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Abstract

We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and
multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality
web and synthetic data, significantly outperforming recent open-source models of similar size and
matching the performance of models twice its size on math and coding tasks requiring complex
reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-
quality math and coding datasets. Compared to its predecessor, Phi—3.5-Mini, Phi-4-Mini
features an expanded vocabulary size of 200K tokens to better support multilingual applications, as
well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a
multimodal model that integrates text, vision, and speech/audio input modalities into a single model.
Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow
multiple inference modes combining various modalities without interference. For example, it now
ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio
modality has just 460 million parameters. Phi—-4-Multimodal supports scenarios involving (vision
+ language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language
and speech-language models on a wide range of tasks. Additionally, we experiment to further train
Phi-4-Mini to enhance its reasoning capabilitiesﬂ Despite its compact 3.8-billion-parameter size,
this experimental version achieves reasoning performance on par with or surpassing significantly larger
models, including DeepSeek-R1-Distill-Qwen—-7B and DeepSeek-R1-Distill-Llama-8B.

1 Introduction

The Phi family of models [AJA"24, IAAB*24] have shown that carefully curated and synthesized data
enables Small Language Models (SLMs) to achieve highly competitive performance despite having a
significantly smaller number of parameters. These models demonstrate comparable results to much
larger models. Building on the success of the Phi family of language models, we extend their capabilities
to handle additional modalities — such as vision and audio, achieving significant progress akin to private
models like GPT [HLG"24], Claude [Ant24], and Gemini [TGL"24].

In this report, we introduce Phi-4-Multimodal, a unified multimodal SLM that supports multi-
ple inference modes combining various modalities (e.g., text-only, text + image, speech/audio, speech
+ image) within a single model checkpoint. Phi-4-Multimodal employs a novel “mixture of LoRAs”
technique, enabling multimodal capabilities by integrating modality-specific LoRAs while keeping the
base language model entirely frozen. Our findings show this technique outperforms existing approaches
(e.g., cross-attention designs [ADL*22) [A123]) and achieves comparable performance to fully fine-tuned
models on multimodal benchmarks. Additionally, the design of Phi-4-Multimodal is highly exten-
sible, allowing seamless integration of new LoRAs to support additional modalities without impacting
existing ones.

!Please note that reasoning-enhanced Phi-4-Mini is a separate model and currently in a preview stage and will not
be released concurrently with Phi-4-Mini and Phi-4-Multimodal.



Our training process comprises multiple stages, including language training (encompassing both pre-
training and post-training) and then expansion of the language backbone to vision and speech/audio
modalities. For the language model, we train Phi-4-Mini using high-quality, reasoning-rich text data.
Notably, we include curated, high-quality code datasets to enhance performance on coding tasks. Once
the language model training is complete, we freeze the language model and implement our “Mixture
of LoRAs” technique to proceed with the multimodal training stage. Specifically, we train two addi-
tional LoRA modules alongside modality-specific encoders and projectors to enable vision-related tasks
(e.g., vision-language and vision-speech) and speech/audio-related tasks (e.g., speech-language). Both
of them contain pretraining and post-training stages for modality alignment and instruction finetuning,
respectively.

We also explore the reasoning potential of Phi-4-Mini to create a compact yet powerful model that
rivals substantially larger state-of-the-art reasoning systems, such as DeepSeek-R1-Distill-Qwen—-7B
and DeepSeek-R1-Distill-Llama-8B [GYZ"25|.

The key contributions of this model are listed below.

1. Unified Multi-Modality Support: In contrast to existing methods [Tea25b, (CWW~*24] that
employ separate models for different modalities, Phi-4-Multimodal is designed as a unified
model capable of efficiently handling multiple modality scenarios. By leveraging the Mixture of
LoRAs [HSW™22|, Phi-4-Multimodal extends multimodal capabilities while minimizing inter-
ference between modalities. This approach enables seamless integration and ensures consistent
performance across tasks involving text, images, and speech/audio.

2. Remarkable Language Performance for the size: The language models achieve state-of-
the-art performance in natural language understanding and generation for its size category. It
demonstrates exceptional reasoning and mathematical capabilities, making it well-suited for com-
plex problem-solving and knowledge-based tasks.

3. Outstanding Code Understanding and Generation for the size: The language models
achieve state-of-the-art performance on code-related tasks within its size category. The model
excels at tasks such as code synthesis, debugging, and documentation generation, empowering
developers and aiding in software engineering workflows.

4. Superior Multi-Modal Capabilities for the size: The model delivers state-of-the-art perfor-
mance across multi-modal tasks for its size category, demonstrating robust integration of diverse
data types. This includes tasks that involve combining images with text and speech modalities,
enabling multi-modal reasoning.

5. Exceptional Speech and Audio Performance: The model achieves strong performance espe-
cially on multilingual speech recognition and translation tasks, and is the first open-sourced model
with speech summarization capability.

6. Enhanced Reasoning Capabilities: The reasoning-optimized version of Phi-4-Mini demon-
strates superior reasoning abilities for a model in its size category.

2 Model architecture

The Phi-4-Mini series comprises two state-of-the-art small models: a language model (Phi-4-Mini)
and a multimodal model (Phi-4-Multimodal) that integrates language, vision, and speech/audio



modalities. All Phi-4-Mini models use the tokenizer 0200k base tiktoken [ with a vocabulary size of
200,064 intended to support multilingual and multimodal input and output more efficiently. All models
are based on decoder-only Transformer [VSP™17] and support 128K context length based on LongRoPE
IDZZ"24a].

2.1 Language model architecture

Phi-4-Mini and Phi-4-Multimodal share the same language model backbone. Phi-4-Mini con-
sist of 32 Transformer layers with hidden state size of 3,072 and tied input / output embedding which
reduces the memory consumption significantly while providing much wider coverage of vocabularies
compared Phi-3.5. Each Transformer block includes an attention mechanism based on Group Query
Attention (GQA) [ALTdJ" 23], which optimizes key and value memory (KV cache) usage for long-context
generation. Specifically, the model employs 24 query heads and 8 key/value heads, reducing KV cache
consumption to one-third of its standard size. Additionally, in the RoPE configuration [SAL*24], a
fractional RoPE dimension is used, ensuring that 25% of the attention head dimension remains position-
agnostic. This design supports smoother handling of longer contexts. To determine the peak learning
rate, we follow [BBC*24] with LR*(D) = BD™°32? where B is a constant we tune for this specific model
and D is the total number of training tokens. We fit B by tuning across D = 12.5B8,25B,37.5B,50B.

2.2 Multimodal model architecture

To integrate vision as an input modality, numerous vision-language models have been developed, includ-
ing the LLava series [LLWL24l [LLL"24] ILZG"24], QWenVL series [BBY 23, WBT" 24|, InternVL series
[CWT* 24, ICWW*24, ICWC*24], InternLM-XComposer series [ZDW™*23| [DZZ*24b|, Molmo [DCL*24],
and NVLM [DLW™24]. Similarly, for audio input, notable contributions include Qwen2-Audio |[CXY"24],
InternLM-XComposer2.5-Omnilive [ZDC*24], InternOmni, Mini-Omni [XW24], and GLM4-Voice [ZDL*24].

However, in order to enable modality-specific functionality, these multimodal models generally require
fine-tuning the base language model, which often diminishes its original language capabilities. Conse-
quently, supporting diverse input signals without compromising quality necessitates deploying multiple
models—a particularly challenging limitation for resource-constrained devices. To address this, LLama-
Vision [D.JP*24] adopts a strategy inspired by Flamingo [ADL"22|, adding extra cross-attention layers
while preserving the core language model. However, this approach will result in reduced performance on
vision-language benchmarks compared to fully fine-tuned models. To fill the performance gap, NVLM
[DLW 24| further explores a hybrid framework, employing joint supervised fine-tuning with high-quality
text SFT data. Yet, this approach only examines limited language benchmarks and does not address
additional training stages often required after SFT.

We adopt the mixture of LoRAs design for our Phi-4-Multimodal architecture to support vari-
ant multi-modality use cases. Different LoRAs are trained to handle interactions between different
modalities. Our Phi-4-Multimodal supports a vast range of tasks, including single/multiple images
QA /summarization, video QA /summarization, vision-speech tasks, speech QA /summarization/transla-
tion/recognition, and audio understanding, while maintains the original language model performance.

