+
- - 0.5
|
| 48 |
+
- 1.0
|
| 49 |
+
- 2.0
|
| 50 |
+
NAME: DefaultAnchorGenerator
|
| 51 |
+
OFFSET: 0.0
|
| 52 |
+
SIZES:
|
| 53 |
+
- - 32
|
| 54 |
+
- - 64
|
| 55 |
+
- - 128
|
| 56 |
+
- - 256
|
| 57 |
+
- - 512
|
| 58 |
+
BACKBONE:
|
| 59 |
+
FREEZE_AT: 2
|
| 60 |
+
NAME: build_resnet_fpn_backbone
|
| 61 |
+
DEVICE: cuda
|
| 62 |
+
FPN:
|
| 63 |
+
FUSE_TYPE: sum
|
| 64 |
+
IN_FEATURES:
|
| 65 |
+
- res2
|
| 66 |
+
- res3
|
| 67 |
+
- res4
|
| 68 |
+
- res5
|
| 69 |
+
NORM: ''
|
| 70 |
+
OUT_CHANNELS: 256
|
| 71 |
+
KEYPOINT_ON: false
|
| 72 |
+
LOAD_PROPOSALS: false
|
| 73 |
+
MASK_ON: true
|
| 74 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 75 |
+
PANOPTIC_FPN:
|
| 76 |
+
COMBINE:
|
| 77 |
+
ENABLED: true
|
| 78 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 79 |
+
OVERLAP_THRESH: 0.5
|
| 80 |
+
STUFF_AREA_LIMIT: 4096
|
| 81 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 82 |
+
PIXEL_MEAN:
|
| 83 |
+
- 103.53
|
| 84 |
+
- 116.28
|
| 85 |
+
- 123.675
|
| 86 |
+
PIXEL_STD:
|
| 87 |
+
- 1.0
|
| 88 |
+
- 1.0
|
| 89 |
+
- 1.0
|
| 90 |
+
PROPOSAL_GENERATOR:
|
| 91 |
+
MIN_SIZE: 0
|
| 92 |
+
NAME: RPN
|
| 93 |
+
RESNETS:
|
| 94 |
+
DEFORM_MODULATED: false
|
| 95 |
+
DEFORM_NUM_GROUPS: 1
|
| 96 |
+
DEFORM_ON_PER_STAGE:
|
| 97 |
+
- false
|
| 98 |
+
- false
|
| 99 |
+
- false
|
| 100 |
+
- false
|
| 101 |
+
DEPTH: 50
|
| 102 |
+
NORM: FrozenBN
|
| 103 |
+
NUM_GROUPS: 1
|
| 104 |
+
OUT_FEATURES:
|
| 105 |
+
- res2
|
| 106 |
+
- res3
|
| 107 |
+
- res4
|
| 108 |
+
- res5
|
| 109 |
+
RES2_OUT_CHANNELS: 256
|
| 110 |
+
RES5_DILATION: 1
|
| 111 |
+
STEM_OUT_CHANNELS: 64
|
| 112 |
+
STRIDE_IN_1X1: true
|
| 113 |
+
WIDTH_PER_GROUP: 64
|
| 114 |
+
RETINANET:
|
| 115 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 116 |
+
BBOX_REG_WEIGHTS:
|
| 117 |
+
- 1.0
|
| 118 |
+
- 1.0
|
| 119 |
+
- 1.0
|
| 120 |
+
- 1.0
|
| 121 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 122 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 123 |
+
IN_FEATURES:
|
| 124 |
+
- p3
|
| 125 |
+
- p4
|
| 126 |
+
- p5
|
| 127 |
+
- p6
|
| 128 |
+
- p7
|
| 129 |
+
IOU_LABELS:
|
| 130 |
+
- 0
|
| 131 |
+
- -1
|
| 132 |
+
- 1
|
| 133 |
+
IOU_THRESHOLDS:
|
| 134 |
+
- 0.4
|
| 135 |
+
- 0.5
|
| 136 |
+
NMS_THRESH_TEST: 0.5
|
| 137 |
+
NORM: ''
|
| 138 |
+
NUM_CLASSES: 80
|
| 139 |
+
NUM_CONVS: 4
|
| 140 |
+
PRIOR_PROB: 0.01
|
| 141 |
+
SCORE_THRESH_TEST: 0.05
|
| 142 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 143 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 144 |
+
ROI_BOX_CASCADE_HEAD:
|
| 145 |
+
BBOX_REG_WEIGHTS:
|
| 146 |
+
- - 10.0
|
| 147 |
+
- 10.0
|
| 148 |
+
- 5.0
|
| 149 |
+
- 5.0
|
| 150 |
+
- - 20.0
|
| 151 |
+
- 20.0
|
| 152 |
+
- 10.0
|
| 153 |
+
- 10.0
|
| 154 |
+
- - 30.0
|
| 155 |
+
- 30.0
|
| 156 |
+
- 15.0
|
| 157 |
+
- 15.0
|
| 158 |
+
IOUS:
|
| 159 |
+
- 0.5
|
| 160 |
+
- 0.6
|
| 161 |
+
- 0.7
|
| 162 |
+
ROI_BOX_HEAD:
|
| 163 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 164 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 165 |
+
BBOX_REG_WEIGHTS:
|
| 166 |
+
- 10.0
|
| 167 |
+
- 10.0
|
| 168 |
+
- 5.0
|
| 169 |
+
- 5.0
|
| 170 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
| 171 |
+
CONV_DIM: 256
|
| 172 |
+
FC_DIM: 1024
|
| 173 |
+
NAME: FastRCNNConvFCHead
|
| 174 |
+
NORM: ''
|
| 175 |
+
NUM_CONV: 0
|
| 176 |
+
NUM_FC: 2
|
| 177 |
+
POOLER_RESOLUTION: 7
|
| 178 |
+
POOLER_SAMPLING_RATIO: 0
|
| 179 |
+
POOLER_TYPE: ROIAlignV2
|
| 180 |
+
SMOOTH_L1_BETA: 0.0
|
| 181 |
+
TRAIN_ON_PRED_BOXES: false
|
| 182 |
+
ROI_HEADS:
|
| 183 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 184 |
+
IN_FEATURES:
|
| 185 |
+
- p2
|
| 186 |
+
- p3
|
| 187 |
+
- p4
|
| 188 |
+
- p5
|
| 189 |
+
IOU_LABELS:
|
| 190 |
+
- 0
|
| 191 |
+
- 1
|
| 192 |
+
IOU_THRESHOLDS:
|
| 193 |
+
- 0.5
|
| 194 |
+
NAME: StandardROIHeads
|
| 195 |
+
NMS_THRESH_TEST: 0.5
|
| 196 |
+
NUM_CLASSES: 2
|
| 197 |
+
POSITIVE_FRACTION: 0.25
|
| 198 |
+
PROPOSAL_APPEND_GT: true
|
| 199 |
+
SCORE_THRESH_TEST: 0.05
|
| 200 |
+
ROI_KEYPOINT_HEAD:
|
| 201 |
+
CONV_DIMS:
|
| 202 |
+
- 512
|
| 203 |
+
- 512
|
| 204 |
+
- 512
|
| 205 |
+
- 512
|
| 206 |
+
- 512
|
| 207 |
+
- 512
|
| 208 |
+
- 512
|
| 209 |
+
- 512
|
| 210 |
+
LOSS_WEIGHT: 1.0
|
| 211 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 212 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 213 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
| 214 |
+
NUM_KEYPOINTS: 17
|
| 215 |
+
POOLER_RESOLUTION: 14
|
| 216 |
+
POOLER_SAMPLING_RATIO: 0
|
| 217 |
+
POOLER_TYPE: ROIAlignV2
|
| 218 |
+
ROI_MASK_HEAD:
|
| 219 |
+
CLS_AGNOSTIC_MASK: false
|
| 220 |
+
CONV_DIM: 256
|
| 221 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 222 |
+
NORM: ''
|
| 223 |
+
NUM_CONV: 4
|
| 224 |
+
POOLER_RESOLUTION: 14
|
| 225 |
+
POOLER_SAMPLING_RATIO: 0
|
| 226 |
+
POOLER_TYPE: ROIAlignV2
|
| 227 |
+
RPN:
|
| 228 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 229 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 230 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 231 |
+
BBOX_REG_WEIGHTS:
|
| 232 |
+
- 1.0
|
| 233 |
+
- 1.0
|
| 234 |
+
- 1.0
|
| 235 |
+
- 1.0
|
| 236 |
+
BOUNDARY_THRESH: -1
|
| 237 |
+
HEAD_NAME: StandardRPNHead
|
| 238 |
+
IN_FEATURES:
|
| 239 |
+
- p2
|
| 240 |
+
- p3
|
| 241 |
+
- p4
|
| 242 |
+
- p5
|
| 243 |
+
- p6
|
| 244 |
+
IOU_LABELS:
|
| 245 |
+
- 0
|
| 246 |
+
- -1
|
| 247 |
+
- 1
|
| 248 |
+
IOU_THRESHOLDS:
|
| 249 |
+
- 0.3
|
| 250 |
+
- 0.7
|
| 251 |
+
LOSS_WEIGHT: 1.0
|
| 252 |
+
NMS_THRESH: 0.7
|
| 253 |
+
POSITIVE_FRACTION: 0.5
|
| 254 |
+
POST_NMS_TOPK_TEST: 1000
|
| 255 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 256 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 257 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 258 |
+
SMOOTH_L1_BETA: 0.0
|
| 259 |
+
SEM_SEG_HEAD:
|
| 260 |
+
COMMON_STRIDE: 4
|
| 261 |
+
CONVS_DIM: 128
|
| 262 |
+
IGNORE_VALUE: 255
|
| 263 |
+
IN_FEATURES:
|
| 264 |
+
- p2
|
| 265 |
+
- p3
|
| 266 |
+
- p4
|
| 267 |
+
- p5
|
| 268 |
+
LOSS_WEIGHT: 1.0
|
| 269 |
+
NAME: SemSegFPNHead
|
| 270 |
+
NORM: GN
|
| 271 |
+
NUM_CLASSES: 54
|
| 272 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
| 273 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
| 274 |
+
SEED: -1
|
| 275 |
+
SOLVER:
|
| 276 |
+
AMP:
|
| 277 |
+
ENABLED: false
|
| 278 |
+
BASE_LR: 0.00025
|
| 279 |
+
BIAS_LR_FACTOR: 1.0
|
| 280 |
+
CHECKPOINT_PERIOD: 50
|
| 281 |
+
CLIP_GRADIENTS:
|
| 282 |
+
CLIP_TYPE: value
|
| 283 |
+
CLIP_VALUE: 1.0
|
| 284 |
+
ENABLED: false
|
| 285 |
+
NORM_TYPE: 2.0
|
| 286 |
+
GAMMA: 0.1
|
| 287 |
+
IMS_PER_BATCH: 2
|
| 288 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 289 |
+
MAX_ITER: 300
|
| 290 |
+
MOMENTUM: 0.9
|
| 291 |
+
NESTEROV: false
|
| 292 |
+
REFERENCE_WORLD_SIZE: 0
|
| 293 |
+
STEPS:
|
| 294 |
+
- 210000
|
| 295 |
+
- 250000
|
| 296 |
+
WARMUP_FACTOR: 0.001
|
| 297 |
+
WARMUP_ITERS: 1000
|
| 298 |
+
WARMUP_METHOD: linear
|
| 299 |
+
WEIGHT_DECAY: 0.0001
|
| 300 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 301 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 302 |
+
TEST:
|
| 303 |
+
AUG:
|
| 304 |
+
ENABLED: false
|
| 305 |
+
FLIP: true
|
| 306 |
+
MAX_SIZE: 4000
|
| 307 |
+
MIN_SIZES:
|
| 308 |
+
- 400
|
| 309 |
+
- 500
|
| 310 |
+
- 600
|
| 311 |
+
- 700
|
| 312 |
+
- 800
|
| 313 |
+
- 900
|
| 314 |
+
- 1000
|
| 315 |
+
- 1100
|
| 316 |
+
- 1200
|
| 317 |
+
DETECTIONS_PER_IMAGE: 100
|
| 318 |
+
EVAL_PERIOD: 0
|
| 319 |
+
EXPECTED_RESULTS: []
|
| 320 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 321 |
+
PRECISE_BN:
|
| 322 |
+
ENABLED: false
|
| 323 |
+
NUM_ITER: 200
|
| 324 |
+
VERSION: 2
|
| 325 |
+
VIS_PERIOD: 0
|
events.out.tfevents.1681910385.906c2a3c48ac.2206.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aad8ab0e1340cacf4edf029d2e904bb03844ee8ed9408a6e7e1c85ba8f7695a9
|
| 3 |
+
size 88
|
events.out.tfevents.1681910424.906c2a3c48ac.2416.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:622f1f3a134b80b2168c0d4fcb263babc44e4e1b240f593fbca1185a07cb1e95
|
| 3 |
+
size 88
|
events.out.tfevents.1681910486.906c2a3c48ac.2698.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1c7c58b7aad0abc3cc2aa8b7b92fbc2f2bc2af1c8b8a29c4a06378c3585025dc
|
| 3 |
+
size 16318
|
last_checkpoint
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
model_final.pth
|
log.txt
ADDED
|
@@ -0,0 +1,2758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[04/19 13:19:35] detectron2 INFO: Rank of current process: 0. World size: 1
|
| 2 |
+
[04/19 13:19:36] detectron2 INFO: Environment info:
|
| 3 |
+
---------------------- ----------------------------------------------------------------
|
| 4 |
+
sys.platform linux
|
| 5 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
| 6 |
+
numpy 1.22.4
|
| 7 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
| 8 |
+
Compiler GCC 9.4
|
| 9 |
+
CUDA compiler CUDA 11.8
|
| 10 |
+
detectron2 arch flags 7.5
|
| 11 |
+
DETECTRON2_ENV_MODULE <not set>
|
| 12 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
| 13 |
+
PyTorch debug build False
|
| 14 |
+
GPU available True
|
| 15 |
+
GPU 0 Tesla T4 (arch=7.5)
|
| 16 |
+
CUDA_HOME /usr/local/cuda
|
| 17 |
+
Pillow 9.5.0
|
| 18 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
| 19 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
| 20 |
+
fvcore 0.1.3.post20210317
|
| 21 |
+
cv2 4.7.0
|
| 22 |
+
---------------------- ----------------------------------------------------------------
|
| 23 |
+
PyTorch built with:
|
| 24 |
+
- GCC 9.3
|
| 25 |
+
- C++ Version: 201703
|
| 26 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 27 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
| 28 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 29 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 30 |
+
- NNPACK is enabled
|
| 31 |
+
- CPU capability usage: AVX2
|
| 32 |
+
- CUDA Runtime 11.8
|
| 33 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 34 |
+
- CuDNN 8.7
|
| 35 |
+
- Magma 2.6.1
|
| 36 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 37 |
+
|
| 38 |
+
[04/19 13:19:36] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
| 39 |
+
[04/19 13:19:36] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
| 40 |
+
CUDNN_BENCHMARK: false
|
| 41 |
+
DATALOADER:
|
| 42 |
+
ASPECT_RATIO_GROUPING: true
|
| 43 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
| 44 |
+
NUM_WORKERS: 4
|
| 45 |
+
REPEAT_THRESHOLD: 0.0
|
| 46 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 47 |
+
DATASETS:
|
| 48 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 49 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 50 |
+
PROPOSAL_FILES_TEST: []
|
| 51 |
+
PROPOSAL_FILES_TRAIN: []
|
| 52 |
+
TEST:
|
| 53 |
+
- prima-layout-val
|
| 54 |
+
TRAIN:
|
| 55 |
+
- prima-layout-train
|
| 56 |
+
GLOBAL:
|
| 57 |
+
HACK: 1.0
|
| 58 |
+
INPUT:
|
| 59 |
+
CROP:
|
| 60 |
+
ENABLED: false
|
| 61 |
+
SIZE:
|
| 62 |
+
- 0.9
|
| 63 |
+
- 0.9
|
| 64 |
+
TYPE: relative_range
|
| 65 |
+
FORMAT: BGR
|
| 66 |
+
MASK_FORMAT: polygon
|
| 67 |
+
MAX_SIZE_TEST: 1333
|
| 68 |
+
MAX_SIZE_TRAIN: 1333
|
| 69 |
+
MIN_SIZE_TEST: 800
|
| 70 |
+
MIN_SIZE_TRAIN:
|
| 71 |
+
- 640
|
| 72 |
+
- 672
|
| 73 |
+
- 704
|
| 74 |
+
- 736
|
| 75 |
+
- 768
|
| 76 |
+
- 800
|
| 77 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 78 |
+
MODEL:
|
| 79 |
+
ANCHOR_GENERATOR:
|
| 80 |
+
ANGLES:
|
| 81 |
+
- - -90
|
| 82 |
+
- 0
|
| 83 |
+
- 90
|
| 84 |
+
ASPECT_RATIOS:
|
| 85 |
+
- - 0.5
|
| 86 |
+
- 1.0
|
| 87 |
+
- 2.0
|
| 88 |
+
NAME: DefaultAnchorGenerator
|
| 89 |
+
OFFSET: 0.0
|
| 90 |
+
SIZES:
|
| 91 |
+
- - 32
|
| 92 |
+
- - 64
|
| 93 |
+
- - 128
|
| 94 |
+
- - 256
|
| 95 |
+
- - 512
|
| 96 |
+
BACKBONE:
|
| 97 |
+
FREEZE_AT: 2
|
| 98 |
+
NAME: build_resnet_fpn_backbone
|
| 99 |
+
DEVICE: cuda
|
| 100 |
+
FPN:
|
| 101 |
+
FUSE_TYPE: sum
|
| 102 |
+
IN_FEATURES:
|
| 103 |
+
- res2
|
| 104 |
+
- res3
|
| 105 |
+
- res4
|
| 106 |
+
- res5
|
| 107 |
+
NORM: ''
|
| 108 |
+
OUT_CHANNELS: 256
|
| 109 |
+
KEYPOINT_ON: false
|
| 110 |
+
LOAD_PROPOSALS: false
|
| 111 |
+
MASK_ON: true
|
| 112 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 113 |
+
PANOPTIC_FPN:
|
| 114 |
+
COMBINE:
|
| 115 |
+
ENABLED: true
|
| 116 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 117 |
+
OVERLAP_THRESH: 0.5
|
| 118 |
+
STUFF_AREA_LIMIT: 4096
|
| 119 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 120 |
+
PIXEL_MEAN:
|
| 121 |
+
- 103.53
|
| 122 |
+
- 116.28
|
| 123 |
+
- 123.675
|
| 124 |
+
PIXEL_STD:
|
| 125 |
+
- 1.0
|
| 126 |
+
- 1.0
|
| 127 |
+
- 1.0
|
| 128 |
+
PROPOSAL_GENERATOR:
|
| 129 |
+
MIN_SIZE: 0
|
| 130 |
+
NAME: RPN
|
| 131 |
+
RESNETS:
|
| 132 |
+
DEFORM_MODULATED: false
|
| 133 |
+
DEFORM_NUM_GROUPS: 1
|
| 134 |
+
DEFORM_ON_PER_STAGE:
|
| 135 |
+
- false
|
| 136 |
+
- false
|
| 137 |
+
- false
|
| 138 |
+
- false
|
| 139 |
+
DEPTH: 50
|
| 140 |
+
NORM: FrozenBN
|
| 141 |
+
NUM_GROUPS: 1
|
| 142 |
+
OUT_FEATURES:
|
| 143 |
+
- res2
|
| 144 |
+
- res3
|
| 145 |
+
- res4
|
| 146 |
+
- res5
|
| 147 |
+
RES2_OUT_CHANNELS: 256
|
| 148 |
+
RES5_DILATION: 1
|
| 149 |
+
STEM_OUT_CHANNELS: 64
|
| 150 |
+
STRIDE_IN_1X1: true
|
| 151 |
+
WIDTH_PER_GROUP: 64
|
| 152 |
+
RETINANET:
|
| 153 |
+
BBOX_REG_WEIGHTS:
|
| 154 |
+
- 1.0
|
| 155 |
+
- 1.0
|
| 156 |
+
- 1.0
|
| 157 |
+
- 1.0
|
| 158 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 159 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 160 |
+
IN_FEATURES:
|
| 161 |
+
- p3
|
| 162 |
+
- p4
|
| 163 |
+
- p5
|
| 164 |
+
- p6
|
| 165 |
+
- p7
|
| 166 |
+
IOU_LABELS:
|
| 167 |
+
- 0
|
| 168 |
+
- -1
|
| 169 |
+
- 1
|
| 170 |
+
IOU_THRESHOLDS:
|
| 171 |
+
- 0.4
|
| 172 |
+
- 0.5
|
| 173 |
+
NMS_THRESH_TEST: 0.5
|
| 174 |
+
NUM_CLASSES: 80
|
| 175 |
+
NUM_CONVS: 4
|
| 176 |
+
PRIOR_PROB: 0.01
|
| 177 |
+
SCORE_THRESH_TEST: 0.05
|
| 178 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 179 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 180 |
+
ROI_BOX_CASCADE_HEAD:
|
| 181 |
+
BBOX_REG_WEIGHTS:
|
| 182 |
+
- - 10.0
|
| 183 |
+
- 10.0
|
| 184 |
+
- 5.0
|
| 185 |
+
- 5.0
|
| 186 |
+
- - 20.0
|
| 187 |
+
- 20.0
|
| 188 |
+
- 10.0
|
| 189 |
+
- 10.0
|
| 190 |
+
- - 30.0
|
| 191 |
+
- 30.0
|
| 192 |
+
- 15.0
|
| 193 |
+
- 15.0
|
| 194 |
+
IOUS:
|
| 195 |
+
- 0.5
|
| 196 |
+
- 0.6
|
| 197 |
+
- 0.7
|
| 198 |
+
ROI_BOX_HEAD:
|
| 199 |
+
BBOX_REG_WEIGHTS:
|
| 200 |
+
- 10.0
|
| 201 |
+
- 10.0
|
| 202 |
+
- 5.0
|
| 203 |
+
- 5.0
|
| 204 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
| 205 |
+
CONV_DIM: 256
|
| 206 |
+
FC_DIM: 1024
|
| 207 |
+
NAME: FastRCNNConvFCHead
|
| 208 |
+
NORM: ''
|
| 209 |
+
NUM_CONV: 0
|
| 210 |
+
NUM_FC: 2
|
| 211 |
+
POOLER_RESOLUTION: 7
|
| 212 |
+
POOLER_SAMPLING_RATIO: 0
|
| 213 |
+
POOLER_TYPE: ROIAlignV2
|
| 214 |
+
SMOOTH_L1_BETA: 0.0
|
| 215 |
+
TRAIN_ON_PRED_BOXES: false
|
| 216 |
+
ROI_HEADS:
|
| 217 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 218 |
+
IN_FEATURES:
|
| 219 |
+
- p2
|
| 220 |
+
- p3
|
| 221 |
+
- p4
|
| 222 |
+
- p5
|
| 223 |
+
IOU_LABELS:
|
| 224 |
+
- 0
|
| 225 |
+
- 1
|
| 226 |
+
IOU_THRESHOLDS:
|
| 227 |
+
- 0.5
|
| 228 |
+
NAME: StandardROIHeads
|
| 229 |
+
NMS_THRESH_TEST: 0.5
|
| 230 |
+
NUM_CLASSES: 7
|
| 231 |
+
POSITIVE_FRACTION: 0.25
|
| 232 |
+
PROPOSAL_APPEND_GT: true
|
| 233 |
+
SCORE_THRESH_TEST: 0.05
|
| 234 |
+
ROI_KEYPOINT_HEAD:
|
