| from transformers import AutoModel | |
| from huggingface_hub import HfApi, snapshot_download | |
| def get_model(model_name: str): | |
| """ | |
| Load a model from the Hugging Face model hub. | |
| Args: | |
| model_name (str): The name of the model to load. | |
| Returns: | |
| transformers.PreTrainedModel: The loaded model. | |
| """ | |
| return AutoModel.from_pretrained(model_name, torch_dtype="bfloat16") | |
| def upload_and_convert( | |
| model_name: str = "mixedbread-ai/mxbai-rerank-base-v2", | |
| ): | |
| """Upload the converted sequence classifier to the hub.""" | |
| model = get_model(model_name) | |
| split_name = model_name.split("/")[-1] | |
| snapshot_download(f"{model_name}", local_dir=f"./{split_name}") | |
| model.save_pretrained(f"./{split_name}") | |
| api = HfApi() | |
| api.create_repo(repo_id=f"michaelfeil/{split_name}-auto", exist_ok=True) | |
| api.upload_folder( | |
| repo_id=f"michaelfeil/{split_name}-auto", | |
| folder_path=f"./{split_name}", | |
| ) | |
| if __name__ == "__main__": | |
| upload_and_convert( | |
| model_name="Qwen/Qwen3-Embedding-0.6B", | |
| ) | |
| upload_and_convert( | |
| model_name="Qwen/Qwen3-Embedding-4B", | |
| ) | |
| upload_and_convert( | |
| model_name="Qwen/Qwen3-Embedding-8B", | |
| ) | |
| print("Model uploaded successfully.") | |