2.2.1 Modality Details

Vision modality. The vision modality is implemented with an image encoder, a projector to align
the vision and text embeddings and a LoRA adaptor. The vision encoder is based on SigL.IP-400M that
is finetuned with LLM2CLIP [HWY 24| on large scale image-text pairs with resolution 448 x 448 . The

2https://github.com/openai/tiktoken
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Figure 1: A overview of the Multimodal architecture for Phi-4-Multimodal

projector is a 2-layer MLP that maps the vision features dimension to the text embedding dimension.
Extra LoRA is added on all the linear layers in the language decoder and only deployed in the supervised
fine tuning (SFT) stage. The image encoder and projector introduce 440M model parameters while the
vision adapter LoRAy consumes another 370M model parameters.

In order to enable the model to process images with diverse resolution effectively and efficiently, we
proposed a new dynamic multi-crop strategy. Specifically, given a target image, we first compute the
crop number for each side by dividing the original size by the crop-size, i.e. [%] X [%], where H,W,C
are the image height, width and crop size respectively. If the total crop number is within the maximum
number, i.e., 16 in the pretraining stage and 36 in SF'T, we just slightly resize the image to let it fit the
size given by the computed image crops. Otherwise, we will leverage the strategy proposed in InternVL2
I[CWW™24] that find the crop number by matching the best aspect ratio. Compared to InternVL2, the
key benefits of our strategy is to avoid resizing one small image (e.g., 28 x 448) to unreasonable large
size when looking for the closest image aspect ratio.

Speech and Audio Modality: The speech/audio inputs we used are 80-dim log-Mel filter-bank
features with the frame rate of 10ms. To enable Phi-4-Multimodal speech and audio functions,
we connect a pre-trained audio encoder and Phi-4-Mini through an audio adapter. In addition,
LoRA is applied on the language decoder to improve the performance of speech/audio benchmarks while
preserving the text capability. The introduced modules for the speech/audio modality include:

e An audio encoder, which consists 3 convolutions layers and 24 conformer blocks [GQC*20] with
1024 attention dimensions, 1536 feed-forward dimensions, and 16 attention heads. The convolution
layers contribute to a sub-sampling rate of 8, and thus 80ms token rate for the language decoder.

e An audio projector, which is a 2-layer MLP that maps the 1024-dim speech features to the text
embedding space of 3072 dimensions, similar to the vision projector.



e LoRA 4 that has been applied to all attention and MLP layers in Phi-4-Mini with a rank of 320.

The audio encoder and projector introduce 460M parameters while LoRA 4 consumes another 460M
parameters. Note that the speech token rate is 80ms, indicating 750 tokens for 1-minute audio.

2.2.2 Training Pipeline

The multimodal training stages include vision training, speech/audio training and vision-speech joint
training.

Vision Training. The overall training pipeline for multimodal learning consists of vision training,
speech and audio training, and joint vision-audio training. Vision training follows a four-stage process:
1) Projector Alignment stage: initially, only the projector is trained using caption data to align vision
and text embeddings while preserving the pretrained representation of the vision encoder. 2) Joint Vision
Training stage: Next, the projector and vision encoder are jointly trained on the full vision pretraining
dataset to enhance key vision capabilities, such as OCR and dense understanding. 3) Generative Vision-
Language Training stage: LoRA is then deployed on the language decoder and trained alongside the
vision encoder and projector using curated single-frame SFT data, equipping the model with generative
capabilities for vision-language inputs. 4) Multi-Frame Training stage: Finally, the model is trained on
multi-frame SF'T data with the vision encoder frozen, extending the context length coverage to 64k and
enabling multi-image and temporal understanding.

Speech and Audio Training. With the Phi-4-Mini language model, we conduct a two-stage
paradigm for speech and audio training, also known as speech/audio pre-training and post-training. In
the pre-training stage, we use large-scale automatic speech recognition (ASR) data to align the audio
encoder and Phi-4-Mini in the semantic space. In this stage, the encoder and projector is updated
with a learning rate of 4e-5 for 50k steps while the language decoder is frozen. We initialize the audio
encoder with a pre-trained encoder from the attention-based encoder decoder (AED) ASR model.

After the pre-training stage, the model can only perform the ASR task. To unlock the instruction
following capability of Phi-4-Multimodal for variety of speech and audio tasks, we continue to train
the model with about 100M curated speech and audio SFT samples (after weighted up) as the speech
post-training stage. Please refer to Section for data details. In speech/audio post-training, the
audio encoder is frozen. We update the audio projector and LoRA4 with a learning rate of le-4 for
another 50k steps. We consider different maximum audio lengths for different tasks in post-training.
For speech summarization task, we train up to 30-minute audio (22.5k tokens). For other tasks, the
maximum audio exposed in training is 30s (375 tokens). If we consider the 128k context length for
language decoder, theoretically Phi-4-Multimodal can support a maximum 2.8 hours of audio as out
of the box inference. It is worth noting that we have not fine tuned the model on such long audio data
and it may need further fine tuning to practically support such use cases.

Vision-speech Joint Training. The vision-speech joint training is conducted after vision post-
training and speech post-training. We freeze the language base model, audio encoder, and audio projec-
tor, while finetuning the vision adapter LoRAy,, vision encoder, and the vision projector. In this stage,
we train the model mainly on vision-speech SFT data but we also include a mixture of language and
vision post-training data to maintain the corresponding performance.



Reasoning Training Recent studies have suggested that training a robust reasoning model only
requires a small amount of high-quality data, such as LIMO [YHX"25] and S1K [MYS*25]. How-
ever, we propose a fundamentally different training paradigm for SLM: first, we need to conduct a
pre-training phase on extensive reasoning data to capture general reasoning chains, and then perform
careful fine-tuning on curated SF'T or preference data. The continued training of Phi-4-Mini for
reasoning proceeds in three distinct stages. First, building on Phi-4-Mini, the model is pre-trained
on approximately 60 billion reasoning CoT tokens generated by frontier reasoning LLMs, after which
rejection sampling is employed to filter out incorrect outputs. This allows the reasoning extension of
Phi-4-Mini to learn the reasoning chains produced by these models. In the second stage, the model is
fine-tuned on a smaller but carefully curated dataset of around 200K high-quality CoT samples, chosen
to cover diverse domains and varying difficulty levels. Finally, in the third stage, we label filtered incor-
rect outputs as “dis-preferred” and their corrected counterparts as ‘preferred’, compiling a new dataset
of 300K preference samples for DPO training.

3 Data and training details

3.1 Language training data
3.1.1 Pre-training data

Compared with Phi-3.5-Mini, we improved the quality of the pre-training data from several key aspects:

1. Better data filtering: By using an enhanced quality classifier, which is trained on a larger curated
dataset consisting of cleaner positive and negative samples, we end up with better filtering quality
across multiple languages with various aspects (e.g. toxic, obscure, scientific, etc.), leading to a
more comprehensive and controllable filtering strategy overall.

2. Better math and coding data: For the math and coding data, we have augmented our original
data with a specific instruction-based math and coding data set. This enhancement has resulted
in effective results in math, coding and reasoning.

3. Better synthetic data: we incorporated Phi-4 synthetic data |AAB™24] into this model training
with the same processing and decontamination.

4. Better data mizture: With the better classifiers, we re-tuned the data mixture with ablation
experiments. Especially we increased the ratio for the reasoning data. That gives us a boost for
the model quality.

With these techniques, we built the 5 trillion pre-training data corpus, which is larger and in higher
quality compared to the Phi-3.5-Mini.

3.1.2 Post-training data

Compared to Phi-3.5-Mini, Phi-4-Mini includes a significantly larger and more diverse set of func-
tion calling and summarization data. Additionally, we synthesize a substantial amount of instruction-
following data to enhance the model’s instruction-following capabilities. For coding, we incorporate
extensive code completion data, including tasks that require the model to generate missing code in the
middle of an existing code snippet. This challenges the model to understand both the requirements and
the existing context, leading to significant performance improvements.



3.1.3 Reasoning training data

We generate a large volume of synthetic chain-of-thought (CoT) data from larger reasoning models,
covering diverse domains and difficulty levels. During sampling, we employ both rule-based and model-
based rejection methods to discard incorrect generations and feed them back for resampling. Also, we
label correct sampled answers as preferred generations and incorrect ones as dis-preferred, and create
the DPO data. This data has been utilized exclusively for the experimental reasoning model and has
not been applied to the officially released checkpoint Phi-4-Mini.