| 235 |
+
CONV_DIMS:
|
| 236 |
+
- 512
|
| 237 |
+
- 512
|
| 238 |
+
- 512
|
| 239 |
+
- 512
|
| 240 |
+
- 512
|
| 241 |
+
- 512
|
| 242 |
+
- 512
|
| 243 |
+
- 512
|
| 244 |
+
LOSS_WEIGHT: 1.0
|
| 245 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 246 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 247 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
| 248 |
+
NUM_KEYPOINTS: 17
|
| 249 |
+
POOLER_RESOLUTION: 14
|
| 250 |
+
POOLER_SAMPLING_RATIO: 0
|
| 251 |
+
POOLER_TYPE: ROIAlignV2
|
| 252 |
+
ROI_MASK_HEAD:
|
| 253 |
+
CLS_AGNOSTIC_MASK: false
|
| 254 |
+
CONV_DIM: 256
|
| 255 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 256 |
+
NORM: ''
|
| 257 |
+
NUM_CONV: 4
|
| 258 |
+
POOLER_RESOLUTION: 14
|
| 259 |
+
POOLER_SAMPLING_RATIO: 0
|
| 260 |
+
POOLER_TYPE: ROIAlignV2
|
| 261 |
+
RPN:
|
| 262 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 263 |
+
BBOX_REG_WEIGHTS:
|
| 264 |
+
- 1.0
|
| 265 |
+
- 1.0
|
| 266 |
+
- 1.0
|
| 267 |
+
- 1.0
|
| 268 |
+
BOUNDARY_THRESH: -1
|
| 269 |
+
HEAD_NAME: StandardRPNHead
|
| 270 |
+
IN_FEATURES:
|
| 271 |
+
- p2
|
| 272 |
+
- p3
|
| 273 |
+
- p4
|
| 274 |
+
- p5
|
| 275 |
+
- p6
|
| 276 |
+
IOU_LABELS:
|
| 277 |
+
- 0
|
| 278 |
+
- -1
|
| 279 |
+
- 1
|
| 280 |
+
IOU_THRESHOLDS:
|
| 281 |
+
- 0.3
|
| 282 |
+
- 0.7
|
| 283 |
+
LOSS_WEIGHT: 1.0
|
| 284 |
+
NMS_THRESH: 0.7
|
| 285 |
+
POSITIVE_FRACTION: 0.5
|
| 286 |
+
POST_NMS_TOPK_TEST: 1000
|
| 287 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 288 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 289 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 290 |
+
SMOOTH_L1_BETA: 0.0
|
| 291 |
+
SEM_SEG_HEAD:
|
| 292 |
+
COMMON_STRIDE: 4
|
| 293 |
+
CONVS_DIM: 128
|
| 294 |
+
IGNORE_VALUE: 255
|
| 295 |
+
IN_FEATURES:
|
| 296 |
+
- p2
|
| 297 |
+
- p3
|
| 298 |
+
- p4
|
| 299 |
+
- p5
|
| 300 |
+
LOSS_WEIGHT: 1.0
|
| 301 |
+
NAME: SemSegFPNHead
|
| 302 |
+
NORM: GN
|
| 303 |
+
NUM_CLASSES: 54
|
| 304 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
| 305 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
| 306 |
+
SEED: -1
|
| 307 |
+
SOLVER:
|
| 308 |
+
BASE_LR: 0.00025
|
| 309 |
+
BIAS_LR_FACTOR: 1.0
|
| 310 |
+
CHECKPOINT_PERIOD: 50
|
| 311 |
+
CLIP_GRADIENTS:
|
| 312 |
+
CLIP_TYPE: value
|
| 313 |
+
CLIP_VALUE: 1.0
|
| 314 |
+
ENABLED: false
|
| 315 |
+
NORM_TYPE: 2.0
|
| 316 |
+
GAMMA: 0.1
|
| 317 |
+
IMS_PER_BATCH: 2
|
| 318 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 319 |
+
MAX_ITER: 300
|
| 320 |
+
MOMENTUM: 0.9
|
| 321 |
+
NESTEROV: false
|
| 322 |
+
STEPS:
|
| 323 |
+
- 210000
|
| 324 |
+
- 250000
|
| 325 |
+
WARMUP_FACTOR: 0.001
|
| 326 |
+
WARMUP_ITERS: 1000
|
| 327 |
+
WARMUP_METHOD: linear
|
| 328 |
+
WEIGHT_DECAY: 0.0001
|
| 329 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 330 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 331 |
+
TEST:
|
| 332 |
+
AUG:
|
| 333 |
+
ENABLED: false
|
| 334 |
+
FLIP: true
|
| 335 |
+
MAX_SIZE: 4000
|
| 336 |
+
MIN_SIZES:
|
| 337 |
+
- 400
|
| 338 |
+
- 500
|
| 339 |
+
- 600
|
| 340 |
+
- 700
|
| 341 |
+
- 800
|
| 342 |
+
- 900
|
| 343 |
+
- 1000
|
| 344 |
+
- 1100
|
| 345 |
+
- 1200
|
| 346 |
+
DETECTIONS_PER_IMAGE: 100
|
| 347 |
+
EVAL_PERIOD: 0
|
| 348 |
+
EXPECTED_RESULTS: []
|
| 349 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 350 |
+
PRECISE_BN:
|
| 351 |
+
ENABLED: false
|
| 352 |
+
NUM_ITER: 200
|
| 353 |
+
VERSION: 2
|
| 354 |
+
VIS_PERIOD: 0
|
| 355 |
+
|
| 356 |
+
[04/19 13:19:36] detectron2 INFO: Running with full config:
|
| 357 |
+
CUDNN_BENCHMARK: False
|
| 358 |
+
DATALOADER:
|
| 359 |
+
ASPECT_RATIO_GROUPING: True
|
| 360 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
| 361 |
+
NUM_WORKERS: 4
|
| 362 |
+
REPEAT_THRESHOLD: 0.0
|
| 363 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 364 |
+
DATASETS:
|
| 365 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 366 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 367 |
+
PROPOSAL_FILES_TEST: ()
|
| 368 |
+
PROPOSAL_FILES_TRAIN: ()
|
| 369 |
+
TEST: ('modele-val',)
|
| 370 |
+
TRAIN: ('modele-train',)
|
| 371 |
+
GLOBAL:
|
| 372 |
+
HACK: 1.0
|
| 373 |
+
INPUT:
|
| 374 |
+
CROP:
|
| 375 |
+
ENABLED: False
|
| 376 |
+
SIZE: [0.9, 0.9]
|
| 377 |
+
TYPE: relative_range
|
| 378 |
+
FORMAT: BGR
|
| 379 |
+
MASK_FORMAT: polygon
|
| 380 |
+
MAX_SIZE_TEST: 1333
|
| 381 |
+
MAX_SIZE_TRAIN: 1333
|
| 382 |
+
MIN_SIZE_TEST: 800
|
| 383 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
| 384 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 385 |
+
RANDOM_FLIP: horizontal
|
| 386 |
+
MODEL:
|
| 387 |
+
ANCHOR_GENERATOR:
|
| 388 |
+
ANGLES: [[-90, 0, 90]]
|
| 389 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
| 390 |
+
NAME: DefaultAnchorGenerator
|
| 391 |
+
OFFSET: 0.0
|
| 392 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
| 393 |
+
BACKBONE:
|
| 394 |
+
FREEZE_AT: 2
|
| 395 |
+
NAME: build_resnet_fpn_backbone
|
| 396 |
+
DEVICE: cuda
|
| 397 |
+
FPN:
|
| 398 |
+
FUSE_TYPE: sum
|
| 399 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 400 |
+
NORM:
|
| 401 |
+
OUT_CHANNELS: 256
|
| 402 |
+
KEYPOINT_ON: False
|
| 403 |
+
LOAD_PROPOSALS: False
|
| 404 |
+
MASK_ON: True
|
| 405 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 406 |
+
PANOPTIC_FPN:
|
| 407 |
+
COMBINE:
|
| 408 |
+
ENABLED: True
|
| 409 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 410 |
+
OVERLAP_THRESH: 0.5
|
| 411 |
+
STUFF_AREA_LIMIT: 4096
|
| 412 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 413 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
| 414 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
| 415 |
+
PROPOSAL_GENERATOR:
|
| 416 |
+
MIN_SIZE: 0
|
| 417 |
+
NAME: RPN
|
| 418 |
+
RESNETS:
|
| 419 |
+
DEFORM_MODULATED: False
|
| 420 |
+
DEFORM_NUM_GROUPS: 1
|
| 421 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
| 422 |
+
DEPTH: 50
|
| 423 |
+
NORM: FrozenBN
|
| 424 |
+
NUM_GROUPS: 1
|
| 425 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 426 |
+
RES2_OUT_CHANNELS: 256
|
| 427 |
+
RES5_DILATION: 1
|
| 428 |
+
STEM_OUT_CHANNELS: 64
|
| 429 |
+
STRIDE_IN_1X1: True
|
| 430 |
+
WIDTH_PER_GROUP: 64
|
| 431 |
+
RETINANET:
|
| 432 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 433 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 434 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 435 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 436 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
| 437 |
+
IOU_LABELS: [0, -1, 1]
|
| 438 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
| 439 |
+
NMS_THRESH_TEST: 0.5
|
| 440 |
+
NORM:
|
| 441 |
+
NUM_CLASSES: 80
|
| 442 |
+
NUM_CONVS: 4
|
| 443 |
+
PRIOR_PROB: 0.01
|
| 444 |
+
SCORE_THRESH_TEST: 0.05
|
| 445 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 446 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 447 |
+
ROI_BOX_CASCADE_HEAD:
|
| 448 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
| 449 |
+
IOUS: (0.5, 0.6, 0.7)
|
| 450 |
+
ROI_BOX_HEAD:
|
| 451 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 452 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 453 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
| 454 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
| 455 |
+
CONV_DIM: 256
|
| 456 |
+
FC_DIM: 1024
|
| 457 |
+
NAME: FastRCNNConvFCHead
|
| 458 |
+
NORM:
|
| 459 |
+
NUM_CONV: 0
|
| 460 |
+
NUM_FC: 2
|
| 461 |
+
POOLER_RESOLUTION: 7
|
| 462 |
+
POOLER_SAMPLING_RATIO: 0
|
| 463 |
+
POOLER_TYPE: ROIAlignV2
|
| 464 |
+
SMOOTH_L1_BETA: 0.0
|
| 465 |
+
TRAIN_ON_PRED_BOXES: False
|
| 466 |
+
ROI_HEADS:
|
| 467 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 468 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 469 |
+
IOU_LABELS: [0, 1]
|
| 470 |
+
IOU_THRESHOLDS: [0.5]
|
| 471 |
+
NAME: StandardROIHeads
|
| 472 |
+
NMS_THRESH_TEST: 0.5
|
| 473 |
+
NUM_CLASSES: 2
|
| 474 |
+
POSITIVE_FRACTION: 0.25
|
| 475 |
+
PROPOSAL_APPEND_GT: True
|
| 476 |
+
SCORE_THRESH_TEST: 0.05
|
| 477 |
+
ROI_KEYPOINT_HEAD:
|
| 478 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
| 479 |
+
LOSS_WEIGHT: 1.0
|
| 480 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 481 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 482 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
| 483 |
+
NUM_KEYPOINTS: 17
|
| 484 |
+
POOLER_RESOLUTION: 14
|
| 485 |
+
POOLER_SAMPLING_RATIO: 0
|
| 486 |
+
POOLER_TYPE: ROIAlignV2
|
| 487 |
+
ROI_MASK_HEAD:
|
| 488 |
+
CLS_AGNOSTIC_MASK: False
|
| 489 |
+
CONV_DIM: 256
|
| 490 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 491 |
+
NORM:
|
| 492 |
+
NUM_CONV: 4
|
| 493 |
+
POOLER_RESOLUTION: 14
|
| 494 |
+
POOLER_SAMPLING_RATIO: 0
|
| 495 |
+
POOLER_TYPE: ROIAlignV2
|
| 496 |
+
RPN:
|
| 497 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 498 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 499 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 500 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 501 |
+
BOUNDARY_THRESH: -1
|
| 502 |
+
HEAD_NAME: StandardRPNHead
|
| 503 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
| 504 |
+
IOU_LABELS: [0, -1, 1]
|
| 505 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
| 506 |
+
LOSS_WEIGHT: 1.0
|
| 507 |
+
NMS_THRESH: 0.7
|
| 508 |
+
POSITIVE_FRACTION: 0.5
|
| 509 |
+
POST_NMS_TOPK_TEST: 1000
|
| 510 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 511 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 512 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 513 |
+
SMOOTH_L1_BETA: 0.0
|
| 514 |
+
SEM_SEG_HEAD:
|
| 515 |
+
COMMON_STRIDE: 4
|
| 516 |
+
CONVS_DIM: 128
|
| 517 |
+
IGNORE_VALUE: 255
|
| 518 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 519 |
+
LOSS_WEIGHT: 1.0
|
| 520 |
+
NAME: SemSegFPNHead
|
| 521 |
+
NORM: GN
|
| 522 |
+
NUM_CLASSES: 54
|
| 523 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
| 524 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
| 525 |
+
SEED: -1
|
| 526 |
+
SOLVER:
|
| 527 |
+
AMP:
|
| 528 |
+
ENABLED: False
|
| 529 |
+
BASE_LR: 0.00025
|
| 530 |
+
BIAS_LR_FACTOR: 1.0
|
| 531 |
+
CHECKPOINT_PERIOD: 50
|
| 532 |
+
CLIP_GRADIENTS:
|
| 533 |
+
CLIP_TYPE: value
|
| 534 |
+
CLIP_VALUE: 1.0
|
| 535 |
+
ENABLED: False
|
| 536 |
+
NORM_TYPE: 2.0
|
| 537 |
+
GAMMA: 0.1
|
| 538 |
+
IMS_PER_BATCH: 2
|
| 539 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 540 |
+
MAX_ITER: 300
|
| 541 |
+
MOMENTUM: 0.9
|
| 542 |
+
NESTEROV: False
|
| 543 |
+
REFERENCE_WORLD_SIZE: 0
|
| 544 |
+
STEPS: (210000, 250000)
|
| 545 |
+
WARMUP_FACTOR: 0.001
|
| 546 |
+
WARMUP_ITERS: 1000
|
| 547 |
+
WARMUP_METHOD: linear
|
| 548 |
+
WEIGHT_DECAY: 0.0001
|
| 549 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 550 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 551 |
+
TEST:
|
| 552 |
+
AUG:
|
| 553 |
+
ENABLED: False
|
| 554 |
+
FLIP: True
|
| 555 |
+
MAX_SIZE: 4000
|
| 556 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
| 557 |
+
DETECTIONS_PER_IMAGE: 100
|
| 558 |
+
EVAL_PERIOD: 0
|
| 559 |
+
EXPECTED_RESULTS: []
|
| 560 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 561 |
+
PRECISE_BN:
|
| 562 |
+
ENABLED: False
|
| 563 |
+
NUM_ITER: 200
|
| 564 |
+
VERSION: 2
|
| 565 |
+
VIS_PERIOD: 0
|
| 566 |
+
[04/19 13:19:36] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
| 567 |
+
[04/19 13:19:36] d2.utils.env INFO: Using a generated random seed 36661240
|
| 568 |
+
[04/19 13:19:43] d2.engine.defaults INFO: Model:
|
| 569 |
+
GeneralizedRCNN(
|
| 570 |
+
(backbone): FPN(
|
| 571 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 572 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 573 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 574 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 575 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 576 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 577 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 578 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 579 |
+
(top_block): LastLevelMaxPool()
|
| 580 |
+
(bottom_up): ResNet(
|
| 581 |
+
(stem): BasicStem(
|
| 582 |
+
(conv1): Conv2d(
|
| 583 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
| 584 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 585 |
+
)
|
| 586 |
+
)
|
| 587 |
+
(res2): Sequential(
|
| 588 |
+
(0): BottleneckBlock(
|
| 589 |
+
(shortcut): Conv2d(
|
| 590 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 591 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 592 |
+
)
|
| 593 |
+
(conv1): Conv2d(
|
| 594 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 595 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 596 |
+
)
|
| 597 |
+
(conv2): Conv2d(
|
| 598 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 599 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 600 |
+
)
|
| 601 |
+
(conv3): Conv2d(
|
| 602 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 603 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 604 |
+
)
|
| 605 |
+
)
|
| 606 |
+
(1): BottleneckBlock(
|
| 607 |
+
(conv1): Conv2d(
|
| 608 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 609 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 610 |
+
)
|
| 611 |
+
(conv2): Conv2d(
|
| 612 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 613 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 614 |
+
)
|
| 615 |
+
(conv3): Conv2d(
|
| 616 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 617 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 618 |
+
)
|
| 619 |
+
)
|
| 620 |
+
(2): BottleneckBlock(
|
| 621 |
+
(conv1): Conv2d(
|
| 622 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 623 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 624 |
+
)
|
| 625 |
+
(conv2): Conv2d(
|
| 626 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 627 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 628 |
+
)
|
| 629 |
+
(conv3): Conv2d(
|
| 630 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 631 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 632 |
+
)
|
| 633 |
+
)
|
| 634 |
+
)
|
| 635 |
+
(res3): Sequential(
|
| 636 |
+
(0): BottleneckBlock(
|
| 637 |
+
(shortcut): Conv2d(
|
| 638 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 639 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 640 |
+
)
|
| 641 |
+
(conv1): Conv2d(
|
| 642 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 643 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 644 |
+
)
|
| 645 |
+
(conv2): Conv2d(
|
| 646 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 647 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 648 |
+
)
|
| 649 |
+
(conv3): Conv2d(
|
| 650 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 651 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 652 |
+
)
|
| 653 |
+
)
|
| 654 |
+
(1): BottleneckBlock(
|
| 655 |
+
(conv1): Conv2d(
|
| 656 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 657 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 658 |
+
)
|
| 659 |
+
(conv2): Conv2d(
|
| 660 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 661 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 662 |
+
)
|
| 663 |
+
(conv3): Conv2d(
|
| 664 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 665 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 666 |
+
)
|
| 667 |
+
)
|
| 668 |
+
(2): BottleneckBlock(
|
| 669 |
+
(conv1): Conv2d(
|