3.2 Vision-language training data

The Phi-4-Multimodal model’s pre-training phase involves a rich and varied dataset, encompassing
interleaved image-text documents, image-text pairs, image grounding data, synthetic datasets from
OCR of PDFs and realistic images, and synthesized datasets for chart comprehension. During this
phase, the model’s primary focus is on predicting the next token, concentrating solely on text tokens
and disregarding any loss associated with image tokens. The pre-training process involves a total of
0.5T tokens, combining both visual and textual elements. Additionally, the maximum image resolution
is capped at 1344x1344, as most training images are smaller than this size. For supervised fine-tuning
(SFT), we utilized a combination of a text SFT dataset, publicly available multimodal instruction tuning
datasets, and large-scale in-house multimodal instruction tuning datasets that we developed. These
datasets span diverse domains and tasks, including general natural image understanding, chart, table,
and diagram comprehension and reasoning, PowerPoint analysis, OCR, multi-image comparison, video
summarization, and model safety. Collectively, the multimodal SFT data comprises approximately 0.3T
tokens.

3.3 Vision-speech training data

For vision-speech data, Phi-4-Multimodal model is trained on a diverse set of synthetic vision-speech
data, covering single-frame and multi-frame scenarios. Specifically, we reuse a subset of vision-language
SFT data and run in-house text-to-speech (T'TS) engine to convert the user queries from texts to audios.
This subset is carefully selected to avoid certain datasets where the queries are not suitable to read out
in speech. We also measure the quality of the synthetic speech by transcribing the audio with in-house
ASR model and calculating the word error rate (WER) between original text and transcription. Our
final vision-speech data is generated with the WER-based filtering to ensure the quality.

3.4 Speech and Audio Training Data

The training data for speech/audio functions can be categorized into two types: 1) pre-training data
with ASR transcriptions to provide a strong alignment between the speech and text modalities; 2) post-
training data to unlock the instruction-following capability of Phi-4-Multimodal with the speech/au-
dio modality involved. The post-training data covers a variety of tasks, including automatic speech
recognition (ASR), automatic speech translation (AST), speech question answering (SQA), spoken query
question answering (SQQA), speech summarization (SSUM), and audio understanding (AU).

3.4.1 Pre-training Data

Despite that the audio encoder is initialized from a well-trained ASR model as mentioned in Sec.
the speech and text latent spaces differ. To pre-train the adapter and reduce the modality gap between



the speech and text sequences, we curate a dataset of approximately 2M hours of anonymized in-house
speech-text pairs with strong/weak ASR supervisions, covering the eight supported languages ﬂ

3.4.2 Post-training Data

Following language post-training paradigm, we curate SF'T data for speech/audio post-training, aiming
for unlocking the instruction-following capability with speech/audio as query or context. We use both
the real and synthetic speech/audio data during speech post-training, covering the majority of speech
and audio understanding tasks. All the SFT data are formatted as:

< luser| >< audio > {task prompt} < |end| >< |assistant| > {label} < |end| >
where task prompt is to describe each task in the natural language description and it is null for the
SQQA task.

Speech Recognition Data. ASR training data contains about 20k hours anonymized in-house, and
20k hours selected public transcribed speech recordings that span eight languages. The weighted ASR
training data contributes to 28M SF'T examples.

Speech Translation Data. AST training data contains about 30K hours of anonymized in-house and
public speech data with translations in two directions: from 7 languages to English and from English to
7 languages. This data contains both supervised and synthetic translation from a machine translation
model. The AST data is created with two formats: direct ST and ASR + translation in a Chain-of-
thoughts (CoT) manner, contributing to 28M weighted training examples in post-training.

Speech and Spoken Query Question Answering Data. SQA and SQQA training data contain
synthetic QA pairs from real speech and synthetic audio from text SFT data.

e Synthetic QA pairs for SQA: To enable SQA capability, we reuse the speech-transcript pairs in the
ASR training data and prompt the language model to generate multiple text QA pairs for each
transcript. The low-quality QA pairs are filtered during training.

e Synthetic spoken query (audio) for SQQA: SQA is tasked to respond speech context plus text query.
Responding to spoken query directly is also an important capability for Phi—-4-Multimodal.
Consequently, We sample from the language post-training data and convert the text query to
audio query using our internal zero-shot TTS system.

e Synthetic LM response for SQQA: Similar to [FWL"24], we synthetically generate responses for
speech prompts by prompting the language model with the ASR transcripts of those prompts. The
LM response data can improve the SQQA robustness of Phi-4-Multimodal in real scenarios
because of more diverse spoken queries sampled from the ASR training data.

The total SQA and SQAQA data contribute to 26M weighted SFT examples.

3The speech interface supports the following 8 languages: Chinese, English, French, German, Italian, Japanese, Por-
tuguese, and Spanish.



Speech Summarization Data. The summarization training data is assembled from anonymized
audio recordings paired with their transcripts. The audio consists of multi-speaker conversational speech
that spans a range of topics. Rather than dividing the audio into shorter segments, we maintain its full
length up to a maximum of 30 minutes. To construct query-summary pairs for each audio clip, we use
GPT-4 to generate a variety of queries and their respective summaries based on the transcripts. For
each audio clip, the summarization queries address specific or general aspects of the conversation and
vary in format, including length (number of words or sentences) and structure (summaries formatted
as bullet points, JSON, or email). The weighted dataset contributes to 1M SFT examples with English
speech only.

Audio Understanding Data. The audio understanding data contributes to around 17M weighted
SFT examples sourced from public. The dataset is created in the form of (audio, question, answer)
tuples, where “audio” contains speech, audio, and music inputs. Similar to |GLL*23], the question and
answer pairs are generated from GPT4 based on audio transcripts and/or meta information.

In addition the task-specific data, we also include audio safety data in speech/audio post-training.
Please refer to Sec. for the details of audio safety data. For all the public data, we utilize our Azure
PII Detectmﬂ to identify and handle Personally Identifiable Information (PII). The training examples
with PII detected are removed for privacy concerns.

4 Evaluation

4.1 Multimodal Benchmarks
4.1.1 Vision Benchmarks

We report in Table [If the evaluation results of Phi-4-Multimodal on 13 open-source academic single-
image vision-language benchmarks, 2 open-source multi-image/video vision-language benchmarks, and
4 vision-speech benchmarks. Additionally, we compare Phi-4-Multimodal with multiple state-of-
the-art open-source models: our previous Phi-3.5-Vision [AJA24], Qwen2.5-VL-3B & 7B [Tea25b],
InternVL2.5-4B & 8B [CWC™24|, and close-sourced multimodal models Gemini [TAB"23|, Claude-
3.5 [Ant24]} and GPT-4o [HLG*24f] For most benchmarks, we used the same internal evaluation
pipeline as in Phi-3.5-Vision [AJA724] to ensure fair comparisons across all baseline methods. For
benchmarks (e.g., DocVQA and InfoVQA) requiring submission to an evaluation server, we directly
utilized results reported in previous papers for baseline methods and submitted our own evaluations to
the server to obtain results for Phi-4-Multimodal.

For single-image vision-language benchmarks, the evaluations assess reasoning and perceptual capa-
bilities across various domains, including but not limited to science, charts, OCR, and general knowledge.
For multi-image/video vision-language benchmarks, we used one multi-image benchmark (BLINK [FHL*24])
and one video benchmark (VideoMME [FDL™24]). In the case of VideoMME, the evaluation setup is
same as the one used in Phi-3.5-Vision [AJA24], where 16 frames are extracted from each video by
sampling frames at a rate ensuring uniform time coverage. These benchmarks evaluate perceptual ca-
pabilities across multiple images/frames and text, covering scenarios such as art and style recognition,
forensic detection, and video understanding. For vision-speech benchmarks, we adopted four existing

Yhttps://learn.microsoft.com/en-us/azure/ai-services/language-service/
personally-identifiable-information/overview

°Claude-3.5-Sonnet-2024-10-22

5GPT-40-2024-11-20 and GPT-40-mini-2024-07-18
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(test) RIETT22
OCRBench
[LLIT24] 84.4 63.8 82.2 716 87.7 748 757 81.0 77.0 771 &
BLINK 61.3 57.0 8.1 512 55.3 52.5 59.3 64.0 56.9 51.9 62.4
(test) [FHL 2]
VideoMME-16Frame 55.0 50.8 56.5 57.3 58.2 58.7 58.8 65.5 60.2 61.2 68.2
(test) [FBL 2]
Average 72.0 60.9 68.7 68.8 73.3 711 70.2 74.3 69.1 63.8 72.4

Table 1: Comparison results on public vision-language benchmarks. All the reported numbers are produced with
the exact same internal pipeline to ensure that the numbers are comparable. These numbers might differ from
other published numbers due to slightly different prompts. * Note that for MathVista number of Gemini-2.0-
Flash, we find the low performance is because its output sometimes cannot follow the format defined in the input
instruction and the evaluation script cannot parse the answer easily.

Phi-4-Multimodal InternOmni Gemini-2.0-Flash- Gemini-2.0-
5.6B 8.7B Lite-prv-02-05 Flash
ShareGPT40_AI2D|CWT™ 24| 68.9 53.9 62.0 69.4
ShareGPT4o_ChartQA|CWT™24| 69.0 56.1 35.5 51.3
ShareGPT40_DocVQA[CWT*24] 87.3 79.9 76.0 80.3
ShareGPT40 InfoVQA|[CW'T*24] 63.7 60.3 59.4 63.6
Average 72.2 62.6 58.2 66.2

Table 2: Comparison results on public vision-speech benchmarks. All the reported numbers are produced with
the exact same internal pipeline to ensure that the numbers are comparable.

benchmarks from InternOmni [CWT*24|, which convert text prompts into speech format for evaluation
on four vision-language benchmarks. Since Claude and GPT-40 endpoints do not support audio input
along with images, we do not report their numbers here. For Gemini models, promting with only image
and speech input will generate free-form responses that are difficult to extract and evaluate. Therefore,
we add the corresponding text instructions to prompt the model to respond with one of ABCD options
or single-word-or-phrase answers for the respective ShareGPT40 benchmark.

From the results in Table [[] and Table [2] we summarize Phi-4-Multimodal’s performance as
follows:

e On vision-language benchmarks, Phi-4-Multimodal demonstrates significant improvements
over our previous model Phi-3.5-Vision [AJA24] and outperforms baseline models of similar sizes
overall. Notably, in chart understanding and science reasoning tasks, Phi—-4-Multimodal even
surpasses some close-sourced models like Gemini and GPT-40. We have shown one demo case in

Figure [2

e On vision-speech benchmarks, Phi-4-Multimodal significantly outperforms InternOmni and
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Which is the generation with the highest and lowest percentage?

Genz Millennials Gen X Boomers+
(18-28) (29-43) (44-57) (58+) °
Based on the given image, we can see four columns representing different generations - Gen Z, Millennials,

e

Gen X, and Boomers-+. Each column has three rows indicating the age range, number of people using Al tools

in their workplace but not from their company, and the total population size.

; GOTOBEOCEY GITPHEEEES TIDOBBELEY T G SR
-4 @@@@@@@@@@ GOGHEEENDE BHEIDHEOHED ElE R COEIE at Gen Z has tl e hig aesr percentage of people who have used Al tools in

@@@@@@@@@@ @@@@@@@@@@ @@@@@@@@@@ @@@@@@@@@@ their workplace}buf not from their company, which is 85%. On the other hand, Boomers+ have the lowest
B06VIDHEE VOOOVIPHIO SPOVVIPDETO ©DEBVIDDEO percentageiwhichiEI/3%
o20DODIDOES @@@@@@@@@@ @@@@@@@@@@ @@@@@@@@@@

FDOHIVRADD SOOH IDS 02DNIBVRIDD OO Therefore, the answer to the question “Which generation has the highest and lowest percentage?” is Gen Z and
POBONEIDIE EOBOHAIDDD @@@@@@@@@@ @@@@@@@@@® Boomers+, respectively.

85% 78% 76% 73%
e ina Altocs st werknot provided by their rganizaion Can you help calculate the average percentage of the four generations mentioned in the image?
Can you help read the image and convert it into a markdown table? ° . : - .
To find the average percentage of the four generations mentioned in the image, we need to add up all the

percentages and then divide them by the number of generations.

®  The image contains a visual representation of data rather than an actual table. It shows percentages for - o
First, let's identify the percentages:
different generations (Gen Z, Millennials, Gen X, Boomers+) regarding their use of Al tools at work not

provided by their organization. Gen Z:85%

i 5
Here is the conversion of that information into markdown format: Millennials: 78%

Gen X: 76%

Percentage | Boomers+: 73%

| Gen z Next, we'll add these percentages together:

85+78+76+73=312

| Millennials| 20-a3

| Gen x | 4a-57

| Boomers+ | 58+

Finally, we'll divide this sum by the number of generations, which is 4:

312/4=78
Note: The percentage values are based on survey respondents' usage of Al tools at work.

So, the average percentage of the four generations is 78%.

Figure 2: Omne demo case to show the vision-language understanding and reasoning capability of
Phi-4-Multimodal.

Gemini-2.0-Flash by a large margin, which have larger model sizes. For instance, on ShareGPT40_AI2D
and ShareGPT40_ChartQA benchmarks, Phi-4-Mult imodal achieves more than 10 points higher
performance than InternOmni.

e Unlike other open-source vision-language models that fully fine-tune their base language models
(often resulting in performance degradation on pure language benchmarks), Phi-4-Multimodal
keeps the language model entirely frozen by only incorporating additional fine-tunable LoRA mod-
ules. This approach ensures that language performance remains unchanged for pure text inputs.
While some academic efforts aim to enable multimodal capabilities while preserving original lan-
guage performance (e.g., through added cross-attention layers [AI23, [DLW¥24]), these techniques
often lead to performance drops on vision-language benchmarks compared to fully fine-tuned large
language models. Our proposed LoRA solution provides a novel perspective for the community,
maintaining language capabilities while achieving minimal performance loss on multimodal bench-
marks compared to fully fine-tuned baselines.

4.1.2 Speech and Audio Benchmarks

We evaluate the speech and audio capabilities of Phi-4-Multimodal on a variety of understand-
ing tasks. The performance of Phi-4-Multimodal is compared with several state-of-the-art open-
sourced models for the speech and audio understanding, including WhisperV3 [RKX*23|, SeamlessM4T-
v2 [BCM™23], Qwen2-audio [CXY*24]. We also include the performance of close-sourced multi-modal
models (GPT-40 [HLG*24] and Gemini [TAB*23]) for comparisons IZI The results are obtained through

"Speech evaluations for closed models are done through Azure cloud AP

11



Table 3: Main Results on the speech benchmarks. All results are obtained with 0O-shot evaluations except ad-
ditional CoT evaluations on the AST task, where CoT refers to chain-of-thoughts decoding with transcription
plus translation in generation. MT-Bench results are averaged scores over two-turn SQA conversations. SSUM
evaluation is with the overall numbers covering the adherence and hallucination scores. The scores in the table
are judged by GPT-4-0613. N/A indicates the model does not have such a capability.

Phi-4-Multimodal ‘WhisperV3 SeamlessM4T-V2 Qwen2-audio Gemini- GPT-40
Task Metric Dataset 5.6B 1.5B 2.3B 8B 2.0-Flash -

CV15 6.80 8.13 8.46 8.55 9.29 18.14
ASR WER | FLEURS 4.00 4.58 7.34 8.28 4.73 5.42
OpenASR 6.14 7.44 20.70 7.43 8.56 15.76

Inference Type (0-shot, CoT) 0-shot 0-shot 0-shot 0-shot 0-shot

BLEU 1 CoVoST2 X-EN (39.33, 40.76) 33.26 37.54 34.80 36.62 37.09

AST CoVoST2 EN-X (37.82, 38.73) N/A 32.84 34.04 35.93 37.19
FLEURS X-EN (29.86, 32.35) 25.76 28.87 23.72 30.69 32.61

FLEURS EN-X (32.15, 33.56) N/A 30.44 23.24 37.33 36.78
SQQA Score 1-10 t MT-Bench 7.05 N/A N/A 4.92 8.07 8.11
ACC 1 MMMLU 38.50 N/A N/A 15.53 72.31 72.56
Golden3 6.28 N/A N/A 2.25 6.29 6.76
SSUM  Score 1-7 AMI 6.29 N/A N/A 1.34 5.97 6.53
AU Score 1-10 1t AirBench-chat 6.98 N/A N/A 6.93 6.68 6.54
ACC 1t MMAU 55.56 N/A N/A 52.50 61.23 53.29

evaluation on the exact same test data version without further clarifications. We sample the top-1 token
at each generation step during inference.