| 670 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 671 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 672 |
+
)
|
| 673 |
+
(conv2): Conv2d(
|
| 674 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 675 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 676 |
+
)
|
| 677 |
+
(conv3): Conv2d(
|
| 678 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 679 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 680 |
+
)
|
| 681 |
+
)
|
| 682 |
+
(3): BottleneckBlock(
|
| 683 |
+
(conv1): Conv2d(
|
| 684 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 685 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 686 |
+
)
|
| 687 |
+
(conv2): Conv2d(
|
| 688 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 689 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 690 |
+
)
|
| 691 |
+
(conv3): Conv2d(
|
| 692 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 693 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 694 |
+
)
|
| 695 |
+
)
|
| 696 |
+
)
|
| 697 |
+
(res4): Sequential(
|
| 698 |
+
(0): BottleneckBlock(
|
| 699 |
+
(shortcut): Conv2d(
|
| 700 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 701 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 702 |
+
)
|
| 703 |
+
(conv1): Conv2d(
|
| 704 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 705 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 706 |
+
)
|
| 707 |
+
(conv2): Conv2d(
|
| 708 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 709 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 710 |
+
)
|
| 711 |
+
(conv3): Conv2d(
|
| 712 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 713 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 714 |
+
)
|
| 715 |
+
)
|
| 716 |
+
(1): BottleneckBlock(
|
| 717 |
+
(conv1): Conv2d(
|
| 718 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 719 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 720 |
+
)
|
| 721 |
+
(conv2): Conv2d(
|
| 722 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 723 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 724 |
+
)
|
| 725 |
+
(conv3): Conv2d(
|
| 726 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 727 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 728 |
+
)
|
| 729 |
+
)
|
| 730 |
+
(2): BottleneckBlock(
|
| 731 |
+
(conv1): Conv2d(
|
| 732 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 733 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 734 |
+
)
|
| 735 |
+
(conv2): Conv2d(
|
| 736 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 737 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 738 |
+
)
|
| 739 |
+
(conv3): Conv2d(
|
| 740 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 741 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 742 |
+
)
|
| 743 |
+
)
|
| 744 |
+
(3): BottleneckBlock(
|
| 745 |
+
(conv1): Conv2d(
|
| 746 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 747 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 748 |
+
)
|
| 749 |
+
(conv2): Conv2d(
|
| 750 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 751 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 752 |
+
)
|
| 753 |
+
(conv3): Conv2d(
|
| 754 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 755 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 756 |
+
)
|
| 757 |
+
)
|
| 758 |
+
(4): BottleneckBlock(
|
| 759 |
+
(conv1): Conv2d(
|
| 760 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 761 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 762 |
+
)
|
| 763 |
+
(conv2): Conv2d(
|
| 764 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 765 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 766 |
+
)
|
| 767 |
+
(conv3): Conv2d(
|
| 768 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 769 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 770 |
+
)
|
| 771 |
+
)
|
| 772 |
+
(5): BottleneckBlock(
|
| 773 |
+
(conv1): Conv2d(
|
| 774 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 775 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 776 |
+
)
|
| 777 |
+
(conv2): Conv2d(
|
| 778 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 779 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 780 |
+
)
|
| 781 |
+
(conv3): Conv2d(
|
| 782 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 783 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 784 |
+
)
|
| 785 |
+
)
|
| 786 |
+
)
|
| 787 |
+
(res5): Sequential(
|
| 788 |
+
(0): BottleneckBlock(
|
| 789 |
+
(shortcut): Conv2d(
|
| 790 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 791 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 792 |
+
)
|
| 793 |
+
(conv1): Conv2d(
|
| 794 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 795 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 796 |
+
)
|
| 797 |
+
(conv2): Conv2d(
|
| 798 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 799 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 800 |
+
)
|
| 801 |
+
(conv3): Conv2d(
|
| 802 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 803 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 804 |
+
)
|
| 805 |
+
)
|
| 806 |
+
(1): BottleneckBlock(
|
| 807 |
+
(conv1): Conv2d(
|
| 808 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 809 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 810 |
+
)
|
| 811 |
+
(conv2): Conv2d(
|
| 812 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 813 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 814 |
+
)
|
| 815 |
+
(conv3): Conv2d(
|
| 816 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 817 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 818 |
+
)
|
| 819 |
+
)
|
| 820 |
+
(2): BottleneckBlock(
|
| 821 |
+
(conv1): Conv2d(
|
| 822 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 823 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 824 |
+
)
|
| 825 |
+
(conv2): Conv2d(
|
| 826 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 827 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 828 |
+
)
|
| 829 |
+
(conv3): Conv2d(
|
| 830 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 831 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 832 |
+
)
|
| 833 |
+
)
|
| 834 |
+
)
|
| 835 |
+
)
|
| 836 |
+
)
|
| 837 |
+
(proposal_generator): RPN(
|
| 838 |
+
(rpn_head): StandardRPNHead(
|
| 839 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 840 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
| 841 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
| 842 |
+
)
|
| 843 |
+
(anchor_generator): DefaultAnchorGenerator(
|
| 844 |
+
(cell_anchors): BufferList()
|
| 845 |
+
)
|
| 846 |
+
)
|
| 847 |
+
(roi_heads): StandardROIHeads(
|
| 848 |
+
(box_pooler): ROIPooler(
|
| 849 |
+
(level_poolers): ModuleList(
|
| 850 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 851 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 852 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 853 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 854 |
+
)
|
| 855 |
+
)
|
| 856 |
+
(box_head): FastRCNNConvFCHead(
|
| 857 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
| 858 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
| 859 |
+
(fc_relu1): ReLU()
|
| 860 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
| 861 |
+
(fc_relu2): ReLU()
|
| 862 |
+
)
|
| 863 |
+
(box_predictor): FastRCNNOutputLayers(
|
| 864 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
| 865 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
| 866 |
+
)
|
| 867 |
+
(mask_pooler): ROIPooler(
|
| 868 |
+
(level_poolers): ModuleList(
|
| 869 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 870 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 871 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 872 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 873 |
+
)
|
| 874 |
+
)
|
| 875 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
| 876 |
+
(mask_fcn1): Conv2d(
|
| 877 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 878 |
+
(activation): ReLU()
|
| 879 |
+
)
|
| 880 |
+
(mask_fcn2): Conv2d(
|
| 881 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 882 |
+
(activation): ReLU()
|
| 883 |
+
)
|
| 884 |
+
(mask_fcn3): Conv2d(
|
| 885 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 886 |
+
(activation): ReLU()
|
| 887 |
+
)
|
| 888 |
+
(mask_fcn4): Conv2d(
|
| 889 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 890 |
+
(activation): ReLU()
|
| 891 |
+
)
|
| 892 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
| 893 |
+
(deconv_relu): ReLU()
|
| 894 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
| 895 |
+
)
|
| 896 |
+
)
|
| 897 |
+
)
|
| 898 |
+
[04/19 13:19:43] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
| 899 |
+
[04/19 13:19:43] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
| 900 |
+
[04/19 13:19:43] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
| 901 |
+
[04/19 13:19:43] d2.data.build INFO: Distribution of instances among all 2 categories:
|
| 902 |
+
[36m| category | #instances | category | #instances |
|
| 903 |
+
|:----------:|:-------------|:----------:|:-------------|
|
| 904 |
+
| | 89 | | 0 |
|
| 905 |
+
| | | | |
|
| 906 |
+
| total | 89 | | |[0m
|
| 907 |
+
[04/19 13:19:43] d2.data.build INFO: Using training sampler TrainingSampler
|
| 908 |
+
[04/19 13:19:43] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
| 909 |
+
[04/19 13:19:43] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
| 910 |
+
[04/19 13:19:43] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
| 911 |
+
[04/19 13:19:45] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/
|
| 912 |
+
[04/19 13:20:18] detectron2 INFO: Rank of current process: 0. World size: 1
|
| 913 |
+
[04/19 13:20:20] detectron2 INFO: Environment info:
|
| 914 |
+
---------------------- ----------------------------------------------------------------
|
| 915 |
+
sys.platform linux
|
| 916 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
| 917 |
+
numpy 1.22.4
|
| 918 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
| 919 |
+
Compiler GCC 9.4
|
| 920 |
+
CUDA compiler CUDA 11.8
|
| 921 |
+
detectron2 arch flags 7.5
|
| 922 |
+
DETECTRON2_ENV_MODULE <not set>
|
| 923 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
| 924 |
+
PyTorch debug build False
|
| 925 |
+
GPU available True
|
| 926 |
+
GPU 0 Tesla T4 (arch=7.5)
|
| 927 |
+
CUDA_HOME /usr/local/cuda
|
| 928 |
+
Pillow 9.5.0
|
| 929 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
| 930 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
| 931 |
+
fvcore 0.1.3.post20210317
|
| 932 |
+
cv2 4.7.0
|
| 933 |
+
---------------------- ----------------------------------------------------------------
|
| 934 |
+
PyTorch built with:
|
| 935 |
+
- GCC 9.3
|
| 936 |
+
- C++ Version: 201703
|
| 937 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 938 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
| 939 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 940 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 941 |
+
- NNPACK is enabled
|
| 942 |
+
- CPU capability usage: AVX2
|
| 943 |
+
- CUDA Runtime 11.8
|
| 944 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 945 |
+
- CuDNN 8.7
|
| 946 |
+
- Magma 2.6.1
|
| 947 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 948 |
+
|
| 949 |
+
[04/19 13:20:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
| 950 |
+
[04/19 13:20:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
| 951 |
+
CUDNN_BENCHMARK: false
|
| 952 |
+
DATALOADER:
|
| 953 |
+
ASPECT_RATIO_GROUPING: true
|
| 954 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
| 955 |
+
NUM_WORKERS: 4
|
| 956 |
+
REPEAT_THRESHOLD: 0.0
|
| 957 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 958 |
+
DATASETS:
|
| 959 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 960 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 961 |
+
PROPOSAL_FILES_TEST: []
|
| 962 |
+
PROPOSAL_FILES_TRAIN: []
|
| 963 |
+
TEST:
|
| 964 |
+
- prima-layout-val
|
| 965 |
+
TRAIN:
|
| 966 |
+
- prima-layout-train
|
| 967 |
+
GLOBAL:
|
| 968 |
+
HACK: 1.0
|
| 969 |
+
INPUT:
|
| 970 |
+
CROP:
|
| 971 |
+
ENABLED: false
|
| 972 |
+
SIZE:
|
| 973 |
+
- 0.9
|
| 974 |
+
- 0.9
|
| 975 |
+
TYPE: relative_range
|
| 976 |
+
FORMAT: BGR
|
| 977 |
+
MASK_FORMAT: polygon
|
| 978 |
+
MAX_SIZE_TEST: 1333
|
| 979 |
+
MAX_SIZE_TRAIN: 1333
|
| 980 |
+
MIN_SIZE_TEST: 800
|
| 981 |
+
MIN_SIZE_TRAIN:
|
| 982 |
+
- 640
|
| 983 |
+
- 672
|
| 984 |
+
- 704
|
| 985 |
+
- 736
|
| 986 |
+
- 768
|
| 987 |
+
- 800
|
| 988 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 989 |
+
MODEL:
|
| 990 |
+
ANCHOR_GENERATOR:
|
| 991 |
+
ANGLES:
|
| 992 |
+
- - -90
|
| 993 |
+
- 0
|
| 994 |
+
- 90
|
| 995 |
+
ASPECT_RATIOS:
|
| 996 |
+
- - 0.5
|
| 997 |
+
- 1.0
|
| 998 |
+
- 2.0
|
| 999 |
+
NAME: DefaultAnchorGenerator
|
| 1000 |
+
OFFSET: 0.0
|
| 1001 |
+
SIZES:
|
| 1002 |
+
- - 32
|
| 1003 |
+
- - 64
|
| 1004 |
+
- - 128
|
| 1005 |
+
- - 256
|
| 1006 |
+
- - 512
|
| 1007 |
+
BACKBONE:
|
| 1008 |
+
FREEZE_AT: 2
|
| 1009 |
+
NAME: build_resnet_fpn_backbone
|
| 1010 |
+
DEVICE: cuda
|
| 1011 |
+
FPN:
|
| 1012 |
+
FUSE_TYPE: sum
|
| 1013 |
+
IN_FEATURES:
|
| 1014 |
+
- res2
|
| 1015 |
+
- res3
|
| 1016 |
+
- res4
|
| 1017 |
+
- res5
|
| 1018 |
+
NORM: ''
|
| 1019 |
+
OUT_CHANNELS: 256
|
| 1020 |
+
KEYPOINT_ON: false
|
| 1021 |
+
LOAD_PROPOSALS: false
|
| 1022 |
+
MASK_ON: true
|
| 1023 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 1024 |
+
PANOPTIC_FPN:
|
| 1025 |
+
COMBINE:
|
| 1026 |
+
ENABLED: true
|
| 1027 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 1028 |
+
OVERLAP_THRESH: 0.5
|
| 1029 |
+
STUFF_AREA_LIMIT: 4096
|
| 1030 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 1031 |
+
PIXEL_MEAN:
|
| 1032 |
+
- 103.53
|
| 1033 |
+
- 116.28
|
| 1034 |
+
- 123.675
|
| 1035 |
+
PIXEL_STD:
|
| 1036 |
+
- 1.0
|
| 1037 |
+
- 1.0
|
| 1038 |
+
- 1.0
|
| 1039 |
+
PROPOSAL_GENERATOR:
|
| 1040 |
+
MIN_SIZE: 0
|
| 1041 |
+
NAME: RPN
|
| 1042 |
+
RESNETS:
|
| 1043 |
+
DEFORM_MODULATED: false
|
| 1044 |
+
DEFORM_NUM_GROUPS: 1
|
| 1045 |
+
DEFORM_ON_PER_STAGE:
|
| 1046 |
+
- false
|
| 1047 |
+
- false
|
| 1048 |
+
- false
|
| 1049 |
+
- false
|
| 1050 |
+
DEPTH: 50
|
| 1051 |
+
NORM: FrozenBN
|
| 1052 |
+
NUM_GROUPS: 1
|
| 1053 |
+
OUT_FEATURES:
|
| 1054 |
+
- res2
|
| 1055 |
+
- res3
|
| 1056 |
+
- res4
|
| 1057 |
+
- res5
|
| 1058 |
+
RES2_OUT_CHANNELS: 256
|
| 1059 |
+
RES5_DILATION: 1
|
| 1060 |
+
STEM_OUT_CHANNELS: 64
|
| 1061 |
+
STRIDE_IN_1X1: true
|
| 1062 |
+
WIDTH_PER_GROUP: 64
|
| 1063 |
+
RETINANET:
|
| 1064 |
+
BBOX_REG_WEIGHTS:
|
| 1065 |
+
- 1.0
|
| 1066 |
+
- 1.0
|
| 1067 |
+
- 1.0
|
| 1068 |
+
- 1.0
|
| 1069 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 1070 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 1071 |
+
IN_FEATURES:
|
| 1072 |
+
- p3
|
| 1073 |
+
- p4
|
| 1074 |
+
- p5
|
| 1075 |
+
- p6
|
| 1076 |
+
- p7
|
| 1077 |
+
IOU_LABELS:
|
| 1078 |
+
- 0
|
| 1079 |
+
- -1
|
| 1080 |
+
- 1
|
| 1081 |
+
IOU_THRESHOLDS:
|
| 1082 |
+
- 0.4
|
| 1083 |
+
- 0.5
|
| 1084 |
+
NMS_THRESH_TEST: 0.5
|
| 1085 |
+
NUM_CLASSES: 80
|
| 1086 |
+
NUM_CONVS: 4
|
| 1087 |
+
PRIOR_PROB: 0.01
|
| 1088 |
+
SCORE_THRESH_TEST: 0.05
|
| 1089 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 1090 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 1091 |
+
ROI_BOX_CASCADE_HEAD:
|
| 1092 |
+
BBOX_REG_WEIGHTS:
|
| 1093 |
+
- - 10.0
|
| 1094 |
+
- 10.0
|
| 1095 |
+
- 5.0
|
| 1096 |
+
- 5.0
|
| 1097 |
+
- - 20.0
|
| 1098 |
+
- 20.0
|
| 1099 |
+
- 10.0
|
| 1100 |
+
- 10.0
|
| 1101 |
+
- - 30.0
|
| 1102 |
+
- 30.0
|
| 1103 |
+
- 15.0
|
| 1104 |
+
- 15.0
|
| 1105 |
+
IOUS:
|
| 1106 |
+
- 0.5
|
| 1107 |
+
- 0.6
|
| 1108 |
+
- 0.7
|
| 1109 |
+
ROI_BOX_HEAD:
|
| 1110 |
+
BBOX_REG_WEIGHTS:
|
| 1111 |
+
- 10.0
|
| 1112 |
+
- 10.0
|
| 1113 |
+
- 5.0
|
| 1114 |
+
- 5.0
|
| 1115 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
| 1116 |
+
CONV_DIM: 256
|
| 1117 |
+
FC_DIM: 1024
|
| 1118 |
+
NAME: FastRCNNConvFCHead
|
| 1119 |
+
NORM: ''
|
| 1120 |
+
NUM_CONV: 0
|
| 1121 |
+
NUM_FC: 2
|
| 1122 |
+
POOLER_RESOLUTION: 7
|
| 1123 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1124 |
+
POOLER_TYPE: ROIAlignV2
|
| 1125 |
+
SMOOTH_L1_BETA: 0.0
|
| 1126 |
+
TRAIN_ON_PRED_BOXES: false
|
| 1127 |
+
ROI_HEADS:
|
| 1128 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 1129 |
+
IN_FEATURES:
|
| 1130 |
+
- p2
|
| 1131 |
+
- p3
|
| 1132 |
+
- p4
|
| 1133 |
+
- p5
|
| 1134 |
+
IOU_LABELS:
|
| 1135 |
+
- 0
|
| 1136 |
+
- 1
|
| 1137 |
+
IOU_THRESHOLDS:
|
| 1138 |
+
- 0.5
|
| 1139 |
+
NAME: StandardROIHeads
|
| 1140 |
+
NMS_THRESH_TEST: 0.5
|
| 1141 |
+
NUM_CLASSES: 7
|
| 1142 |
+
POSITIVE_FRACTION: 0.25
|
| 1143 |
+
PROPOSAL_APPEND_GT: true
|
| 1144 |
+
SCORE_THRESH_TEST: 0.05
|
| 1145 |
+
ROI_KEYPOINT_HEAD:
|
| 1146 |
+
CONV_DIMS:
|
| 1147 |
+
- 512
|
| 1148 |
+
- 512
|
| 1149 |
+
- 512
|
| 1150 |
+
- 512
|
| 1151 |
+
- 512
|
| 1152 |
+
- 512
|
| 1153 |
+
- 512
|
| 1154 |
+
- 512
|
| 1155 |
+
LOSS_WEIGHT: 1.0
|
| 1156 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 1157 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 1158 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
| 1159 |
+
NUM_KEYPOINTS: 17
|
| 1160 |
+
POOLER_RESOLUTION: 14
|
| 1161 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1162 |
+
POOLER_TYPE: ROIAlignV2
|
| 1163 |
+
ROI_MASK_HEAD:
|
| 1164 |
+
CLS_AGNOSTIC_MASK: false
|
| 1165 |
+
CONV_DIM: 256
|
| 1166 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 1167 |
+
NORM: ''
|
| 1168 |
+
NUM_CONV: 4
|
| 1169 |
+
POOLER_RESOLUTION: 14
|
| 1170 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1171 |
+
POOLER_TYPE: ROIAlignV2
|
| 1172 |
+
RPN:
|
| 1173 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 1174 |
+
BBOX_REG_WEIGHTS:
|
| 1175 |
+
- 1.0
|
| 1176 |
+
- 1.0
|
| 1177 |
+
- 1.0
|
| 1178 |
+
- 1.0
|
| 1179 |
+
BOUNDARY_THRESH: -1
|
| 1180 |
+
HEAD_NAME: StandardRPNHead
|
| 1181 |
+
IN_FEATURES:
|
| 1182 |
+
- p2
|
| 1183 |
+
- p3
|
| 1184 |
+
- p4
|
| 1185 |
+
- p5
|
| 1186 |
+
- p6
|
| 1187 |
+
IOU_LABELS:
|
| 1188 |
+
- 0
|
| 1189 |
+
- -1
|
| 1190 |
+
- 1
|
| 1191 |
+
IOU_THRESHOLDS:
|
| 1192 |
+
- 0.3
|
| 1193 |
+
- 0.7
|
| 1194 |
+
LOSS_WEIGHT: 1.0
|
| 1195 |
+
NMS_THRESH: 0.7
|
| 1196 |
+
POSITIVE_FRACTION: 0.5
|
| 1197 |
+
POST_NMS_TOPK_TEST: 1000
|
| 1198 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 1199 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 1200 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 1201 |
+
SMOOTH_L1_BETA: 0.0
|
| 1202 |
+
SEM_SEG_HEAD:
|
| 1203 |
+
COMMON_STRIDE: 4
|
| 1204 |
+
CONVS_DIM: 128
|
| 1205 |
+
IGNORE_VALUE: 255
|
| 1206 |
+
IN_FEATURES:
|
| 1207 |
+
- p2
|
| 1208 |
+
- p3
|
| 1209 |
+
- p4
|
| 1210 |
+
- p5
|
| 1211 |
+
LOSS_WEIGHT: 1.0
|
| 1212 |
+
NAME: SemSegFPNHead
|
| 1213 |
+
NORM: GN
|
| 1214 |
+
NUM_CLASSES: 54
|
| 1215 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
| 1216 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
| 1217 |
+
SEED: -1
|
| 1218 |
+
SOLVER:
|
| 1219 |
+
BASE_LR: 0.00025
|
| 1220 |
+
BIAS_LR_FACTOR: 1.0
|
| 1221 |
+
CHECKPOINT_PERIOD: 50
|
| 1222 |
+
CLIP_GRADIENTS:
|
| 1223 |
+
CLIP_TYPE: value
|
| 1224 |
+
CLIP_VALUE: 1.0
|
| 1225 |
+
ENABLED: false
|
| 1226 |
+
NORM_TYPE: 2.0
|
| 1227 |
+
GAMMA: 0.1
|
| 1228 |
+
IMS_PER_BATCH: 2
|
| 1229 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 1230 |
+
MAX_ITER: 300
|
| 1231 |
+
MOMENTUM: 0.9
|
| 1232 |
+
NESTEROV: false
|
| 1233 |
+
STEPS:
|
| 1234 |
+
- 210000
|
| 1235 |
+
- 250000
|
| 1236 |
+
WARMUP_FACTOR: 0.001
|
| 1237 |
+
WARMUP_ITERS: 1000
|
| 1238 |
+
WARMUP_METHOD: linear
|
| 1239 |
+
WEIGHT_DECAY: 0.0001
|
| 1240 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 1241 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 1242 |
+
TEST:
|
| 1243 |
+
AUG:
|
| 1244 |
+
ENABLED: false
|
| 1245 |
+
FLIP: true
|
| 1246 |
+
MAX_SIZE: 4000
|
| 1247 |
+
MIN_SIZES:
|
| 1248 |
+
- 400
|
| 1249 |
+
- 500
|
| 1250 |
+
- 600
|
| 1251 |
+
- 700
|
| 1252 |
+
- 800
|
| 1253 |
+
- 900
|
| 1254 |
+
- 1000
|
| 1255 |
+
- 1100
|
| 1256 |
+
- 1200
|
| 1257 |
+
DETECTIONS_PER_IMAGE: 100
|
| 1258 |
+
EVAL_PERIOD: 0
|
| 1259 |
+
EXPECTED_RESULTS: []
|
| 1260 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 1261 |
+
PRECISE_BN:
|
| 1262 |
+
ENABLED: false
|
| 1263 |
+
NUM_ITER: 200
|
| 1264 |
+
VERSION: 2
|
| 1265 |
+
VIS_PERIOD: 0
|
| 1266 |
+
|
| 1267 |
+
[04/19 13:20:20] detectron2 INFO: Running with full config:
|
| 1268 |
+
CUDNN_BENCHMARK: False
|
| 1269 |
+
DATALOADER:
|
| 1270 |
+
ASPECT_RATIO_GROUPING: True
|
| 1271 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
| 1272 |
+
NUM_WORKERS: 4
|
| 1273 |
+
REPEAT_THRESHOLD: 0.0
|
| 1274 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 1275 |
+
DATASETS:
|
| 1276 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 1277 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 1278 |
+
PROPOSAL_FILES_TEST: ()
|
| 1279 |
+
PROPOSAL_FILES_TRAIN: ()
|
| 1280 |
+
TEST: ('modele-val',)
|
| 1281 |
+
TRAIN: ('modele-train',)
|
| 1282 |
+
GLOBAL:
|
| 1283 |
+
HACK: 1.0
|
| 1284 |
+
INPUT:
|
| 1285 |
+
CROP:
|
| 1286 |
+
ENABLED: False
|
| 1287 |
+
SIZE: [0.9, 0.9]
|
| 1288 |
+
TYPE: relative_range
|
| 1289 |
+
FORMAT: BGR
|
| 1290 |
+
MASK_FORMAT: polygon
|
| 1291 |
+
MAX_SIZE_TEST: 1333
|
| 1292 |
+
MAX_SIZE_TRAIN: 1333
|
| 1293 |
+
MIN_SIZE_TEST: 800
|
| 1294 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
| 1295 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 1296 |
+
RANDOM_FLIP: horizontal
|
| 1297 |
+
MODEL:
|
| 1298 |
+
ANCHOR_GENERATOR:
|
| 1299 |
+
ANGLES: [[-90, 0, 90]]
|
| 1300 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
| 1301 |
+
NAME: DefaultAnchorGenerator
|
| 1302 |
+
OFFSET: 0.0
|
| 1303 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
| 1304 |
+
BACKBONE:
|
| 1305 |
+
FREEZE_AT: 2
|
| 1306 |
+
NAME: build_resnet_fpn_backbone
|
| 1307 |
+
DEVICE: cuda
|
| 1308 |
+
FPN:
|
| 1309 |
+
FUSE_TYPE: sum
|
| 1310 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 1311 |
+
NORM:
|
| 1312 |
+
OUT_CHANNELS: 256
|
| 1313 |
+
KEYPOINT_ON: False
|
| 1314 |
+
LOAD_PROPOSALS: False
|
| 1315 |
+
MASK_ON: True
|
| 1316 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 1317 |
+
PANOPTIC_FPN:
|
| 1318 |
+
COMBINE:
|
| 1319 |
+
ENABLED: True
|
| 1320 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 1321 |
+
OVERLAP_THRESH: 0.5
|
| 1322 |
+
STUFF_AREA_LIMIT: 4096
|
| 1323 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 1324 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
| 1325 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
| 1326 |
+
PROPOSAL_GENERATOR:
|
| 1327 |
+
MIN_SIZE: 0
|
| 1328 |
+
NAME: RPN
|
| 1329 |
+
RESNETS:
|
| 1330 |
+
DEFORM_MODULATED: False
|
| 1331 |
+
DEFORM_NUM_GROUPS: 1
|
| 1332 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
| 1333 |
+
DEPTH: 50
|
| 1334 |
+
NORM: FrozenBN
|
| 1335 |
+
NUM_GROUPS: 1
|
| 1336 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 1337 |
+
RES2_OUT_CHANNELS: 256
|
| 1338 |
+
RES5_DILATION: 1
|
| 1339 |
+
STEM_OUT_CHANNELS: 64
|
| 1340 |
+
STRIDE_IN_1X1: True
|
| 1341 |
+
WIDTH_PER_GROUP: 64
|
| 1342 |
+
RETINANET:
|
| 1343 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 1344 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 1345 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 1346 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 1347 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
| 1348 |
+
IOU_LABELS: [0, -1, 1]
|
| 1349 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
| 1350 |
+
NMS_THRESH_TEST: 0.5
|
| 1351 |
+
NORM:
|
| 1352 |
+
NUM_CLASSES: 80
|
| 1353 |
+
NUM_CONVS: 4
|
| 1354 |
+
PRIOR_PROB: 0.01
|
| 1355 |
+
SCORE_THRESH_TEST: 0.05
|
| 1356 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 1357 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 1358 |
+
ROI_BOX_CASCADE_HEAD:
|
| 1359 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
| 1360 |
+
IOUS: (0.5, 0.6, 0.7)
|
| 1361 |
+
ROI_BOX_HEAD:
|
| 1362 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 1363 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 1364 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
| 1365 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
| 1366 |
+
CONV_DIM: 256
|
| 1367 |
+
FC_DIM: 1024
|
| 1368 |
+
NAME: FastRCNNConvFCHead
|
| 1369 |
+
NORM:
|
| 1370 |
+
NUM_CONV: 0
|
| 1371 |
+
NUM_FC: 2
|
| 1372 |
+
POOLER_RESOLUTION: 7
|
| 1373 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1374 |
+
POOLER_TYPE: ROIAlignV2
|
| 1375 |
+
SMOOTH_L1_BETA: 0.0
|
| 1376 |
+
TRAIN_ON_PRED_BOXES: False
|
| 1377 |
+
ROI_HEADS:
|
| 1378 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 1379 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 1380 |
+
IOU_LABELS: [0, 1]
|
| 1381 |
+
IOU_THRESHOLDS: [0.5]
|
| 1382 |
+
NAME: StandardROIHeads
|
| 1383 |
+
NMS_THRESH_TEST: 0.5
|
| 1384 |
+
NUM_CLASSES: 2
|
| 1385 |
+
POSITIVE_FRACTION: 0.25
|
| 1386 |
+
PROPOSAL_APPEND_GT: True
|
| 1387 |
+
SCORE_THRESH_TEST: 0.05
|
| 1388 |
+
ROI_KEYPOINT_HEAD:
|
| 1389 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
| 1390 |
+
LOSS_WEIGHT: 1.0
|
| 1391 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 1392 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 1393 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
| 1394 |
+
NUM_KEYPOINTS: 17
|
| 1395 |
+
POOLER_RESOLUTION: 14
|
| 1396 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1397 |
+
POOLER_TYPE: ROIAlignV2
|
| 1398 |
+
ROI_MASK_HEAD:
|
| 1399 |
+
CLS_AGNOSTIC_MASK: False
|
| 1400 |
+
CONV_DIM: 256
|
| 1401 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 1402 |
+
NORM:
|
| 1403 |
+
NUM_CONV: 4
|
| 1404 |
+
POOLER_RESOLUTION: 14
|
| 1405 |
+
POOLER_SAMPLING_RATIO: 0
|
| 1406 |
+
POOLER_TYPE: ROIAlignV2
|
| 1407 |
+
RPN:
|
| 1408 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 1409 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 1410 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 1411 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 1412 |
+
BOUNDARY_THRESH: -1
|
| 1413 |
+
HEAD_NAME: StandardRPNHead
|
| 1414 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
| 1415 |
+
IOU_LABELS: [0, -1, 1]
|
| 1416 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
| 1417 |
+
LOSS_WEIGHT: 1.0
|
| 1418 |
+
NMS_THRESH: 0.7
|
| 1419 |
+
POSITIVE_FRACTION: 0.5
|
| 1420 |
+
POST_NMS_TOPK_TEST: 1000
|
| 1421 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 1422 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 1423 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 1424 |
+
SMOOTH_L1_BETA: 0.0
|
| 1425 |
+
SEM_SEG_HEAD:
|
| 1426 |
+
COMMON_STRIDE: 4
|
| 1427 |
+
CONVS_DIM: 128
|
| 1428 |
+
IGNORE_VALUE: 255
|
| 1429 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 1430 |
+
LOSS_WEIGHT: 1.0
|
| 1431 |
+
NAME: SemSegFPNHead
|
| 1432 |
+
NORM: GN
|
| 1433 |
+
NUM_CLASSES: 54
|
| 1434 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
| 1435 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
| 1436 |
+
SEED: -1
|
| 1437 |
+
SOLVER:
|
| 1438 |
+
AMP:
|
| 1439 |
+
ENABLED: False
|
| 1440 |
+
BASE_LR: 0.00025
|
| 1441 |
+
BIAS_LR_FACTOR: 1.0
|
| 1442 |
+
CHECKPOINT_PERIOD: 50
|
| 1443 |
+
CLIP_GRADIENTS:
|
| 1444 |
+
CLIP_TYPE: value
|
| 1445 |
+
CLIP_VALUE: 1.0
|
| 1446 |
+
ENABLED: False
|
| 1447 |
+
NORM_TYPE: 2.0
|
| 1448 |
+
GAMMA: 0.1
|
| 1449 |
+
IMS_PER_BATCH: 2
|
| 1450 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 1451 |
+
MAX_ITER: 300
|
| 1452 |
+
MOMENTUM: 0.9
|
| 1453 |
+
NESTEROV: False
|
| 1454 |
+
REFERENCE_WORLD_SIZE: 0
|
| 1455 |
+
STEPS: (210000, 250000)
|
| 1456 |
+
WARMUP_FACTOR: 0.001
|
| 1457 |
+
WARMUP_ITERS: 1000
|
| 1458 |
+
WARMUP_METHOD: linear
|
| 1459 |
+
WEIGHT_DECAY: 0.0001
|
| 1460 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 1461 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 1462 |
+
TEST:
|
| 1463 |
+
AUG:
|
| 1464 |
+
ENABLED: False
|
| 1465 |
+
FLIP: True
|
| 1466 |
+
MAX_SIZE: 4000
|
| 1467 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
| 1468 |
+
DETECTIONS_PER_IMAGE: 100
|
| 1469 |
+
EVAL_PERIOD: 0
|
| 1470 |
+
EXPECTED_RESULTS: []
|
| 1471 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 1472 |
+
PRECISE_BN:
|
| 1473 |
+
ENABLED: False
|
| 1474 |
+
NUM_ITER: 200
|
| 1475 |
+
VERSION: 2
|
| 1476 |
+
VIS_PERIOD: 0
|
| 1477 |
+
[04/19 13:20:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
| 1478 |
+
[04/19 13:20:20] d2.utils.env INFO: Using a generated random seed 20261058
|
| 1479 |
+
[04/19 13:20:22] d2.engine.defaults INFO: Model:
|
| 1480 |
+
GeneralizedRCNN(
|
| 1481 |
+
(backbone): FPN(
|
| 1482 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1483 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1484 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1485 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1486 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1487 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1488 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 1489 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1490 |
+
(top_block): LastLevelMaxPool()
|
| 1491 |
+
(bottom_up): ResNet(
|
| 1492 |
+
(stem): BasicStem(
|
| 1493 |
+
(conv1): Conv2d(
|
| 1494 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
| 1495 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1496 |
+
)
|
| 1497 |
+
)
|
| 1498 |
+
(res2): Sequential(
|
| 1499 |
+
(0): BottleneckBlock(
|
| 1500 |
+
(shortcut): Conv2d(
|
| 1501 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1502 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1503 |
+
)
|
| 1504 |
+
(conv1): Conv2d(
|
| 1505 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1506 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1507 |
+
)
|
| 1508 |
+
(conv2): Conv2d(
|
| 1509 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1510 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1511 |
+
)
|
| 1512 |
+
(conv3): Conv2d(
|
| 1513 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1514 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1515 |
+
)
|
| 1516 |
+
)
|
| 1517 |
+
(1): BottleneckBlock(
|
| 1518 |
+
(conv1): Conv2d(
|
| 1519 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1520 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1521 |
+
)
|
| 1522 |
+
(conv2): Conv2d(
|
| 1523 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1524 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1525 |
+
)
|
| 1526 |
+
(conv3): Conv2d(
|
| 1527 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1528 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1529 |
+
)
|
| 1530 |
+