The main results on the speech benchmark are presented in Table 3| We summarize the performance
of Phi-4-Multimodal as listed:

e Phi-4-Multimodal achieves very strong ASR and AST performance, surpassing the expert ASR
model, WhisperV3, and expert AST model, SeamlessM4T-large-v2, on CommonVoice [ABD*20)],
FLEURS [CMK*23|, OpenASR [SMK*23|, and CoVoST2 [WWGP21] test sets.

e Phi—-4-Multimodal is 5.5% relatively better in WER than the best model on the Huggingface
OpenASR leaderboardﬁ and now ranks No.1 on the leaderboard as of 1/14/2025.

e Phi-4-Multimodal is the first open-sourced model with speech summarization capability. The
summarization quality is close to that of GPT-40 in the sense of adherence and low hallucinations.

e Phi-4-Multimodal is the smallest open-sourced multi-modal LLM that behaves better than the
open-sourced Qwen2-audio [CXY 24| with ~2x in size.

We should notice in Table [3| that Phi-4-Multimodal is optimized for speech and audio under-
standing tasks while Gemini and GPT-40 might be optimized towards chat experience. That may be the
reason why Phi-4-Multimodal outperforms Gemini-2.0-Flash and GPT-40 on ASR and AST tasks
while lags behind on the SQQA tasks. We describe the benchmark and evaluation details for each task
below.

Automatic Speech Recognition. We evaluate the ASR performance on three public benchmarks:
CommonVoice [ABD720], FLEURS |[CMK™23], and OpenASR [SMK*23].

e CommonVoice is an open-source, multilingual speech dataset developed by Mozilla. The test set
of CommonVoice version 15.0 (CV15) is adopted in our evaluation, in which the data is collected
before 9/13/2023. We conduct the evaluations on the eight supported languages.

8https://huggingface.co/spaces/hf-audio/open_asr_leaderboard
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Table 4: Detailed results on ASR benchmarks. We compute CER ({) for JA and ZH, and WER ({) for other
languages. nvidia/canary-1B model is the best performing model on the Huggingface OpenASR leaderboard to
date. The results of canary and WhisperV3 are from the official report while others are obtained through internal
evaluation on the same test data version.

Phi-4-Multimodal nvidia/canary ‘WhisperV3 SeamlessM4T-V2 Qwen2-audio Gemini- GPT-40
Dataset Sub-Category 5.6B 1B 1.5B 2.3B 8B 2.0-Flash -
EN 7.61 N/A 9.30 7.65 8.68 11.21 21.48
DE 5.13 N/A 5.70 6.43 7.61 6.2 10.91
ES 4.47 N/A 4.70 5.42 5.71 4.81 11.24
FR 8.08 N/A 10.80 9.75 9.57 10.45 17.63
CV15 1T 3.78 N/A 5.50 5.50 6.78 4.88 13.84
JA 10.98 N/A 10.30 12.37 13.55 13.46 19.36
PT 6.97 N/A 5.90 9.19 10.03 7.4 23.07
ZH 7.35 N/A 12.80 11.36 6.47 15.87 27.55
Average 6.80 N/A 8.13 8.46 8.55 9.29 18.14
EN 3.38 N/A 4.10 6.54 5.27 3.96 6.52
DE 3.96 N/A 4.90 6.95 8.77 4.06 4.17
ES 3.02 N/A 2.80 5.39 6.90 2.61 3.69
FR 4.35 N/A 5.30 7.40 9.00 5.06 6.42
FLEURS IT 1.98 N/A 3.00 4.70 5.78 1.86 3.28
JA 4.50 N/A 4.80 11.47 12.68 4.94 5.18
PT 3.98 N/A 4.00 7.67 10.59 3.57 6.33
ZH 6.83 N/A 7.70 8.6 7.21 11.74 7.7
Average 4.00 N/A 4.58 7.34 8.28 4.73 5.42
AMI 11.69 13.90 15.95 56.1 15.24 21.58 57.76
Earnings22 10.16 12.19 11.29 37.18 14.09 13.13 20.94
Gigaspeech 9.78 10.12 10.02 26.22 10.26 10.71 13.64
Spgispeech 3.13 2.06 2.01 12.04 3.00 3.82 5.66
OpenASR Tedlium 2.90 3.56 3.91 19.26 4.05 3.01 5.79
LS-clean 1.68 1.48 2.94 2.60 1.74 2.49 3.48
LS-other 3.83 2.93 3.86 4.86 4.03 5.84 7.97
Voxpopuli 5.91 5.79 9.54 7.37 7.05 7.89 10.83
Average 6.14 6.50 7.44 20.70 7.43 8.56 15.76

e FLEURS a multilingual speech dataset designed for evaluating speech recognition and speech-to-
text translation models across a wide range of languages. The models are evaluated on the test
sets of the eight supported languages for ASR.

e OpenASR Leaderboard on Hugging Face is designed for benchmarking and evaluating the robust-
ness of ASR models on English. The datasets in the leaderboard cover diverse speech domains
including reading speech, conversations, meetings, and so on.

The ASR prompt for Phi-4-Multimodal is “Transcribe the audio clip into text.”, which is
language agnostic. We notice that the model can learn to recognize in the target language perfectly
without providing language information, while Qwen2-audio and Gemini-2.0-Flash require the language
information in the prompt to obtain the optimal ASR performance. For example, the ASR prompt
for Gemini-2.0-Flash is “Transcribe the audio clip into {tgt-lang}. Please ignore background
noise.” We compute the Character Error Rate (CER) for Japanese and Chinese language and Word
Error Rate (WER) for other six languages.

The detailed ASR results on the three benchmarks are summarized in Table [dl Overall, we achieve
the new SOTA multi-lingual ASR performance on the eight supported languages, surpassing the ex-
pert ASR models like WhisperV3. Noticeably, Phi-4-Multimodal beats the best performing model,
nvidia/canary-1b, by 5.5% relative WER on the Huggingface OpenASR leaderboard and now ranks No.1
in the leaderboard to date. Phi-4-Multimodal is also better than the open-sourced Qwen2-audio with
doubled model size. Note that GPT-4o is very sensitive to ASR prompt. We tried many ASR prompts
and present the one with the best overall ASR results we can obtain on the test sets. The ASR prompt
we finally use is “Capture the speech in written format in the language spoken, please. Don’t
include any information outside of the spoken content in your response. Remove any hes-
itation words like um, uh. Support mixed language. Your response should be formatted
as follows: Spoken Content: <transcribed text here>.”.
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Automatic Speech Translation. We evaluate the AST performance on two public benchmarks:
CoVoST2 [WWGP21] and FLEURS [CMK™23].

e CoVoST2 is a multilingual speech-to-text translation dataset derived from Mozilla’s Common Voice
project. It is one of the largest open datasets available for speech translation, providing support for
both X-to-English (X-En) and English-to-X (En-X) translation tasks. We evaluate the directions
with supported languages on the test sets.

e We use the same FLEURS test audios as those in ASR evaluation but replacing the ASR tran-
scription with the translations. We evaluate EN-X and X-EN directions with supported languages
on the test sets.

The AST prompts for 0-shot and CoT evaluation are “Translate the audio to {tgt-lang}.” and
“Transcribe the audio to text, and then translate the audio to {tgt-lang}. Use < sep > as
a separator between the original transcript and the translation.”, respectively. We compute
BLEU score between the reference and text translations. For CoT evaluation, the text after < sep > is
regarded as the translation.

The detailed AST results on each translation direction are shown in Table[5l As we can see from the
table, CoT inference can largely benefit the translation quality, improving 1-2 BLUE score on various
test sets. Phi-4-Multimodal achieves the best AST performance among the evaluated models on
CoVoST2 benchmark, including Gemini-2.0-Flash and GPT-40. On FLEURS, Phi-4-Multimodal is
better than the expert model SeamlessM4T-large-V2 and the performance is on par with GPT-40, the
size of which is much larger than Phi-4-Multimodal. We don’t apply CoT evaluation to other models
since either the model does not support CoT decoding, or it is hard to find a good CoT prompt for the
model to respond to each test sample correctly. Similar to ASR, Phi-4-Multimodal does not require
source language information in the AST prompt.

Spoken Query Question Answering. We evaluate the SQQA performance on two language bench-
marks with synthetic audio query: MT-Bench [ZCS™23] and MMMLU [HBB*20]. The text query is
synthesized into the audio query with the internal zero-shot TTS system.

e MT-Bench (Multi-turn Benchmark) is specifically designed to evaluate the conversational and
instruction-following abilities of AT models in multi-turn question-answering (QA) scenarios.

e MMMLU (Multilingual Massive Multitask Language Understanding) is an extensive benchmark
designed to evaluate the general knowledge and reasoning capabilities of Al models across a wide
array of subjects. We evaluate the model on the eight supported languages for this test set.

The task prompt is null for the spoken query QA task. The metrics are different for the two benchmarks.
The answer for MT-bench is open-ended, so we use GPT-4 as a judge to score the model outputs from 1
to 10. We evaluate the model outputs in the first two turns for MT-bench. Please refer to Appendix [A]
for the judege prompts for GPT-4. MMMLU is a QA task with multiple-choice questions. We use the
accuracy to measure the model quality.

We summarize the SQQA results in Table[6] It can be seen from the table that Phi-4-Multimodal
outperforms Qwen2-audio with doubled model size on MT-bench. However, the performance lags far
behind than the Gemini-2.0-Flash and GPT-40, which show strong SQQA capability. The results on
SQQA show that Phi-4-Multimodal is more good at conversational chat rather than general knowl-
edge and reasoning chat (less gap to closed-source models on MT-bench than that on MMMLU). The
reason might be that we weighed more conversational SQQA data in the speech/audio post-training
stage.
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Table 5: Detailed results on AST benchmarks with BLEU (1) score reported. We use “zh”, “ja-mecab”, and
“13a” tokenizer in Sacrebleu [Pos18] to compute BLUE scores for Chinese, Japanese, and other six languages,
respectively. All results are obtained through our internal evaluation.

Phi-4-Multimodal (+CoT) WhisperV3 SeamlessM4T-V2 Qwen2-audio Gemini- GPT-40
Dataset Sub-Category 5.6B 1.5B 2.3B 8B 2.0-Flash -
DE 39.81 40.83 34.17 39.90 34.99 38.34 39.29
ES 43.60 44.84 39.21 42.90 39.91 41.74 41.49
FR 42.24 43.42 35.43 42.18 38.31 38.96 38.56
IT 41.42 42.45 35.82 39.85 36.35 37.76 37.33
CoVoST2 X-EN JA 30.54 31.87 23.59 22.18 22.98 28.04 30.46
PT 55.28 56.25 50.22 53.82 47.79 50.81 50.60
ZH 22.39 25.64 14.36 21.92 23.27 20.69 21.93
Average 39.33 40.76 33.26 37.54 34.8 36.62 37.09
DE 34.22 34.87 N/A 37.16 29.72 34.32 34.38
JA 32.93 34.04 N/A 24.94 27.30 32.56 32.98
CoVoST2 EN-X ZH 46.30 47.28 N/A 36.41 45.09 40.91 44.22
Average 37.82 38.73 N/A 32.84 34.04 35.93 37.19
DE 37.71 39.43 33.49 36.80 32.88 38.48 41.03
ES 25.33 27.56 22.68 25.67 22.40 26.51 29.10
FR 35.10 37.42 30.98 33.78 30.82 35.18 37.98
IT 26.06 28.45 23.00 26.80 22.12 25.02 28.51
FLEURS X-EN JA 21.62 25.22 16.63 18.63 4.49 23.89 24.17
PT 40.80 42.85 37.50 37.61 35.38 41.51 43.33
ZH 22.37 25.49 16.07 22.78 17.95 24.27 24.12
Average 29.86 32.35 25.76 28.87 23.72 30.69 32.61
DE 34.44 35.94 N/A 32.35 23.60 37.15 36.68
ES 23.66 25.09 N/A 23.37 19.47 26.40 25.99
FR 37.92 40.12 N/A 42.08 27.71 46.51 44.26
IT 23.44 24.85 N/A 24.55 19.61 29.04 28.59
FLEURS EN-X JA 30.67 30.81 N/A 20.46 12.38 35.51 33.99
PT 37.79 38.94 N/A 42.36 32.52 45.34 45.82
ZH 37.10 39.19 N/A 27.93 27.38 41.36 42.16
Average 32.15 33.56 N/A 30.44 23.24 37.33 36.78

Speech Summarization. We evaluate the speech summarization performance on an in-house (Golden3)
and a public (AMI [CAB*05]) benchmark.

e Golden3 is a real-world meeting dataset, containing 108 meeting recordings with corresponding
transcripts, averaging 6 minutes each. The dataset is primarily in English, covering a wide range
of topics. There are in total 1071 queries for the entire dataset, averaging 9.9 instructions for each
conversation.

e The AMI (Augmented Multi-Party Interaction) dataset is a comprehensive collection of meeting
recordings, encompassing approximately 100 hours of data. These recordings feature synchronized
audio and video streams, including close-talking and far-field microphones, individual and room-
view cameras, and outputs from devices like slide projectors and electronic whiteboards. The
dataset is primarily in English and includes contributions from both native and non-native speakers,
captured in various rooms with distinct acoustic properties. The test split contains 20 meeting
recordings with average duration of 32 minutes. We test on close-talking version of audio. There
are 10 instructions generated for each conversation, summing up to 200 for the dataset.

To generate the summarization instructions for the test data, GPT-4 is employed being asked to
summarize partial or the entire conversation or control the output style/length/structure. An example
prompt could be “Summarize the ideas shared for making the remote control suitable for older gener-
ations.” or “Summarize in bullet points the key product specifications discussed.” The summarization
instructions are regarded as task prompt for multi-model LLM inference. During evaluation, we use
GPT4 to score the response corresponding to each instruction in 3 criteria: overall quality, halluci-
nation, and instruction adherence. The overall quality, scaled 1 to 7, measures accuracy in capturing
details, coherence, and writing style. The hallucination score is a binary flag that measures whether any
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Table 6: Result details on speech QA /summarization/audio understanding tasks for multi-modal models. The
scores are obtained using GPT-4-0613 as a judge.

Phi-4-Multimodal Qwen2-audio Gemini- GPT-40
Task Metric Dataset Sub-Category 5.6B 8B 2.0-Flash -
turn-1 7.42 5.07 8.08 8.27
Score 1-10 1 MT-Bench turn-2 6.67 4.76 8.06 7.94
AVG 7.05 4.92 8.07 8.11
EN 54.25 16.00 74.00 78.75
DE 39.50 10.50 78.75 73.70
SQQA ES 42.25 25.00 75.75 78.32
FR 38.50 19.25 74.25 76.21
ACC 1 MMMLU 1T 35.00 18.50 70.50 71.84
JA 30.00 14.25 68.75 67.40
PT 34.00 11.25 70.50 70.48
ZH 34.50 9.50 66.00 63.77
AVG 38.50 15.53 72.31 72.56
Hallucination | 0.14 0.51 0.20 0.09
Golden3 Instruction adherence 1 5.87 2.64 6.25 6.73
SSUM Score 1-7 1 Overall 6.28 2.25 6.29 6.76
Hallucination | 0.13 0.96 0.28 0.10
AMI Instruction adherence 1 6.50 1.40 6.25 6.83
Overall t 6.29 1.34 5.97 6.53
mixed 6.78 6.77 6.84 6.00
music 6.67 6.79 6.33 5.55
Score 1-10 t AirBench-chat sound 7.00 6.99 5.62 7.45
speech 7.47 7.18 7.92 7.7
AU AVG 6.98 6.93 6.68 6.54
music 52.87 53.26 58.33 55.27
sound 60.97 58.34 62.60 48.30
ACC 1 MMAU speech 52.83 45.90 62.77 56.30
AVG 55.56 52.50 61.23 53.29

part of the summary is fabricated or in consistent with the source content (0 represents no hallucination
and vice versa). The adherence score, scaled 1 to 7, measures how well the response follows the instruc-
tion in specific format, content or length requirements. During scoring, GPT4 has access to the ground
truth transcripts of each recording. Please refer to Appendix [A] for the GPT4 scoring prompt.