)
|
| 1531 |
+
(2): BottleneckBlock(
|
| 1532 |
+
(conv1): Conv2d(
|
| 1533 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1534 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1535 |
+
)
|
| 1536 |
+
(conv2): Conv2d(
|
| 1537 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1538 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 1539 |
+
)
|
| 1540 |
+
(conv3): Conv2d(
|
| 1541 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1542 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1543 |
+
)
|
| 1544 |
+
)
|
| 1545 |
+
)
|
| 1546 |
+
(res3): Sequential(
|
| 1547 |
+
(0): BottleneckBlock(
|
| 1548 |
+
(shortcut): Conv2d(
|
| 1549 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1550 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1551 |
+
)
|
| 1552 |
+
(conv1): Conv2d(
|
| 1553 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1554 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1555 |
+
)
|
| 1556 |
+
(conv2): Conv2d(
|
| 1557 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1558 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1559 |
+
)
|
| 1560 |
+
(conv3): Conv2d(
|
| 1561 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1562 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1563 |
+
)
|
| 1564 |
+
)
|
| 1565 |
+
(1): BottleneckBlock(
|
| 1566 |
+
(conv1): Conv2d(
|
| 1567 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1568 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1569 |
+
)
|
| 1570 |
+
(conv2): Conv2d(
|
| 1571 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1572 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1573 |
+
)
|
| 1574 |
+
(conv3): Conv2d(
|
| 1575 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1576 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1577 |
+
)
|
| 1578 |
+
)
|
| 1579 |
+
(2): BottleneckBlock(
|
| 1580 |
+
(conv1): Conv2d(
|
| 1581 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1582 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1583 |
+
)
|
| 1584 |
+
(conv2): Conv2d(
|
| 1585 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1586 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1587 |
+
)
|
| 1588 |
+
(conv3): Conv2d(
|
| 1589 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1590 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1591 |
+
)
|
| 1592 |
+
)
|
| 1593 |
+
(3): BottleneckBlock(
|
| 1594 |
+
(conv1): Conv2d(
|
| 1595 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1596 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1597 |
+
)
|
| 1598 |
+
(conv2): Conv2d(
|
| 1599 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1600 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 1601 |
+
)
|
| 1602 |
+
(conv3): Conv2d(
|
| 1603 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1604 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1605 |
+
)
|
| 1606 |
+
)
|
| 1607 |
+
)
|
| 1608 |
+
(res4): Sequential(
|
| 1609 |
+
(0): BottleneckBlock(
|
| 1610 |
+
(shortcut): Conv2d(
|
| 1611 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1612 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1613 |
+
)
|
| 1614 |
+
(conv1): Conv2d(
|
| 1615 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1616 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1617 |
+
)
|
| 1618 |
+
(conv2): Conv2d(
|
| 1619 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1620 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1621 |
+
)
|
| 1622 |
+
(conv3): Conv2d(
|
| 1623 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1624 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1625 |
+
)
|
| 1626 |
+
)
|
| 1627 |
+
(1): BottleneckBlock(
|
| 1628 |
+
(conv1): Conv2d(
|
| 1629 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1630 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1631 |
+
)
|
| 1632 |
+
(conv2): Conv2d(
|
| 1633 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1634 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1635 |
+
)
|
| 1636 |
+
(conv3): Conv2d(
|
| 1637 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1638 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1639 |
+
)
|
| 1640 |
+
)
|
| 1641 |
+
(2): BottleneckBlock(
|
| 1642 |
+
(conv1): Conv2d(
|
| 1643 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1644 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1645 |
+
)
|
| 1646 |
+
(conv2): Conv2d(
|
| 1647 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1648 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1649 |
+
)
|
| 1650 |
+
(conv3): Conv2d(
|
| 1651 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1652 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1653 |
+
)
|
| 1654 |
+
)
|
| 1655 |
+
(3): BottleneckBlock(
|
| 1656 |
+
(conv1): Conv2d(
|
| 1657 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1658 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1659 |
+
)
|
| 1660 |
+
(conv2): Conv2d(
|
| 1661 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1662 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1663 |
+
)
|
| 1664 |
+
(conv3): Conv2d(
|
| 1665 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1666 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1667 |
+
)
|
| 1668 |
+
)
|
| 1669 |
+
(4): BottleneckBlock(
|
| 1670 |
+
(conv1): Conv2d(
|
| 1671 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1672 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1673 |
+
)
|
| 1674 |
+
(conv2): Conv2d(
|
| 1675 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1676 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1677 |
+
)
|
| 1678 |
+
(conv3): Conv2d(
|
| 1679 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1680 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1681 |
+
)
|
| 1682 |
+
)
|
| 1683 |
+
(5): BottleneckBlock(
|
| 1684 |
+
(conv1): Conv2d(
|
| 1685 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1686 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1687 |
+
)
|
| 1688 |
+
(conv2): Conv2d(
|
| 1689 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1690 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 1691 |
+
)
|
| 1692 |
+
(conv3): Conv2d(
|
| 1693 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1694 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 1695 |
+
)
|
| 1696 |
+
)
|
| 1697 |
+
)
|
| 1698 |
+
(res5): Sequential(
|
| 1699 |
+
(0): BottleneckBlock(
|
| 1700 |
+
(shortcut): Conv2d(
|
| 1701 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1702 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 1703 |
+
)
|
| 1704 |
+
(conv1): Conv2d(
|
| 1705 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 1706 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1707 |
+
)
|
| 1708 |
+
(conv2): Conv2d(
|
| 1709 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1710 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1711 |
+
)
|
| 1712 |
+
(conv3): Conv2d(
|
| 1713 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1714 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 1715 |
+
)
|
| 1716 |
+
)
|
| 1717 |
+
(1): BottleneckBlock(
|
| 1718 |
+
(conv1): Conv2d(
|
| 1719 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1720 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1721 |
+
)
|
| 1722 |
+
(conv2): Conv2d(
|
| 1723 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1724 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1725 |
+
)
|
| 1726 |
+
(conv3): Conv2d(
|
| 1727 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1728 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 1729 |
+
)
|
| 1730 |
+
)
|
| 1731 |
+
(2): BottleneckBlock(
|
| 1732 |
+
(conv1): Conv2d(
|
| 1733 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1734 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1735 |
+
)
|
| 1736 |
+
(conv2): Conv2d(
|
| 1737 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 1738 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 1739 |
+
)
|
| 1740 |
+
(conv3): Conv2d(
|
| 1741 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 1742 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 1743 |
+
)
|
| 1744 |
+
)
|
| 1745 |
+
)
|
| 1746 |
+
)
|
| 1747 |
+
)
|
| 1748 |
+
(proposal_generator): RPN(
|
| 1749 |
+
(rpn_head): StandardRPNHead(
|
| 1750 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 1751 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
| 1752 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
| 1753 |
+
)
|
| 1754 |
+
(anchor_generator): DefaultAnchorGenerator(
|
| 1755 |
+
(cell_anchors): BufferList()
|
| 1756 |
+
)
|
| 1757 |
+
)
|
| 1758 |
+
(roi_heads): StandardROIHeads(
|
| 1759 |
+
(box_pooler): ROIPooler(
|
| 1760 |
+
(level_poolers): ModuleList(
|
| 1761 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 1762 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 1763 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 1764 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 1765 |
+
)
|
| 1766 |
+
)
|
| 1767 |
+
(box_head): FastRCNNConvFCHead(
|
| 1768 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
| 1769 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
| 1770 |
+
(fc_relu1): ReLU()
|
| 1771 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
| 1772 |
+
(fc_relu2): ReLU()
|
| 1773 |
+
)
|
| 1774 |
+
(box_predictor): FastRCNNOutputLayers(
|
| 1775 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
| 1776 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
| 1777 |
+
)
|
| 1778 |
+
(mask_pooler): ROIPooler(
|
| 1779 |
+
(level_poolers): ModuleList(
|
| 1780 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 1781 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 1782 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 1783 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 1784 |
+
)
|
| 1785 |
+
)
|
| 1786 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
| 1787 |
+
(mask_fcn1): Conv2d(
|
| 1788 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 1789 |
+
(activation): ReLU()
|
| 1790 |
+
)
|
| 1791 |
+
(mask_fcn2): Conv2d(
|
| 1792 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 1793 |
+
(activation): ReLU()
|
| 1794 |
+
)
|
| 1795 |
+
(mask_fcn3): Conv2d(
|
| 1796 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 1797 |
+
(activation): ReLU()
|
| 1798 |
+
)
|
| 1799 |
+
(mask_fcn4): Conv2d(
|
| 1800 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 1801 |
+
(activation): ReLU()
|
| 1802 |
+
)
|
| 1803 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
| 1804 |
+
(deconv_relu): ReLU()
|
| 1805 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
| 1806 |
+
)
|
| 1807 |
+
)
|
| 1808 |
+
)
|
| 1809 |
+
[04/19 13:20:22] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
| 1810 |
+
[04/19 13:20:22] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
| 1811 |
+
[04/19 13:20:22] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
| 1812 |
+
[04/19 13:20:22] d2.data.build INFO: Distribution of instances among all 2 categories:
|
| 1813 |
+
[36m| category | #instances | category | #instances |
|
| 1814 |
+
|:----------:|:-------------|:----------:|:-------------|
|
| 1815 |
+
| | 89 | | 0 |
|
| 1816 |
+
| | | | |
|
| 1817 |
+
| total | 89 | | |[0m
|
| 1818 |
+
[04/19 13:20:22] d2.data.build INFO: Using training sampler TrainingSampler
|
| 1819 |
+
[04/19 13:20:22] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
| 1820 |
+
[04/19 13:20:22] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
| 1821 |
+
[04/19 13:20:22] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
| 1822 |
+
[04/19 13:20:24] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/modele_final.pth
|
| 1823 |
+
[04/19 13:21:19] detectron2 INFO: Rank of current process: 0. World size: 1
|
| 1824 |
+
[04/19 13:21:20] detectron2 INFO: Environment info:
|
| 1825 |
+
---------------------- ----------------------------------------------------------------
|
| 1826 |
+
sys.platform linux
|
| 1827 |
+
Python 3.9.16 (main, Dec 7 2022, 01:11:51) [GCC 9.4.0]
|
| 1828 |
+
numpy 1.22.4
|
| 1829 |
+
detectron2 0.4 @/usr/local/lib/python3.9/dist-packages/detectron2
|
| 1830 |
+
Compiler GCC 9.4
|
| 1831 |
+
CUDA compiler CUDA 11.8
|
| 1832 |
+
detectron2 arch flags 7.5
|
| 1833 |
+
DETECTRON2_ENV_MODULE <not set>
|
| 1834 |
+
PyTorch 2.0.0+cu118 @/usr/local/lib/python3.9/dist-packages/torch
|
| 1835 |
+
PyTorch debug build False
|
| 1836 |
+
GPU available True
|
| 1837 |
+
GPU 0 Tesla T4 (arch=7.5)
|
| 1838 |
+
CUDA_HOME /usr/local/cuda
|
| 1839 |
+
Pillow 9.5.0
|
| 1840 |
+
torchvision 0.15.1+cu118 @/usr/local/lib/python3.9/dist-packages/torchvision
|
| 1841 |
+
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
|
| 1842 |
+
fvcore 0.1.3.post20210317
|
| 1843 |
+
cv2 4.7.0
|
| 1844 |
+
---------------------- ----------------------------------------------------------------
|
| 1845 |
+
PyTorch built with:
|
| 1846 |
+
- GCC 9.3
|
| 1847 |
+
- C++ Version: 201703
|
| 1848 |
+
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
|
| 1849 |
+
- Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e)
|
| 1850 |
+
- OpenMP 201511 (a.k.a. OpenMP 4.5)
|
| 1851 |
+
- LAPACK is enabled (usually provided by MKL)
|
| 1852 |
+
- NNPACK is enabled
|
| 1853 |
+
- CPU capability usage: AVX2
|
| 1854 |
+
- CUDA Runtime 11.8
|
| 1855 |
+
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
|
| 1856 |
+
- CuDNN 8.7
|
| 1857 |
+
- Magma 2.6.1
|
| 1858 |
+
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.0.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
|
| 1859 |
+
|
| 1860 |
+
[04/19 13:21:20] detectron2 INFO: Command line arguments: Namespace(config_file='/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml', resume=False, eval_only=False, num_gpus=1, num_machines=1, machine_rank=0, dist_url='tcp://127.0.0.1:49152', opts=['OUTPUT_DIR', '/content/drive/MyDrive/layoutparser/modele', 'SOLVER.IMS_PER_BATCH', '2'], dataset_name='modele', json_annotation_train='/content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json', image_path_train='/content/drive/MyDrive/layoutparser/dataset6/train', json_annotation_val='/content/drive/MyDrive/layoutparser/dataset6/val/via_project_19Apr2023_15h9m_coco.json', image_path_val='/content/drive/MyDrive/layoutparser/dataset6/val')
|
| 1861 |
+
[04/19 13:21:20] detectron2 INFO: Contents of args.config_file=/content/layout-model-training/config_LayoutParser_PrimaDataset.yaml:
|
| 1862 |
+
CUDNN_BENCHMARK: false
|
| 1863 |
+
DATALOADER:
|
| 1864 |
+
ASPECT_RATIO_GROUPING: true
|
| 1865 |
+
FILTER_EMPTY_ANNOTATIONS: true
|
| 1866 |
+
NUM_WORKERS: 4
|
| 1867 |
+
REPEAT_THRESHOLD: 0.0
|
| 1868 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 1869 |
+
DATASETS:
|
| 1870 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 1871 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 1872 |
+
PROPOSAL_FILES_TEST: []
|
| 1873 |
+
PROPOSAL_FILES_TRAIN: []
|
| 1874 |
+
TEST:
|
| 1875 |
+
- prima-layout-val
|
| 1876 |
+
TRAIN:
|
| 1877 |
+
- prima-layout-train
|
| 1878 |
+
GLOBAL:
|
| 1879 |
+
HACK: 1.0
|
| 1880 |
+
INPUT:
|
| 1881 |
+
CROP:
|
| 1882 |
+
ENABLED: false
|
| 1883 |
+
SIZE:
|
| 1884 |
+
- 0.9
|
| 1885 |
+
- 0.9
|
| 1886 |
+
TYPE: relative_range
|
| 1887 |
+
FORMAT: BGR
|
| 1888 |
+
MASK_FORMAT: polygon
|
| 1889 |
+
MAX_SIZE_TEST: 1333
|
| 1890 |
+
MAX_SIZE_TRAIN: 1333
|
| 1891 |
+
MIN_SIZE_TEST: 800
|
| 1892 |
+
MIN_SIZE_TRAIN:
|
| 1893 |
+
- 640
|
| 1894 |
+
- 672
|
| 1895 |
+
- 704
|
| 1896 |
+
- 736
|
| 1897 |
+
- 768
|
| 1898 |
+
- 800
|
| 1899 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 1900 |
+
MODEL:
|
| 1901 |
+
ANCHOR_GENERATOR:
|
| 1902 |
+
ANGLES:
|
| 1903 |
+
- - -90
|
| 1904 |
+
- 0
|
| 1905 |
+
- 90
|
| 1906 |
+
ASPECT_RATIOS:
|
| 1907 |
+
- - 0.5
|
| 1908 |
+
- 1.0
|
| 1909 |
+
- 2.0
|
| 1910 |
+
NAME: DefaultAnchorGenerator
|
| 1911 |
+
OFFSET: 0.0
|
| 1912 |
+
SIZES:
|
| 1913 |
+
- - 32
|
| 1914 |
+
- - 64
|
| 1915 |
+
- - 128
|
| 1916 |
+
- - 256
|
| 1917 |
+
- - 512
|
| 1918 |
+
BACKBONE:
|
| 1919 |
+
FREEZE_AT: 2
|
| 1920 |
+
NAME: build_resnet_fpn_backbone
|
| 1921 |
+
DEVICE: cuda
|
| 1922 |
+
FPN:
|
| 1923 |
+
FUSE_TYPE: sum
|
| 1924 |
+
IN_FEATURES:
|
| 1925 |
+
- res2
|
| 1926 |
+
- res3
|
| 1927 |
+
- res4
|
| 1928 |
+
- res5
|
| 1929 |
+
NORM: ''
|
| 1930 |
+
OUT_CHANNELS: 256
|
| 1931 |
+
KEYPOINT_ON: false
|
| 1932 |
+
LOAD_PROPOSALS: false
|
| 1933 |
+
MASK_ON: true
|
| 1934 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 1935 |
+
PANOPTIC_FPN:
|
| 1936 |
+
COMBINE:
|
| 1937 |
+
ENABLED: true
|
| 1938 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 1939 |
+
OVERLAP_THRESH: 0.5
|
| 1940 |
+
STUFF_AREA_LIMIT: 4096
|
| 1941 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 1942 |
+
PIXEL_MEAN:
|
| 1943 |
+
- 103.53
|
| 1944 |
+
- 116.28
|
| 1945 |
+
- 123.675
|
| 1946 |
+
PIXEL_STD:
|
| 1947 |
+
- 1.0
|
| 1948 |
+
- 1.0
|
| 1949 |
+
- 1.0
|
| 1950 |
+
PROPOSAL_GENERATOR:
|
| 1951 |
+
MIN_SIZE: 0
|
| 1952 |
+
NAME: RPN
|
| 1953 |
+
RESNETS:
|
| 1954 |
+
DEFORM_MODULATED: false
|
| 1955 |
+
DEFORM_NUM_GROUPS: 1
|
| 1956 |
+
DEFORM_ON_PER_STAGE:
|
| 1957 |
+
- false
|
| 1958 |
+
- false
|
| 1959 |
+
- false
|
| 1960 |
+
- false
|
| 1961 |
+
DEPTH: 50
|
| 1962 |
+
NORM: FrozenBN
|
| 1963 |
+
NUM_GROUPS: 1
|
| 1964 |
+
OUT_FEATURES:
|
| 1965 |
+
- res2
|
| 1966 |
+
- res3
|
| 1967 |
+
- res4
|
| 1968 |
+
- res5
|
| 1969 |
+
RES2_OUT_CHANNELS: 256
|
| 1970 |
+
RES5_DILATION: 1
|
| 1971 |
+
STEM_OUT_CHANNELS: 64
|
| 1972 |
+
STRIDE_IN_1X1: true
|
| 1973 |
+
WIDTH_PER_GROUP: 64
|
| 1974 |
+
RETINANET:
|
| 1975 |
+
BBOX_REG_WEIGHTS:
|
| 1976 |
+
- 1.0
|
| 1977 |
+
- 1.0
|
| 1978 |
+
- 1.0
|
| 1979 |
+
- 1.0
|
| 1980 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 1981 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 1982 |
+
IN_FEATURES:
|
| 1983 |
+
- p3
|
| 1984 |
+
- p4
|
| 1985 |
+
- p5
|
| 1986 |
+
- p6
|
| 1987 |
+
- p7
|
| 1988 |
+
IOU_LABELS:
|
| 1989 |
+
- 0
|
| 1990 |
+
- -1
|
| 1991 |
+
- 1
|
| 1992 |
+
IOU_THRESHOLDS:
|
| 1993 |
+
- 0.4
|
| 1994 |
+
- 0.5
|
| 1995 |
+
NMS_THRESH_TEST: 0.5
|
| 1996 |
+
NUM_CLASSES: 80
|
| 1997 |
+
NUM_CONVS: 4
|
| 1998 |
+
PRIOR_PROB: 0.01
|
| 1999 |
+
SCORE_THRESH_TEST: 0.05
|
| 2000 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 2001 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 2002 |
+
ROI_BOX_CASCADE_HEAD:
|
| 2003 |
+
BBOX_REG_WEIGHTS:
|
| 2004 |
+
- - 10.0
|
| 2005 |
+
- 10.0
|
| 2006 |
+
- 5.0
|
| 2007 |
+
- 5.0
|
| 2008 |
+
- - 20.0
|
| 2009 |
+
- 20.0
|
| 2010 |
+
- 10.0
|
| 2011 |
+
- 10.0
|
| 2012 |
+
- - 30.0
|
| 2013 |
+
- 30.0
|
| 2014 |
+
- 15.0
|
| 2015 |
+
- 15.0
|
| 2016 |
+
IOUS:
|
| 2017 |
+
- 0.5
|
| 2018 |
+
- 0.6
|
| 2019 |
+
- 0.7
|
| 2020 |
+
ROI_BOX_HEAD:
|
| 2021 |
+
BBOX_REG_WEIGHTS:
|
| 2022 |
+
- 10.0
|
| 2023 |
+
- 10.0
|
| 2024 |
+
- 5.0
|
| 2025 |
+
- 5.0
|
| 2026 |
+
CLS_AGNOSTIC_BBOX_REG: false
|
| 2027 |
+
CONV_DIM: 256
|
| 2028 |
+
FC_DIM: 1024
|
| 2029 |
+
NAME: FastRCNNConvFCHead
|
| 2030 |
+
NORM: ''
|
| 2031 |
+
NUM_CONV: 0
|
| 2032 |
+
NUM_FC: 2
|
| 2033 |
+
POOLER_RESOLUTION: 7
|
| 2034 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2035 |
+
POOLER_TYPE: ROIAlignV2
|
| 2036 |
+
SMOOTH_L1_BETA: 0.0
|
| 2037 |
+
TRAIN_ON_PRED_BOXES: false
|
| 2038 |
+
ROI_HEADS:
|
| 2039 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 2040 |
+
IN_FEATURES:
|
| 2041 |
+
- p2
|
| 2042 |
+
- p3
|
| 2043 |
+
- p4
|
| 2044 |
+
- p5
|
| 2045 |
+
IOU_LABELS:
|
| 2046 |
+
- 0
|
| 2047 |
+
- 1
|
| 2048 |
+
IOU_THRESHOLDS:
|
| 2049 |
+
- 0.5
|
| 2050 |
+
NAME: StandardROIHeads
|
| 2051 |
+
NMS_THRESH_TEST: 0.5
|
| 2052 |
+
NUM_CLASSES: 7
|
| 2053 |
+
POSITIVE_FRACTION: 0.25
|
| 2054 |
+
PROPOSAL_APPEND_GT: true
|
| 2055 |
+
SCORE_THRESH_TEST: 0.05
|
| 2056 |
+
ROI_KEYPOINT_HEAD:
|
| 2057 |
+
CONV_DIMS:
|
| 2058 |
+
- 512
|
| 2059 |
+
- 512
|
| 2060 |
+
- 512
|
| 2061 |
+
- 512
|
| 2062 |
+
- 512
|
| 2063 |
+
- 512
|
| 2064 |
+
- 512
|
| 2065 |
+
- 512
|
| 2066 |
+
LOSS_WEIGHT: 1.0
|
| 2067 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 2068 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 2069 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
|
| 2070 |
+
NUM_KEYPOINTS: 17
|
| 2071 |
+
POOLER_RESOLUTION: 14
|
| 2072 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2073 |
+
POOLER_TYPE: ROIAlignV2
|
| 2074 |
+
ROI_MASK_HEAD:
|
| 2075 |
+
CLS_AGNOSTIC_MASK: false
|
| 2076 |
+
CONV_DIM: 256
|
| 2077 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 2078 |
+
NORM: ''
|
| 2079 |
+
NUM_CONV: 4
|
| 2080 |
+
POOLER_RESOLUTION: 14
|
| 2081 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2082 |
+
POOLER_TYPE: ROIAlignV2
|
| 2083 |
+
RPN:
|
| 2084 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 2085 |
+
BBOX_REG_WEIGHTS:
|
| 2086 |
+
- 1.0
|
| 2087 |
+
- 1.0
|
| 2088 |
+
- 1.0
|
| 2089 |
+
- 1.0
|
| 2090 |
+
BOUNDARY_THRESH: -1
|
| 2091 |
+
HEAD_NAME: StandardRPNHead
|
| 2092 |
+
IN_FEATURES:
|
| 2093 |
+
- p2
|
| 2094 |
+
- p3
|
| 2095 |
+
- p4
|
| 2096 |
+
- p5
|
| 2097 |
+
- p6
|
| 2098 |
+
IOU_LABELS:
|
| 2099 |
+
- 0
|
| 2100 |
+
- -1
|
| 2101 |
+
- 1
|
| 2102 |
+
IOU_THRESHOLDS:
|
| 2103 |
+
- 0.3
|
| 2104 |
+
- 0.7
|
| 2105 |
+
LOSS_WEIGHT: 1.0
|
| 2106 |
+
NMS_THRESH: 0.7
|
| 2107 |
+
POSITIVE_FRACTION: 0.5
|
| 2108 |
+
POST_NMS_TOPK_TEST: 1000
|
| 2109 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 2110 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 2111 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 2112 |
+
SMOOTH_L1_BETA: 0.0
|
| 2113 |
+
SEM_SEG_HEAD:
|
| 2114 |
+
COMMON_STRIDE: 4
|
| 2115 |
+
CONVS_DIM: 128
|
| 2116 |
+
IGNORE_VALUE: 255
|
| 2117 |
+
IN_FEATURES:
|
| 2118 |
+
- p2
|
| 2119 |
+
- p3
|
| 2120 |
+
- p4
|
| 2121 |
+
- p5
|
| 2122 |
+
LOSS_WEIGHT: 1.0
|
| 2123 |
+
NAME: SemSegFPNHead
|
| 2124 |
+
NORM: GN
|
| 2125 |
+
NUM_CLASSES: 54
|
| 2126 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
| 2127 |
+
OUTPUT_DIR: ../outputs/prima/mask_rcnn_R_50_FPN_3x/
|
| 2128 |
+
SEED: -1
|
| 2129 |
+
SOLVER:
|
| 2130 |
+
BASE_LR: 0.00025
|
| 2131 |
+
BIAS_LR_FACTOR: 1.0
|
| 2132 |
+
CHECKPOINT_PERIOD: 50
|
| 2133 |
+
CLIP_GRADIENTS:
|
| 2134 |
+
CLIP_TYPE: value
|
| 2135 |
+
CLIP_VALUE: 1.0
|
| 2136 |
+
ENABLED: false
|
| 2137 |
+
NORM_TYPE: 2.0
|
| 2138 |
+
GAMMA: 0.1
|
| 2139 |
+
IMS_PER_BATCH: 2
|
| 2140 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 2141 |
+
MAX_ITER: 300
|
| 2142 |
+
MOMENTUM: 0.9
|
| 2143 |
+
NESTEROV: false
|
| 2144 |
+
STEPS:
|
| 2145 |
+
- 210000
|
| 2146 |
+
- 250000
|
| 2147 |
+
WARMUP_FACTOR: 0.001
|
| 2148 |
+
WARMUP_ITERS: 1000
|
| 2149 |
+
WARMUP_METHOD: linear
|
| 2150 |
+
WEIGHT_DECAY: 0.0001
|
| 2151 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 2152 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 2153 |
+
TEST:
|
| 2154 |
+
AUG:
|
| 2155 |
+
ENABLED: false
|
| 2156 |
+
FLIP: true
|
| 2157 |
+
MAX_SIZE: 4000
|
| 2158 |
+
MIN_SIZES:
|
| 2159 |
+
- 400
|
| 2160 |
+
- 500
|
| 2161 |
+
- 600
|
| 2162 |
+
- 700
|
| 2163 |
+
- 800
|
| 2164 |
+
- 900
|
| 2165 |
+
- 1000
|
| 2166 |
+
- 1100
|
| 2167 |
+
- 1200
|
| 2168 |
+
DETECTIONS_PER_IMAGE: 100
|
| 2169 |
+
EVAL_PERIOD: 0
|
| 2170 |
+
EXPECTED_RESULTS: []
|
| 2171 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 2172 |
+
PRECISE_BN:
|
| 2173 |
+
ENABLED: false
|
| 2174 |
+
NUM_ITER: 200
|
| 2175 |
+
VERSION: 2
|
| 2176 |
+
VIS_PERIOD: 0
|
| 2177 |
+
|
| 2178 |
+
[04/19 13:21:20] detectron2 INFO: Running with full config:
|
| 2179 |
+
CUDNN_BENCHMARK: False
|
| 2180 |
+
DATALOADER:
|
| 2181 |
+
ASPECT_RATIO_GROUPING: True
|
| 2182 |
+
FILTER_EMPTY_ANNOTATIONS: True
|
| 2183 |
+
NUM_WORKERS: 4
|
| 2184 |
+
REPEAT_THRESHOLD: 0.0
|
| 2185 |
+
SAMPLER_TRAIN: TrainingSampler
|
| 2186 |
+
DATASETS:
|
| 2187 |
+
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
|
| 2188 |
+
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
|
| 2189 |
+
PROPOSAL_FILES_TEST: ()
|
| 2190 |
+
PROPOSAL_FILES_TRAIN: ()
|
| 2191 |
+
TEST: ('modele-val',)
|
| 2192 |
+
TRAIN: ('modele-train',)
|
| 2193 |
+
GLOBAL:
|
| 2194 |
+
HACK: 1.0
|
| 2195 |
+
INPUT:
|
| 2196 |
+
CROP:
|
| 2197 |
+
ENABLED: False
|
| 2198 |
+
SIZE: [0.9, 0.9]
|
| 2199 |
+
TYPE: relative_range
|
| 2200 |
+
FORMAT: BGR
|
| 2201 |
+
MASK_FORMAT: polygon
|
| 2202 |
+
MAX_SIZE_TEST: 1333
|
| 2203 |
+
MAX_SIZE_TRAIN: 1333
|
| 2204 |
+
MIN_SIZE_TEST: 800
|
| 2205 |
+
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
| 2206 |
+
MIN_SIZE_TRAIN_SAMPLING: choice
|
| 2207 |
+
RANDOM_FLIP: horizontal
|
| 2208 |
+
MODEL:
|
| 2209 |
+
ANCHOR_GENERATOR:
|
| 2210 |
+
ANGLES: [[-90, 0, 90]]
|
| 2211 |
+
ASPECT_RATIOS: [[0.5, 1.0, 2.0]]
|
| 2212 |
+
NAME: DefaultAnchorGenerator
|
| 2213 |
+
OFFSET: 0.0
|
| 2214 |
+
SIZES: [[32], [64], [128], [256], [512]]
|
| 2215 |
+
BACKBONE:
|
| 2216 |
+
FREEZE_AT: 2
|
| 2217 |
+
NAME: build_resnet_fpn_backbone
|
| 2218 |
+
DEVICE: cuda
|
| 2219 |
+
FPN:
|
| 2220 |
+
FUSE_TYPE: sum
|
| 2221 |
+
IN_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 2222 |
+
NORM:
|
| 2223 |
+
OUT_CHANNELS: 256
|
| 2224 |
+
KEYPOINT_ON: False
|
| 2225 |
+
LOAD_PROPOSALS: False
|
| 2226 |
+
MASK_ON: True
|
| 2227 |
+
META_ARCHITECTURE: GeneralizedRCNN
|
| 2228 |
+
PANOPTIC_FPN:
|
| 2229 |
+
COMBINE:
|
| 2230 |
+
ENABLED: True
|
| 2231 |
+
INSTANCES_CONFIDENCE_THRESH: 0.5
|
| 2232 |
+
OVERLAP_THRESH: 0.5
|
| 2233 |
+
STUFF_AREA_LIMIT: 4096
|
| 2234 |
+
INSTANCE_LOSS_WEIGHT: 1.0
|
| 2235 |
+
PIXEL_MEAN: [103.53, 116.28, 123.675]
|
| 2236 |
+
PIXEL_STD: [1.0, 1.0, 1.0]
|
| 2237 |
+
PROPOSAL_GENERATOR:
|
| 2238 |
+
MIN_SIZE: 0
|
| 2239 |
+
NAME: RPN
|
| 2240 |
+
RESNETS:
|
| 2241 |
+
DEFORM_MODULATED: False
|
| 2242 |
+
DEFORM_NUM_GROUPS: 1
|
| 2243 |
+
DEFORM_ON_PER_STAGE: [False, False, False, False]
|
| 2244 |
+
DEPTH: 50
|
| 2245 |
+
NORM: FrozenBN
|
| 2246 |
+
NUM_GROUPS: 1
|
| 2247 |
+
OUT_FEATURES: ['res2', 'res3', 'res4', 'res5']
|
| 2248 |
+
RES2_OUT_CHANNELS: 256
|
| 2249 |
+
RES5_DILATION: 1
|
| 2250 |
+
STEM_OUT_CHANNELS: 64
|
| 2251 |
+
STRIDE_IN_1X1: True
|
| 2252 |
+
WIDTH_PER_GROUP: 64
|
| 2253 |
+
RETINANET:
|
| 2254 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 2255 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 2256 |
+
FOCAL_LOSS_ALPHA: 0.25
|
| 2257 |
+
FOCAL_LOSS_GAMMA: 2.0
|
| 2258 |
+
IN_FEATURES: ['p3', 'p4', 'p5', 'p6', 'p7']
|
| 2259 |
+
IOU_LABELS: [0, -1, 1]
|
| 2260 |
+
IOU_THRESHOLDS: [0.4, 0.5]
|
| 2261 |
+
NMS_THRESH_TEST: 0.5
|
| 2262 |
+
NORM:
|
| 2263 |
+
NUM_CLASSES: 80
|
| 2264 |
+
NUM_CONVS: 4
|
| 2265 |
+
PRIOR_PROB: 0.01
|
| 2266 |
+
SCORE_THRESH_TEST: 0.05
|
| 2267 |
+
SMOOTH_L1_LOSS_BETA: 0.1
|
| 2268 |
+
TOPK_CANDIDATES_TEST: 1000
|
| 2269 |
+
ROI_BOX_CASCADE_HEAD:
|
| 2270 |
+
BBOX_REG_WEIGHTS: ([10.0, 10.0, 5.0, 5.0], [20.0, 20.0, 10.0, 10.0], [30.0, 30.0, 15.0, 15.0])
|
| 2271 |
+
IOUS: (0.5, 0.6, 0.7)
|
| 2272 |
+
ROI_BOX_HEAD:
|
| 2273 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 2274 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 2275 |
+
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
|
| 2276 |
+
CLS_AGNOSTIC_BBOX_REG: False
|
| 2277 |
+
CONV_DIM: 256
|
| 2278 |
+
FC_DIM: 1024
|
| 2279 |
+
NAME: FastRCNNConvFCHead
|
| 2280 |
+
NORM:
|
| 2281 |
+
NUM_CONV: 0
|
| 2282 |
+
NUM_FC: 2
|
| 2283 |
+
POOLER_RESOLUTION: 7
|
| 2284 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2285 |
+
POOLER_TYPE: ROIAlignV2
|
| 2286 |
+
SMOOTH_L1_BETA: 0.0
|
| 2287 |
+
TRAIN_ON_PRED_BOXES: False
|
| 2288 |
+
ROI_HEADS:
|
| 2289 |
+
BATCH_SIZE_PER_IMAGE: 512
|
| 2290 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 2291 |
+
IOU_LABELS: [0, 1]
|
| 2292 |
+
IOU_THRESHOLDS: [0.5]
|
| 2293 |
+
NAME: StandardROIHeads
|
| 2294 |
+
NMS_THRESH_TEST: 0.5
|
| 2295 |
+
NUM_CLASSES: 2
|
| 2296 |
+
POSITIVE_FRACTION: 0.25
|
| 2297 |
+
PROPOSAL_APPEND_GT: True
|
| 2298 |
+
SCORE_THRESH_TEST: 0.05
|
| 2299 |
+
ROI_KEYPOINT_HEAD:
|
| 2300 |
+
CONV_DIMS: (512, 512, 512, 512, 512, 512, 512, 512)
|
| 2301 |
+
LOSS_WEIGHT: 1.0
|
| 2302 |
+
MIN_KEYPOINTS_PER_IMAGE: 1
|
| 2303 |
+
NAME: KRCNNConvDeconvUpsampleHead
|
| 2304 |
+
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: True
|
| 2305 |
+
NUM_KEYPOINTS: 17
|
| 2306 |
+
POOLER_RESOLUTION: 14
|
| 2307 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2308 |
+
POOLER_TYPE: ROIAlignV2
|
| 2309 |
+
ROI_MASK_HEAD:
|
| 2310 |
+
CLS_AGNOSTIC_MASK: False
|
| 2311 |
+
CONV_DIM: 256
|
| 2312 |
+
NAME: MaskRCNNConvUpsampleHead
|
| 2313 |
+
NORM:
|
| 2314 |
+
NUM_CONV: 4
|
| 2315 |
+
POOLER_RESOLUTION: 14
|
| 2316 |
+
POOLER_SAMPLING_RATIO: 0
|
| 2317 |
+
POOLER_TYPE: ROIAlignV2
|
| 2318 |
+
RPN:
|
| 2319 |
+
BATCH_SIZE_PER_IMAGE: 256
|
| 2320 |
+
BBOX_REG_LOSS_TYPE: smooth_l1
|
| 2321 |
+
BBOX_REG_LOSS_WEIGHT: 1.0
|
| 2322 |
+
BBOX_REG_WEIGHTS: (1.0, 1.0, 1.0, 1.0)
|
| 2323 |
+
BOUNDARY_THRESH: -1
|
| 2324 |
+
HEAD_NAME: StandardRPNHead
|
| 2325 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5', 'p6']
|
| 2326 |
+
IOU_LABELS: [0, -1, 1]
|
| 2327 |
+
IOU_THRESHOLDS: [0.3, 0.7]
|
| 2328 |
+
LOSS_WEIGHT: 1.0
|
| 2329 |
+
NMS_THRESH: 0.7
|
| 2330 |
+
POSITIVE_FRACTION: 0.5
|
| 2331 |
+
POST_NMS_TOPK_TEST: 1000
|
| 2332 |
+
POST_NMS_TOPK_TRAIN: 1000
|
| 2333 |
+
PRE_NMS_TOPK_TEST: 1000
|
| 2334 |
+
PRE_NMS_TOPK_TRAIN: 2000
|
| 2335 |
+
SMOOTH_L1_BETA: 0.0
|
| 2336 |
+
SEM_SEG_HEAD:
|
| 2337 |
+
COMMON_STRIDE: 4
|
| 2338 |
+
CONVS_DIM: 128
|
| 2339 |
+
IGNORE_VALUE: 255
|
| 2340 |
+
IN_FEATURES: ['p2', 'p3', 'p4', 'p5']
|
| 2341 |
+
LOSS_WEIGHT: 1.0
|
| 2342 |
+
NAME: SemSegFPNHead
|
| 2343 |
+
NORM: GN
|
| 2344 |
+
NUM_CLASSES: 54
|
| 2345 |
+
WEIGHTS: /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
| 2346 |
+
OUTPUT_DIR: /content/drive/MyDrive/layoutparser/modele
|
| 2347 |
+
SEED: -1
|
| 2348 |
+
SOLVER:
|
| 2349 |
+
AMP:
|
| 2350 |
+
ENABLED: False
|
| 2351 |
+
BASE_LR: 0.00025
|
| 2352 |
+
BIAS_LR_FACTOR: 1.0
|
| 2353 |
+
CHECKPOINT_PERIOD: 50
|
| 2354 |
+
CLIP_GRADIENTS:
|
| 2355 |
+
CLIP_TYPE: value
|
| 2356 |
+
CLIP_VALUE: 1.0
|
| 2357 |
+
ENABLED: False
|
| 2358 |
+
NORM_TYPE: 2.0
|
| 2359 |
+
GAMMA: 0.1
|
| 2360 |
+
IMS_PER_BATCH: 2
|
| 2361 |
+
LR_SCHEDULER_NAME: WarmupMultiStepLR
|
| 2362 |
+
MAX_ITER: 300
|
| 2363 |
+
MOMENTUM: 0.9
|
| 2364 |
+
NESTEROV: False
|
| 2365 |
+
REFERENCE_WORLD_SIZE: 0
|
| 2366 |
+
STEPS: (210000, 250000)
|
| 2367 |
+
WARMUP_FACTOR: 0.001
|
| 2368 |
+
WARMUP_ITERS: 1000
|
| 2369 |
+
WARMUP_METHOD: linear
|
| 2370 |
+
WEIGHT_DECAY: 0.0001
|
| 2371 |
+
WEIGHT_DECAY_BIAS: 0.0001
|
| 2372 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 2373 |
+
TEST:
|
| 2374 |
+
AUG:
|
| 2375 |
+
ENABLED: False
|
| 2376 |
+
FLIP: True
|
| 2377 |
+
MAX_SIZE: 4000
|
| 2378 |
+