We average the scores of all responses belong to the same dataset for each criteria. The de-
tailed summarization scores are presented in Table [6] Qwen2-Audio has a 30-second cut-off for au-
dio input, therefore it couldn’t deal with long-form audio input and appears incompetent in this task.
Phi-4-Multimodal instead can naturally encode long-form audio in one-shot and perform speech
understanding. It exhibits competitive performance on both Golden3 and AMI test sets, compared with
Gemini-2.0-Flash and GPT-40. Considering that speech summarization data contributes only 1% of the
data in speech post-training, the gap can be reduced easily with finetuning on more summarization data.

Audio Understanding. We evaluate the audio understanding capability on two benchmarks: ATRBench-
chat [YXL"24] and MMAU [STK*24].

e AIR-Bench (Audio Instruction and Response Benchmark) is a comprehensive evaluation framework
designed to test the capabilities of large audio language models. It includes both foundation and
chat benchmarks. The chat benchmark is selected for the open-end QA style evaluation. The chat
benchmark includes the categories of music, sound, speech and mixed domain.

e The MMAU (Massive Multi-Task Audio Understanding) benchmark is a comprehensive dataset
designed to evaluate the capabilities of multi-modal models in audio-based understanding and
reasoning tasks. The test sets are in the form of multiple-choices QA, covering the categories of
music, sound, and speech.

Similar to open-ended QA as MT-bench, we use GPT-4-0613 as a judge to score the model outputs.
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Pt i . @

How many speakers are in the audio?

(D)

. There are two speakers in the audio.

Summarize this conversation in a clear and concise paragraph. @

The conversation involves a discussion about the role of Al in schools. The first speaker finds Al helpful in reducing the workload
. and believes it is a double-edged sword. The second speaker emphasizes the importance of schools preparing children for
adulthood and suggests that schools need to improve their approach as the real world is rapidly advancing with Al and technology.

Transcribe the audio clip into text. @

So Al in schools, it's really interesting. | mean, | think it helps me a lot with everything that | need to do. It makes me work a lot less
. hard, which is a good thing and a bad thing. What do you think? | think schools are about preparing children for their adulthood.
And | actually think schools need to up their game of it because it's like the real world or the world after school is advancing with Al

and technology extensively.

Translate what the second speaker said in the audio to Chinese. @

. BNAERBRA T EEZFHINRFEE BIANFREERS B KT B A IsEtH
FREFRLVGHIEFIEEXRERATERERRA.

Translate what the first speaker said in the audio to French. @

Donc, l'lA dans les écoles, c'est vraiment intéressant. Je pense que cela m'aide beaucoup
. avec tout ce dont j'ai besoin pour faire. Cela me fait travailler beaucoup moins dur, ce qui est

une bonne chose et une mauvaise chose. Qu'en pensez-vous?

Figure 3: An example to showcase the understanding capabilities for Phi-4-Multimodal, including audio
understanding, summarization, ASR, and AST.

Please refer to the Appendix [A] for the GPT4 scoring prompt. The accuracy is used to measure the
model quality on MMAU.

The detailed results on each category for multi-model models are presented in Table [6] Although
we freeze the audio encoder in post-training, Phi-4-Multimodal achieves strong speech, audio, and
music understanding capability on the two evaluated benchmarks, surpassing the open-sourced Qwen2-
audio. The GPT-40 does not perform well on the audio and music understanding tasks because the
models may not respond to the audio/music inputs for some test samples. In other words, GPT-40 is
either sensitive to the prompts for audio and music understanding tasks .

We showcase an example for strong speech understanding capabilities of Phi-4-Multimodal in

Figure [3]

4.2 Language benchmarks
4.2.1 Language

We have conducted benchmarks on various different academic datasets. We compare the scores with the
latest open-source models - Qwen 2.5 [YYZ24], Llama-3.2 [DJP*24], Ministral and Gemma2
[TRP*24|] series. Overall, we observe Phi-4-Mini shows very strong performance across different
benchmarks as shown in Table [

1. Overall performance: Across different language understanding benchmarks, Phi—-4-Mini out-
performs similar size models size models and on-par with the models with 2 times larger. Especially,
Phi-4-Mini outperforms most of the larger models except for Qwen2.5 7B with large margins
as well as similar sized models.

2. Strong Math and Reasoning capabilities: Phi-4-Mini excels on math and reasoning related
benchmarks thanks to the reasoning-rich synthetic data it’s trained on. For the Math benchmark,
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Phi-4-Mini Phi-3.5-Mini Llama-3.2-Ins Ministral Qwen2.5-Ins Qwne2.5-Ins Ministral-2410 Llama-3.1 Ll%”iajl Gemma2-Tt
3.8b 3.8b 3B 3B 3B B 8B 8B l;; 9B
BigBench-Hard
o 70.4 63.1 55.4 51.2 56.2 72.4 53.3 63.4 55.5 65.7
MMLU
o 67.3 65.5 61.8 60.8 65.0 72.6 63.0 68.1 65.0 71.3
MMLU-Pro
P 52.8 47.4 39.2 35.3 44.7 56.2 36.6 44.0 40.9 50.1
Arc-C
o 83.7 84.6 76.1 80.3 82.6 90.1 82.7 83.1 79.4 89.8
BoolQ -
o 81.2 777 71.4 79.4 65.4 80.0 80.5 82.8 79.0 85.7
CPQA
P, 30.4 25.2 26.6 24.3 24.3 30.6 26.3 26.3 20.9 31.0
HellaSwag
o 69.1 72.2 69.0 77.2 74.6 80.1 80.9 73.5 72.8 80.9
OpenBookQA 79.2 81.2 72.6 79.8 77.6 86.0 80.2 84.8 79.8 89.6
(10-Shot)
PIQA 7.6 78.2 68.2 78.3 77.2 80.8 76.2 81.2 83.2 83.7
(5-Shot)
SociQA . - . . .
o 72.5 75.1 68.3 73.9 75.3 75.3 77.6 71.8 73.4 74.7
TruthfulQA 66.4 65.6 59.2 62.9 64.3 69.4 63.0 69.2 64.1 76.6
(10-Shot; MC2) [LHE22]
71 -
WinoGrande 67.0 72.2 53.2 59.8 63.3 711 63.1 64.7 65.4 74.0
(5-Shot)
Multilingual-MMLU . - . .
e T 49.3 55.4 48.1 46.4 55.9 64.4 53.7 56.2 54.5 63.8
MGSM . . . . - -
B pi— 63.9 47.9 49.6 44.6 53.5 64.5 58.3 56.7 58.6 75.1
GSM-8K , X X X
g 88.6 86.2 75.6 80.1 80.6 88.7 81.9 82.4 84.3 84.9
MATH ) . X X ) X X X o
P 64.0 485 46.7 418 61.7 60.4 41.6 47.6 46.1 51.3
Qasper . . . . .
P 404 41.9 33.4 35.3 32.1 38.1 37.4 37.2 35.4 13.9
SQUALITY . . .
Jip—— 22.8 25.3 25.7 25.5 25.3 10.0 24.9 26.2 26.7 23.6
IFEval
- 70.1 50.6 68.0 475 59.0 69.5 52.5 74.1 77.3 73.2
BFCL -
o e 70.3 66.1 78.6 61.4 74.2 81.3 74.0 77.0 59.4 59.9
HumanEval - -
g 74.4 70.1 62.8 72.0 72.0 75.0 70.7 66.5 62.8 63.4
MBPP B . .
o 65.3 70.0 67.2 65.1 65.3 76.3 68.9 69.4 63.9 69.6
Average 64.9 62.3 58.0 58.3 61.4 67.9 61.2 63.9 61.7 66.0