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
| 2379 |
+
DETECTIONS_PER_IMAGE: 100
|
| 2380 |
+
EVAL_PERIOD: 0
|
| 2381 |
+
EXPECTED_RESULTS: []
|
| 2382 |
+
KEYPOINT_OKS_SIGMAS: []
|
| 2383 |
+
PRECISE_BN:
|
| 2384 |
+
ENABLED: False
|
| 2385 |
+
NUM_ITER: 200
|
| 2386 |
+
VERSION: 2
|
| 2387 |
+
VIS_PERIOD: 0
|
| 2388 |
+
[04/19 13:21:20] detectron2 INFO: Full config saved to /content/drive/MyDrive/layoutparser/modele/config.yaml
|
| 2389 |
+
[04/19 13:21:20] d2.utils.env INFO: Using a generated random seed 20391353
|
| 2390 |
+
[04/19 13:21:23] d2.engine.defaults INFO: Model:
|
| 2391 |
+
GeneralizedRCNN(
|
| 2392 |
+
(backbone): FPN(
|
| 2393 |
+
(fpn_lateral2): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 2394 |
+
(fpn_output2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 2395 |
+
(fpn_lateral3): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 2396 |
+
(fpn_output3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 2397 |
+
(fpn_lateral4): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 2398 |
+
(fpn_output4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 2399 |
+
(fpn_lateral5): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
|
| 2400 |
+
(fpn_output5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 2401 |
+
(top_block): LastLevelMaxPool()
|
| 2402 |
+
(bottom_up): ResNet(
|
| 2403 |
+
(stem): BasicStem(
|
| 2404 |
+
(conv1): Conv2d(
|
| 2405 |
+
3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
|
| 2406 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2407 |
+
)
|
| 2408 |
+
)
|
| 2409 |
+
(res2): Sequential(
|
| 2410 |
+
(0): BottleneckBlock(
|
| 2411 |
+
(shortcut): Conv2d(
|
| 2412 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2413 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2414 |
+
)
|
| 2415 |
+
(conv1): Conv2d(
|
| 2416 |
+
64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2417 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2418 |
+
)
|
| 2419 |
+
(conv2): Conv2d(
|
| 2420 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2421 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2422 |
+
)
|
| 2423 |
+
(conv3): Conv2d(
|
| 2424 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2425 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2426 |
+
)
|
| 2427 |
+
)
|
| 2428 |
+
(1): BottleneckBlock(
|
| 2429 |
+
(conv1): Conv2d(
|
| 2430 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2431 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2432 |
+
)
|
| 2433 |
+
(conv2): Conv2d(
|
| 2434 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2435 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2436 |
+
)
|
| 2437 |
+
(conv3): Conv2d(
|
| 2438 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2439 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2440 |
+
)
|
| 2441 |
+
)
|
| 2442 |
+
(2): BottleneckBlock(
|
| 2443 |
+
(conv1): Conv2d(
|
| 2444 |
+
256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2445 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2446 |
+
)
|
| 2447 |
+
(conv2): Conv2d(
|
| 2448 |
+
64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2449 |
+
(norm): FrozenBatchNorm2d(num_features=64, eps=1e-05)
|
| 2450 |
+
)
|
| 2451 |
+
(conv3): Conv2d(
|
| 2452 |
+
64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2453 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2454 |
+
)
|
| 2455 |
+
)
|
| 2456 |
+
)
|
| 2457 |
+
(res3): Sequential(
|
| 2458 |
+
(0): BottleneckBlock(
|
| 2459 |
+
(shortcut): Conv2d(
|
| 2460 |
+
256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2461 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2462 |
+
)
|
| 2463 |
+
(conv1): Conv2d(
|
| 2464 |
+
256, 128, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2465 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2466 |
+
)
|
| 2467 |
+
(conv2): Conv2d(
|
| 2468 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2469 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2470 |
+
)
|
| 2471 |
+
(conv3): Conv2d(
|
| 2472 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2473 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2474 |
+
)
|
| 2475 |
+
)
|
| 2476 |
+
(1): BottleneckBlock(
|
| 2477 |
+
(conv1): Conv2d(
|
| 2478 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2479 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2480 |
+
)
|
| 2481 |
+
(conv2): Conv2d(
|
| 2482 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2483 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2484 |
+
)
|
| 2485 |
+
(conv3): Conv2d(
|
| 2486 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2487 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2488 |
+
)
|
| 2489 |
+
)
|
| 2490 |
+
(2): BottleneckBlock(
|
| 2491 |
+
(conv1): Conv2d(
|
| 2492 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2493 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2494 |
+
)
|
| 2495 |
+
(conv2): Conv2d(
|
| 2496 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2497 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2498 |
+
)
|
| 2499 |
+
(conv3): Conv2d(
|
| 2500 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2501 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2502 |
+
)
|
| 2503 |
+
)
|
| 2504 |
+
(3): BottleneckBlock(
|
| 2505 |
+
(conv1): Conv2d(
|
| 2506 |
+
512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2507 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2508 |
+
)
|
| 2509 |
+
(conv2): Conv2d(
|
| 2510 |
+
128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2511 |
+
(norm): FrozenBatchNorm2d(num_features=128, eps=1e-05)
|
| 2512 |
+
)
|
| 2513 |
+
(conv3): Conv2d(
|
| 2514 |
+
128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2515 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2516 |
+
)
|
| 2517 |
+
)
|
| 2518 |
+
)
|
| 2519 |
+
(res4): Sequential(
|
| 2520 |
+
(0): BottleneckBlock(
|
| 2521 |
+
(shortcut): Conv2d(
|
| 2522 |
+
512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2523 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2524 |
+
)
|
| 2525 |
+
(conv1): Conv2d(
|
| 2526 |
+
512, 256, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2527 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2528 |
+
)
|
| 2529 |
+
(conv2): Conv2d(
|
| 2530 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2531 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2532 |
+
)
|
| 2533 |
+
(conv3): Conv2d(
|
| 2534 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2535 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2536 |
+
)
|
| 2537 |
+
)
|
| 2538 |
+
(1): BottleneckBlock(
|
| 2539 |
+
(conv1): Conv2d(
|
| 2540 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2541 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2542 |
+
)
|
| 2543 |
+
(conv2): Conv2d(
|
| 2544 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2545 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2546 |
+
)
|
| 2547 |
+
(conv3): Conv2d(
|
| 2548 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2549 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2550 |
+
)
|
| 2551 |
+
)
|
| 2552 |
+
(2): BottleneckBlock(
|
| 2553 |
+
(conv1): Conv2d(
|
| 2554 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2555 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2556 |
+
)
|
| 2557 |
+
(conv2): Conv2d(
|
| 2558 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2559 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2560 |
+
)
|
| 2561 |
+
(conv3): Conv2d(
|
| 2562 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2563 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2564 |
+
)
|
| 2565 |
+
)
|
| 2566 |
+
(3): BottleneckBlock(
|
| 2567 |
+
(conv1): Conv2d(
|
| 2568 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2569 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2570 |
+
)
|
| 2571 |
+
(conv2): Conv2d(
|
| 2572 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2573 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2574 |
+
)
|
| 2575 |
+
(conv3): Conv2d(
|
| 2576 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2577 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2578 |
+
)
|
| 2579 |
+
)
|
| 2580 |
+
(4): BottleneckBlock(
|
| 2581 |
+
(conv1): Conv2d(
|
| 2582 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2583 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2584 |
+
)
|
| 2585 |
+
(conv2): Conv2d(
|
| 2586 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2587 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2588 |
+
)
|
| 2589 |
+
(conv3): Conv2d(
|
| 2590 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2591 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2592 |
+
)
|
| 2593 |
+
)
|
| 2594 |
+
(5): BottleneckBlock(
|
| 2595 |
+
(conv1): Conv2d(
|
| 2596 |
+
1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2597 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2598 |
+
)
|
| 2599 |
+
(conv2): Conv2d(
|
| 2600 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2601 |
+
(norm): FrozenBatchNorm2d(num_features=256, eps=1e-05)
|
| 2602 |
+
)
|
| 2603 |
+
(conv3): Conv2d(
|
| 2604 |
+
256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2605 |
+
(norm): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
|
| 2606 |
+
)
|
| 2607 |
+
)
|
| 2608 |
+
)
|
| 2609 |
+
(res5): Sequential(
|
| 2610 |
+
(0): BottleneckBlock(
|
| 2611 |
+
(shortcut): Conv2d(
|
| 2612 |
+
1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2613 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 2614 |
+
)
|
| 2615 |
+
(conv1): Conv2d(
|
| 2616 |
+
1024, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
|
| 2617 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2618 |
+
)
|
| 2619 |
+
(conv2): Conv2d(
|
| 2620 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2621 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2622 |
+
)
|
| 2623 |
+
(conv3): Conv2d(
|
| 2624 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2625 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 2626 |
+
)
|
| 2627 |
+
)
|
| 2628 |
+
(1): BottleneckBlock(
|
| 2629 |
+
(conv1): Conv2d(
|
| 2630 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2631 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2632 |
+
)
|
| 2633 |
+
(conv2): Conv2d(
|
| 2634 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2635 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2636 |
+
)
|
| 2637 |
+
(conv3): Conv2d(
|
| 2638 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2639 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 2640 |
+
)
|
| 2641 |
+
)
|
| 2642 |
+
(2): BottleneckBlock(
|
| 2643 |
+
(conv1): Conv2d(
|
| 2644 |
+
2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2645 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2646 |
+
)
|
| 2647 |
+
(conv2): Conv2d(
|
| 2648 |
+
512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
|
| 2649 |
+
(norm): FrozenBatchNorm2d(num_features=512, eps=1e-05)
|
| 2650 |
+
)
|
| 2651 |
+
(conv3): Conv2d(
|
| 2652 |
+
512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
|
| 2653 |
+
(norm): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
|
| 2654 |
+
)
|
| 2655 |
+
)
|
| 2656 |
+
)
|
| 2657 |
+
)
|
| 2658 |
+
)
|
| 2659 |
+
(proposal_generator): RPN(
|
| 2660 |
+
(rpn_head): StandardRPNHead(
|
| 2661 |
+
(conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 2662 |
+
(objectness_logits): Conv2d(256, 3, kernel_size=(1, 1), stride=(1, 1))
|
| 2663 |
+
(anchor_deltas): Conv2d(256, 12, kernel_size=(1, 1), stride=(1, 1))
|
| 2664 |
+
)
|
| 2665 |
+
(anchor_generator): DefaultAnchorGenerator(
|
| 2666 |
+
(cell_anchors): BufferList()
|
| 2667 |
+
)
|
| 2668 |
+
)
|
| 2669 |
+
(roi_heads): StandardROIHeads(
|
| 2670 |
+
(box_pooler): ROIPooler(
|
| 2671 |
+
(level_poolers): ModuleList(
|
| 2672 |
+
(0): ROIAlign(output_size=(7, 7), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 2673 |
+
(1): ROIAlign(output_size=(7, 7), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 2674 |
+
(2): ROIAlign(output_size=(7, 7), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 2675 |
+
(3): ROIAlign(output_size=(7, 7), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 2676 |
+
)
|
| 2677 |
+
)
|
| 2678 |
+
(box_head): FastRCNNConvFCHead(
|
| 2679 |
+
(flatten): Flatten(start_dim=1, end_dim=-1)
|
| 2680 |
+
(fc1): Linear(in_features=12544, out_features=1024, bias=True)
|
| 2681 |
+
(fc_relu1): ReLU()
|
| 2682 |
+
(fc2): Linear(in_features=1024, out_features=1024, bias=True)
|
| 2683 |
+
(fc_relu2): ReLU()
|
| 2684 |
+
)
|
| 2685 |
+
(box_predictor): FastRCNNOutputLayers(
|
| 2686 |
+
(cls_score): Linear(in_features=1024, out_features=3, bias=True)
|
| 2687 |
+
(bbox_pred): Linear(in_features=1024, out_features=8, bias=True)
|
| 2688 |
+
)
|
| 2689 |
+
(mask_pooler): ROIPooler(
|
| 2690 |
+
(level_poolers): ModuleList(
|
| 2691 |
+
(0): ROIAlign(output_size=(14, 14), spatial_scale=0.25, sampling_ratio=0, aligned=True)
|
| 2692 |
+
(1): ROIAlign(output_size=(14, 14), spatial_scale=0.125, sampling_ratio=0, aligned=True)
|
| 2693 |
+
(2): ROIAlign(output_size=(14, 14), spatial_scale=0.0625, sampling_ratio=0, aligned=True)
|
| 2694 |
+
(3): ROIAlign(output_size=(14, 14), spatial_scale=0.03125, sampling_ratio=0, aligned=True)
|
| 2695 |
+
)
|
| 2696 |
+
)
|
| 2697 |
+
(mask_head): MaskRCNNConvUpsampleHead(
|
| 2698 |
+
(mask_fcn1): Conv2d(
|
| 2699 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 2700 |
+
(activation): ReLU()
|
| 2701 |
+
)
|
| 2702 |
+
(mask_fcn2): Conv2d(
|
| 2703 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 2704 |
+
(activation): ReLU()
|
| 2705 |
+
)
|
| 2706 |
+
(mask_fcn3): Conv2d(
|
| 2707 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 2708 |
+
(activation): ReLU()
|
| 2709 |
+
)
|
| 2710 |
+
(mask_fcn4): Conv2d(
|
| 2711 |
+
256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
|
| 2712 |
+
(activation): ReLU()
|
| 2713 |
+
)
|
| 2714 |
+
(deconv): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2))
|
| 2715 |
+
(deconv_relu): ReLU()
|
| 2716 |
+
(predictor): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))
|
| 2717 |
+
)
|
| 2718 |
+
)
|
| 2719 |
+
)
|
| 2720 |
+
[04/19 13:21:23] d2.data.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip(), RandomRotation(angle=[-90.0, 0.0])]
|
| 2721 |
+
[04/19 13:21:23] d2.data.datasets.coco INFO: Loaded 36 images in COCO format from /content/drive/MyDrive/layoutparser/dataset6/train/via_project_19Apr2023_15h0m_coco.json
|
| 2722 |
+
[04/19 13:21:23] d2.data.build INFO: Removed 6 images with no usable annotations. 30 images left.
|
| 2723 |
+
[04/19 13:21:23] d2.data.build INFO: Distribution of instances among all 2 categories:
|
| 2724 |
+
[36m| category | #instances | category | #instances |
|
| 2725 |
+
|:----------:|:-------------|:----------:|:-------------|
|
| 2726 |
+
| | 89 | | 0 |
|
| 2727 |
+
| | | | |
|
| 2728 |
+
| total | 89 | | |[0m
|
| 2729 |
+
[04/19 13:21:23] d2.data.build INFO: Using training sampler TrainingSampler
|
| 2730 |
+
[04/19 13:21:23] d2.data.common INFO: Serializing 30 elements to byte tensors and concatenating them all ...
|
| 2731 |
+
[04/19 13:21:23] d2.data.common INFO: Serialized dataset takes 0.01 MiB
|
| 2732 |
+
[04/19 13:21:23] d2.solver.build WARNING: SOLVER.STEPS contains values larger than SOLVER.MAX_ITER. These values will be ignored.
|
| 2733 |
+
[04/19 13:21:26] fvcore.common.checkpoint INFO: Loading checkpoint from /content/drive/MyDrive/layoutparser/modele/modele3_NP?/model_final.pth
|
| 2734 |
+
[04/19 13:21:31] d2.engine.train_loop INFO: Starting training from iteration 0
|
| 2735 |
+
[04/19 13:21:59] d2.utils.events INFO: eta: 0:03:57 iter: 19 total_loss: 0.5817 loss_cls: 0.122 loss_box_reg: 0.1813 loss_mask: 0.2043 loss_rpn_cls: 0.01694 loss_rpn_loc: 0.02236 time: 0.8670 data_time: 0.0615 lr: 4.9953e-06 max_mem: 4741M
|
| 2736 |
+
[04/19 13:22:16] d2.utils.events INFO: eta: 0:03:36 iter: 39 total_loss: 0.5271 loss_cls: 0.108 loss_box_reg: 0.1928 loss_mask: 0.1966 loss_rpn_cls: 0.01371 loss_rpn_loc: 0.0178 time: 0.8510 data_time: 0.0094 lr: 9.9902e-06 max_mem: 4741M
|
| 2737 |
+
[04/19 13:22:25] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000049.pth
|
| 2738 |
+
[04/19 13:22:35] d2.utils.events INFO: eta: 0:03:22 iter: 59 total_loss: 0.5328 loss_cls: 0.09943 loss_box_reg: 0.1768 loss_mask: 0.1878 loss_rpn_cls: 0.01652 loss_rpn_loc: 0.02977 time: 0.8703 data_time: 0.0149 lr: 1.4985e-05 max_mem: 4742M
|
| 2739 |
+
[04/19 13:22:53] d2.utils.events INFO: eta: 0:03:09 iter: 79 total_loss: 0.5528 loss_cls: 0.1002 loss_box_reg: 0.1706 loss_mask: 0.2053 loss_rpn_cls: 0.01738 loss_rpn_loc: 0.02357 time: 0.8795 data_time: 0.0108 lr: 1.998e-05 max_mem: 4742M
|
| 2740 |
+
[04/19 13:23:11] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000099.pth
|
| 2741 |
+
[04/19 13:23:13] d2.utils.events INFO: eta: 0:02:53 iter: 99 total_loss: 0.5248 loss_cls: 0.08265 loss_box_reg: 0.1726 loss_mask: 0.1772 loss_rpn_cls: 0.01976 loss_rpn_loc: 0.02078 time: 0.8858 data_time: 0.0114 lr: 2.4975e-05 max_mem: 4742M
|
| 2742 |
+
[04/19 13:23:32] d2.utils.events INFO: eta: 0:02:38 iter: 119 total_loss: 0.5286 loss_cls: 0.09827 loss_box_reg: 0.1722 loss_mask: 0.1774 loss_rpn_cls: 0.01788 loss_rpn_loc: 0.0259 time: 0.8971 data_time: 0.0096 lr: 2.997e-05 max_mem: 4742M
|
| 2743 |
+
[04/19 13:23:50] d2.utils.events INFO: eta: 0:02:21 iter: 139 total_loss: 0.5629 loss_cls: 0.09456 loss_box_reg: 0.1846 loss_mask: 0.1865 loss_rpn_cls: 0.02039 loss_rpn_loc: 0.02839 time: 0.9012 data_time: 0.0110 lr: 3.4965e-05 max_mem: 4742M
|
| 2744 |
+
[04/19 13:23:59] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000149.pth
|
| 2745 |
+
[04/19 13:24:10] d2.utils.events INFO: eta: 0:02:04 iter: 159 total_loss: 0.491 loss_cls: 0.09832 loss_box_reg: 0.1694 loss_mask: 0.1691 loss_rpn_cls: 0.008938 loss_rpn_loc: 0.01734 time: 0.9020 data_time: 0.0080 lr: 3.996e-05 max_mem: 4742M
|
| 2746 |
+
[04/19 13:24:29] d2.utils.events INFO: eta: 0:01:47 iter: 179 total_loss: 0.4756 loss_cls: 0.08483 loss_box_reg: 0.162 loss_mask: 0.1571 loss_rpn_cls: 0.01482 loss_rpn_loc: 0.03214 time: 0.9094 data_time: 0.0101 lr: 4.4955e-05 max_mem: 4742M
|
| 2747 |
+
[04/19 13:24:49] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000199.pth
|
| 2748 |
+
[04/19 13:24:50] d2.utils.events INFO: eta: 0:01:30 iter: 199 total_loss: 0.4405 loss_cls: 0.08707 loss_box_reg: 0.1718 loss_mask: 0.1673 loss_rpn_cls: 0.008687 loss_rpn_loc: 0.02504 time: 0.9157 data_time: 0.0107 lr: 4.995e-05 max_mem: 4742M
|
| 2749 |
+
[04/19 13:25:09] d2.utils.events INFO: eta: 0:01:12 iter: 219 total_loss: 0.4541 loss_cls: 0.08539 loss_box_reg: 0.1581 loss_mask: 0.1605 loss_rpn_cls: 0.01627 loss_rpn_loc: 0.01755 time: 0.9168 data_time: 0.0112 lr: 5.4945e-05 max_mem: 4742M
|
| 2750 |
+
[04/19 13:25:28] d2.utils.events INFO: eta: 0:00:54 iter: 239 total_loss: 0.4896 loss_cls: 0.09352 loss_box_reg: 0.1829 loss_mask: 0.1675 loss_rpn_cls: 0.0139 loss_rpn_loc: 0.02522 time: 0.9196 data_time: 0.0080 lr: 5.994e-05 max_mem: 4742M
|
| 2751 |
+
[04/19 13:25:37] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000249.pth
|
| 2752 |
+
[04/19 13:25:48] d2.utils.events INFO: eta: 0:00:36 iter: 259 total_loss: 0.4373 loss_cls: 0.06817 loss_box_reg: 0.1526 loss_mask: 0.1634 loss_rpn_cls: 0.0137 loss_rpn_loc: 0.02394 time: 0.9241 data_time: 0.0098 lr: 6.4935e-05 max_mem: 4742M
|
| 2753 |
+
[04/19 13:26:08] d2.utils.events INFO: eta: 0:00:18 iter: 279 total_loss: 0.4922 loss_cls: 0.1011 loss_box_reg: 0.1941 loss_mask: 0.1613 loss_rpn_cls: 0.01023 loss_rpn_loc: 0.03586 time: 0.9272 data_time: 0.0080 lr: 6.993e-05 max_mem: 4742M
|
| 2754 |
+
[04/19 13:26:28] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_0000299.pth
|
| 2755 |
+
[04/19 13:26:29] fvcore.common.checkpoint INFO: Saving checkpoint to /content/drive/MyDrive/layoutparser/modele/model_final.pth
|
| 2756 |
+
[04/19 13:26:31] d2.utils.events INFO: eta: 0:00:00 iter: 299 total_loss: 0.4673 loss_cls: 0.08663 loss_box_reg: 0.178 loss_mask: 0.1653 loss_rpn_cls: 0.006576 loss_rpn_loc: 0.02131 time: 0.9322 data_time: 0.0116 lr: 7.4925e-05 max_mem: 4742M
|
| 2757 |
+
[04/19 13:26:31] d2.engine.hooks INFO: Overall training speed: 298 iterations in 0:04:37 (0.9322 s / it)
|
| 2758 |
+
[04/19 13:26:31] d2.engine.hooks INFO: Total training time: 0:04:47 (0:00:09 on hooks)
|
metrics.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"data_time": 0.0078072735000205284, "eta_seconds": 237.39525767999226, "fast_rcnn/cls_accuracy": 0.95166015625, "fast_rcnn/false_negative": 0.3174242424242424, "fast_rcnn/fg_cls_accuracy": 0.6825757575757576, "iteration": 19, "loss_box_reg": 0.18126913160085678, "loss_cls": 0.12200355529785156, "loss_mask": 0.20430559664964676, "loss_rpn_cls": 0.016937402077019215, "loss_rpn_loc": 0.022357339970767498, "lr": 4.99525e-06, "mask_rcnn/accuracy": 0.9157851735164111, "mask_rcnn/false_negative": 0.08747882744709648, "mask_rcnn/false_positive": 0.0695743153731449, "roi_head/num_bg_samples": 451.75, "roi_head/num_fg_samples": 60.25, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8478402059999723, "total_loss": 0.5817432205658406}
|
| 2 |
+
{"data_time": 0.00806954000006499, "eta_seconds": 216.88964089000365, "fast_rcnn/cls_accuracy": 0.958984375, "fast_rcnn/false_negative": 0.16390334811387441, "fast_rcnn/fg_cls_accuracy": 0.8360966518861256, "iteration": 39, "loss_box_reg": 0.19283011555671692, "loss_cls": 0.1080242358148098, "loss_mask": 0.19663811475038528, "loss_rpn_cls": 0.013711910229176283, "loss_rpn_loc": 0.017802692018449306, "lr": 9.99025e-06, "mask_rcnn/accuracy": 0.9198041697517024, "mask_rcnn/false_negative": 0.06658453429298014, "mask_rcnn/false_positive": 0.0970188841812121, "roi_head/num_bg_samples": 457.75, "roi_head/num_fg_samples": 54.25, "rpn/num_neg_anchors": 246.5, "rpn/num_pos_anchors": 9.5, "time": 0.833926538500009, "total_loss": 0.5270909374230541}
|
| 3 |
+
{"data_time": 0.00786942999997109, "eta_seconds": 202.049228399992, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.17474278128111514, "fast_rcnn/fg_cls_accuracy": 0.8252572187188849, "iteration": 59, "loss_box_reg": 0.17683134227991104, "loss_cls": 0.09942953288555145, "loss_mask": 0.18784072250127792, "loss_rpn_cls": 0.016522271558642387, "loss_rpn_loc": 0.029772663488984108, "lr": 1.4985249999999999e-05, "mask_rcnn/accuracy": 0.9230181719833241, "mask_rcnn/false_negative": 0.0657658037432446, "mask_rcnn/false_positive": 0.0900701805017563, "roi_head/num_bg_samples": 448.5, "roi_head/num_fg_samples": 63.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9238360184999692, "total_loss": 0.5328234452754259}
|
| 4 |
+
{"data_time": 0.008662080000021888, "eta_seconds": 189.94938489998844, "fast_rcnn/cls_accuracy": 0.95556640625, "fast_rcnn/false_negative": 0.18949298469387754, "fast_rcnn/fg_cls_accuracy": 0.8105070153061225, "iteration": 79, "loss_box_reg": 0.1706439107656479, "loss_cls": 0.10022062435746193, "loss_mask": 0.2053210288286209, "loss_rpn_cls": 0.01738046295940876, "loss_rpn_loc": 0.023568041622638702, "lr": 1.998025e-05, "mask_rcnn/accuracy": 0.9150773466560775, "mask_rcnn/false_negative": 0.07122972866131304, "mask_rcnn/false_positive": 0.09154645211619379, "roi_head/num_bg_samples": 449.25, "roi_head/num_fg_samples": 62.75, "rpn/num_neg_anchors": 240.25, "rpn/num_pos_anchors": 15.75, "time": 0.8898190154999952, "total_loss": 0.5527677149511874}
|
| 5 |
+
{"data_time": 0.00794200899997577, "eta_seconds": 173.0306518999953, "fast_rcnn/cls_accuracy": 0.96337890625, "fast_rcnn/false_negative": 0.16227766227766227, "fast_rcnn/fg_cls_accuracy": 0.8377223377223377, "iteration": 99, "loss_box_reg": 0.1726074069738388, "loss_cls": 0.08265357092022896, "loss_mask": 0.17723622918128967, "loss_rpn_cls": 0.019758455455303192, "loss_rpn_loc": 0.020779786631464958, "lr": 2.497525e-05, "mask_rcnn/accuracy": 0.926530693319756, "mask_rcnn/false_negative": 0.060582644882807374, "mask_rcnn/false_positive": 0.08944657671381483, "roi_head/num_bg_samples": 455.25, "roi_head/num_fg_samples": 56.75, "rpn/num_neg_anchors": 241.0, "rpn/num_pos_anchors": 15.0, "time": 0.8802101579999544, "total_loss": 0.5247725388035178}
|
| 6 |
+
{"data_time": 0.008146928499968453, "eta_seconds": 158.05110491999926, "fast_rcnn/cls_accuracy": 0.9560546875, "fast_rcnn/false_negative": 0.17490097977902858, "fast_rcnn/fg_cls_accuracy": 0.8250990202209715, "iteration": 119, "loss_box_reg": 0.1722310408949852, "loss_cls": 0.09827171638607979, "loss_mask": 0.17743538320064545, "loss_rpn_cls": 0.01788422279059887, "loss_rpn_loc": 0.02590081002563238, "lr": 2.997025e-05, "mask_rcnn/accuracy": 0.9272291260401985, "mask_rcnn/false_negative": 0.05649131234239554, "mask_rcnn/false_positive": 0.08877379884621533, "roi_head/num_bg_samples": 445.5, "roi_head/num_fg_samples": 66.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9440659295000273, "total_loss": 0.5285513289272785}
|
| 7 |
+
{"data_time": 0.008035532000008061, "eta_seconds": 141.67043927999657, "fast_rcnn/cls_accuracy": 0.96142578125, "fast_rcnn/false_negative": 0.16287878787878787, "fast_rcnn/fg_cls_accuracy": 0.8371212121212122, "iteration": 139, "loss_box_reg": 0.18458272516727448, "loss_cls": 0.09455696865916252, "loss_mask": 0.18651333451271057, "loss_rpn_cls": 0.020386052317917347, "loss_rpn_loc": 0.02839471399784088, "lr": 3.496525e-05, "mask_rcnn/accuracy": 0.9227865388579675, "mask_rcnn/false_negative": 0.07823887426949008, "mask_rcnn/false_positive": 0.07714565725517517, "roi_head/num_bg_samples": 446.5, "roi_head/num_fg_samples": 65.5, "rpn/num_neg_anchors": 238.25, "rpn/num_pos_anchors": 17.75, "time": 0.9290176410000299, "total_loss": 0.5628998675383627}
|
| 8 |
+
{"data_time": 0.007225867999977709, "eta_seconds": 124.62774071999547, "fast_rcnn/cls_accuracy": 0.96044921875, "fast_rcnn/false_negative": 0.1421979510625688, "fast_rcnn/fg_cls_accuracy": 0.8578020489374312, "iteration": 159, "loss_box_reg": 0.1694139465689659, "loss_cls": 0.0983157642185688, "loss_mask": 0.1690504029393196, "loss_rpn_cls": 0.008938258048146963, "loss_rpn_loc": 0.017336225137114525, "lr": 3.996025e-05, "mask_rcnn/accuracy": 0.9304054076088729, "mask_rcnn/false_negative": 0.05453408259940976, "mask_rcnn/false_positive": 0.09687290684287767, "roi_head/num_bg_samples": 445.25, "roi_head/num_fg_samples": 66.75, "rpn/num_neg_anchors": 241.5, "rpn/num_pos_anchors": 14.5, "time": 0.9201212560000158, "total_loss": 0.4909819355234504}
|
| 9 |
+
{"data_time": 0.00790757049998092, "eta_seconds": 107.98438782000176, "fast_rcnn/cls_accuracy": 0.9638671875, "fast_rcnn/false_negative": 0.14458689458689458, "fast_rcnn/fg_cls_accuracy": 0.8554131054131053, "iteration": 179, "loss_box_reg": 0.16203460097312927, "loss_cls": 0.08482548221945763, "loss_mask": 0.15712527930736542, "loss_rpn_cls": 0.014815961476415396, "loss_rpn_loc": 0.03214004077017307, "lr": 4.4955249999999996e-05, "mask_rcnn/accuracy": 0.9360310090632289, "mask_rcnn/false_negative": 0.052590317311748784, "mask_rcnn/false_positive": 0.07957992414234528, "roi_head/num_bg_samples": 450.25, "roi_head/num_fg_samples": 61.75, "rpn/num_neg_anchors": 234.75, "rpn/num_pos_anchors": 21.25, "time": 0.9635756369999626, "total_loss": 0.4756494527682662}
|
| 10 |
+
{"data_time": 0.0086770730000012, "eta_seconds": 90.48390140000038, "fast_rcnn/cls_accuracy": 0.96484375, "fast_rcnn/false_negative": 0.1505813953488372, "fast_rcnn/fg_cls_accuracy": 0.8494186046511627, "iteration": 199, "loss_box_reg": 0.17175166308879852, "loss_cls": 0.08706623315811157, "loss_mask": 0.16731856018304825, "loss_rpn_cls": 0.008686745539307594, "loss_rpn_loc": 0.02504018973559141, "lr": 4.995025e-05, "mask_rcnn/accuracy": 0.9339812504672198, "mask_rcnn/false_negative": 0.05094937251124136, "mask_rcnn/false_positive": 0.08033686683134766, "roi_head/num_bg_samples": 440.25, "roi_head/num_fg_samples": 71.75, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9430582679999588, "total_loss": 0.44054083712399006}
|
| 11 |
+
{"data_time": 0.008456396499980201, "eta_seconds": 72.20415547999892, "fast_rcnn/cls_accuracy": 0.96435546875, "fast_rcnn/false_negative": 0.1619129207821004, "fast_rcnn/fg_cls_accuracy": 0.8380870792178996, "iteration": 219, "loss_box_reg": 0.15810220688581467, "loss_cls": 0.0853872038424015, "loss_mask": 0.16054382175207138, "loss_rpn_cls": 0.0162694756872952, "loss_rpn_loc": 0.017554521560668945, "lr": 5.4945249999999994e-05, "mask_rcnn/accuracy": 0.9320155062452881, "mask_rcnn/false_negative": 0.04592440045344945, "mask_rcnn/false_positive": 0.0795499642582482, "roi_head/num_bg_samples": 451.5, "roi_head/num_fg_samples": 60.5, "rpn/num_neg_anchors": 242.5, "rpn/num_pos_anchors": 13.5, "time": 0.8711087875000203, "total_loss": 0.45414171810261905}
|
| 12 |
+
{"data_time": 0.007589212500022313, "eta_seconds": 54.58721795999736, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.16044207317073172, "fast_rcnn/fg_cls_accuracy": 0.8395579268292683, "iteration": 239, "loss_box_reg": 0.1828964427113533, "loss_cls": 0.09351714327931404, "loss_mask": 0.16754969954490662, "loss_rpn_cls": 0.013895321637392044, "loss_rpn_loc": 0.025216294452548027, "lr": 5.994025e-05, "mask_rcnn/accuracy": 0.9330968072439287, "mask_rcnn/false_negative": 0.06683586210006436, "mask_rcnn/false_positive": 0.07417598373963799, "roi_head/num_bg_samples": 444.5, "roi_head/num_fg_samples": 67.5, "rpn/num_neg_anchors": 236.75, "rpn/num_pos_anchors": 19.25, "time": 0.9715423750000127, "total_loss": 0.48956847935914993}
|
| 13 |
+
{"data_time": 0.007639148999999179, "eta_seconds": 36.52443835999975, "fast_rcnn/cls_accuracy": 0.97265625, "fast_rcnn/false_negative": 0.13006756756756757, "fast_rcnn/fg_cls_accuracy": 0.8699324324324325, "iteration": 259, "loss_box_reg": 0.15263817459344864, "loss_cls": 0.06817140802741051, "loss_mask": 0.16339514404535294, "loss_rpn_cls": 0.013702766969799995, "loss_rpn_loc": 0.02394229080528021, "lr": 6.493524999999999e-05, "mask_rcnn/accuracy": 0.9331995923664416, "mask_rcnn/false_negative": 0.06182471100588811, "mask_rcnn/false_positive": 0.07560936337703598, "roi_head/num_bg_samples": 456.0, "roi_head/num_fg_samples": 56.0, "rpn/num_neg_anchors": 237.25, "rpn/num_pos_anchors": 18.75, "time": 0.9697470364999958, "total_loss": 0.4373055868782103}
|
| 14 |
+
{"data_time": 0.006967480000014348, "eta_seconds": 18.328599830000485, "fast_rcnn/cls_accuracy": 0.95849609375, "fast_rcnn/false_negative": 0.15975460122699386, "fast_rcnn/fg_cls_accuracy": 0.8402453987730061, "iteration": 279, "loss_box_reg": 0.19406820833683014, "loss_cls": 0.10113400965929031, "loss_mask": 0.16126281768083572, "loss_rpn_cls": 0.010230929590761662, "loss_rpn_loc": 0.03586099483072758, "lr": 6.993025000000002e-05, "mask_rcnn/accuracy": 0.9344176832287108, "mask_rcnn/false_negative": 0.05820550465518141, "mask_rcnn/false_positive": 0.07525972862418362, "roi_head/num_bg_samples": 439.25, "roi_head/num_fg_samples": 72.75, "rpn/num_neg_anchors": 232.25, "rpn/num_pos_anchors": 23.75, "time": 0.9761503915000276, "total_loss": 0.49223250965587795}
|
| 15 |
+
{"data_time": 0.006742446499970356, "eta_seconds": 0.0, "fast_rcnn/cls_accuracy": 0.96240234375, "fast_rcnn/false_negative": 0.14442586399108137, "fast_rcnn/fg_cls_accuracy": 0.8555741360089186, "iteration": 299, "loss_box_reg": 0.177964448928833, "loss_cls": 0.08662557601928711, "loss_mask": 0.16527117043733597, "loss_rpn_cls": 0.00657613156363368, "loss_rpn_loc": 0.02130951825529337, "lr": 7.492525e-05, "mask_rcnn/accuracy": 0.9326858258393901, "mask_rcnn/false_negative": 0.05731613109281186, "mask_rcnn/false_positive": 0.07353323320056379, "roi_head/num_bg_samples": 439.5, "roi_head/num_fg_samples": 72.5, "rpn/num_neg_anchors": 238.75, "rpn/num_pos_anchors": 17.25, "time": 0.9941317265000293, "total_loss": 0.467316235328326}
|
model_final.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00d22a9f036ec1348f75c186c06bbe6ad0b450fd4613f24f61bcd531426ccdd1
|
| 3 |
+
size 351071593
|