Table 7: Phi-4-Mini language benchmark scores in comparison with Llama 3.2, Llama 3.1-8B, Qwen 2.5,
Ministral and Gemma series.
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Phi-4-Mini Phi-3.5-Mini Llama-3.2-Ins Ministral Qwen2.5-Ins Qwne2.5-Ins Ministral-2410 Llama-3.1 Ll,;ﬁii:‘;l Gemma2-It
3.8b 3.8b 3B 3B 3B 7B 8B 8B B 9B
BigCodeBench
Completion 43.0 40.4 25.7 50.0 33.8 434 47.4 34.1 30.4 40.6
(0-Shot) |ZVCT24]
BigCodeBench
instruct 33.8 14.3 18.6 33.8 25.0 335 35.6 34.8 28.0 33.6
(0-Shot) [ZV.C*24]
HumanEval 74.4 70.1 62.8 72.0 72.0 75.0 70.7 66.5 62.8 63.4
(0-Shot) |CTJ"21]
HumanEval + 68.3 62.8 51.8 67.5 64.6 68.9 70.7 57.3 50.0 54.3
(0-Shot) LXWZ23]
LCB 19.9 15.7 9.9 7.3 14.7 19.9 16.2 16.8 17.8 14.7
(05-09-2024) WJHG™24])
LiveBench 30.5 18.3 14.8 14.8 22.7 38.3 25.0 18.8 22.7 23.4
(code task) [WDR"24]
MBPP 65.3 70.0 67.2 65.1 65.3 76.3 68.9 69.4 63.9 69.6
(3-Shot) [AONT21]
MBPP+ 63.8 63.8 52.9 60.8 60.6 65.9 61.6 11.4 55.3 63.5
(3-Shot) [LXWZ33]
Spider 422 47.0 515 421 24.8 482 22.1 61.6 434 447
(4-Shot) [YZY 18]
Average 49.0 44.7 39.5 45.9 42.6 52.2 46.5 41.2 41.6 45.3

Table 8: Phi-4-Mini coding performance comparison with Llama 3.2, Llama 3.1-8B, Qwen 2.5, Ministral and
Gemma models.

the model outperforms similar sized model with large margins sometimes more 20 points. It even
outperforms two times larger models’ scores.

3. Excellent instruction following and function calling performance: Compared to the
predecessor Phi-3.5-Mini, Phi-4-Mini shows significantly improved performance on instruction
following and function calling thanks to the curated data and improved post-training.

4. Strong coding performance: Phi-4-Mini’s strong reasoning capabilities are also shown on
the coding tasks thanks to the curated organic and synthetic data. In the HumanEval benchmark,
Phi-4-Mini outperforms most of the similar sized and two times larger sized models.

4.2.2 Coding

In Phi-4-Mini training, we have put special emphasis on the coding capability. We have collected
high quality code data and generated various code related data. As a result, Phi—4-Mini shows very
strong performance on coding tasks as shown in the Table Across 9 different coding benchmarks,
Phi-4-Mini outperforms all 3B sized model and 8B sized model except for Qwen2.5 on the average
score.

4.2.3 CoT Reasoning

We evaluate the reasoning performance of a reasoning-enhanced model that we have trained over
Phi-4-Mini. We show results on AIME 2024 [MAA24], MATH-500 [LKB*23], and GPQA Diamond
[RHS™], comparing it against OpenAl reasoning models and several recent, larger reasoning models from
Deepseek and others. Despite having only 3.8B parameters, Phi-4-Mini reasoning-enhanced model
outperforms DeepSeek-R1-Distill-Llama-8B |GYZ"25|, Bespoke-Stratos-7B [Lab25], OpenThinker-7B
[Tea25a], and achieves performance comparable to DeepSeek-R1-Distill-Qwen-7B as shown in the Ta-
ble [0
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Model AIME MATH-500 GPQA Diamond
ol-mini* 63.6 90.0 60.0
DeepSeek-R1-Distill-Qwen-7B 53.3 914 49.5
DeepSeek-R1-Distill-Llama-8B 43.3 86.9 47.3
Bespoke-Stratos-7B* 20.0 82.0 37.8
OpenThinker-7B* 31.3 83.0 42.4
Llama-3.2-3B-Instruct 6.7 44.4 25.3
Phi-4-Mini 10.0 71.8 36.9
Phi-4-Mini (reasoning trained) (3.8B) | 50.0 90.4 49.0

Table 9: CoT Reasoning results of reasoning-enhanced Phi-4-Mini compared with larger 7B reasoning models
and OpenAl models. An asterisk (*) indicates results taken directly from the published reports, while the remaining
results were reproduced in our work.

5 Safety

Phi-4-Mini and Phi-4-Multimodal were developed in accordance with Microsoft’s responsible Al
principles. The overall approach consisted of safety alignment in post-training, red-teaming, automated
testing and evaluations across dozens of RAI harm categories.

5.1 Text safety

Our approach was almost identical to the one described in the Phi-3 Technical Report [AJA*24]. Further
details can be found in the Phi-3 Safety Paper [Mic24]. The main improvement was to extend our Safety
post-training datasets to all Tier 1 languages by performing (and verifying) machine translation with a
GPT-40-mini model.

Helpfulness and harmlessness preference datasets [BJN'22, lJLD*23| with modifications inspired by
[BSA*24] and multiple in-house generated datasets were leveraged to address the RAI harm categories
in safety post-training.

An independent red team at Microsoft iteratively examined Phi—-4-Mini to further identify areas of
improvement during the post-training process. Based on their feedback, we curated additional datasets
tailored to address their insights, thereby refining the post-training dataset.

Systematic Safety evaluations were carried out as described in the Phi-3 Safety Paper [Mic24]. The
main difference lied with our evaluations for Harmful Content, which now leverage Microsoft’s Azure Al
Evaluation SDK. We used GPT-40 to simulate adversarial conversations with our model, and to evaluate
the model’s responses toxicity along four harm categories: Violence, Sexual Content, Self-Harm, and
Hateful Content. We then computed a Defect Rate for each category - the fraction of responses that did
contain harmful content. Table [10] shows that our models are on par with other models of similar size,
and with our previously released Phi-3.5-mini (which is not surprising, due to the similar approach for
safety alignment).

To assess the vulnerability of the model to jailbreaks (JB’s), we repeated the previous evaluation
while prepending the simulated user prompts with known JB’s. The results shown in table 11| allow us
to draw 2 conclusions. First, our latest Phi models are more robust to jailbreaks than our previously
released Phi-3.5-mini, and than other models of similar size. Second, our models seem to manage to
detect the presence of JB’s, and in such cases are even less likely to comply with prompts eliciting harmful
responses. This can be seen from the Defect Rates being smaller than the ones obtained without JB’s
shown in table
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Defect Rate || Phi-4-Mini Phi-4-Multimodal | Phi-3.5-mini GPT-40-mini Llama-3.2-3B Qwen-2.5-3B
Violence 6% 7% 7% 6% 8% ™%
Sexual 6% 6% 7% 7% 8% 6%
Self-Harm 0% 0% 0% 1% 1% 1%
Hateful 3% 3% 2% 3% 3% 3%
Average 3.75% 4% 4% 4.25% 5% 4.25%

Table 10: RAI benchmark results for Phi-4-Mini, Phi-4-Multimodal, Phi-3.5-mini, and other models of
similar size. The Defect Rate denotes the fraction of model responses containing harmful content. The last row

shows the average Defect Rates across all 4 harm categories.

JB Defect Rate || Phi-4-Mini Phi-4-Multimodal | Phi-3.5-mini GPT-40-mini Llama-3.2-3B Qwen-2.5-3B
Violence 2% 4% 11% ™% 11% 20%
Sexual 1% 3% 8% ™% 8% 14%
Self-Harm 0% 0% 1% 1% 1% 3%
Hateful 2% 2% 10% 6% 12% 19%
Average 1.25% 2.25% 7.5% 5.25% 8% 14%

Table 11: RAI benchmark results for Phi-4-Mini, Phi-4-Multimodal, Phi-3.5-mini, and other models of
similar size. The Defect Rate denotes the fraction of model responses containing harmful content, when known
jailbreaks are included in the user prompts. The last row shows the average Defect Rates across all 4 harm
categories.

To assess the ability of the model to refuse answering harmful prompts without sacrificing the ability
to answer seemingly harmful but innocuous prompts, we leveraged the XSTest framework described in
[RKV*23]. Two metrics were computed: the Refusal Rate to harmful prompts (IPRR a.k.a. Inap-
propriate Prompt Refusal Rate - the higher, the better) and the Refusal Rate to innocuous prompts
(VPRR a.k.a. Valid Prompt Refusal Rate - the lower, the better). Results for Phi models and some
competitor models are shown in table Two conclusions can be drawn. First, both Phi-4-Mini and
Phi-4-Multimodal are very good at refusing to answer harmful prompts. Second, when it comes to
answering innocuous prompts, Phi-4-Multimodal errs a little more on the safety side compared to
the rest of the field.

Refusal Rate || Phi-4-Mini Phi-4-Multimodal | Phi-3.5-mini Llama-3.2-3B  Qwen-2.5-3B
IPRR 1 93.5% 92% 87% 92.5% 92%
VPRR | 20.8% 26.4% 21.2% 15.6% 25.6%

Table 12: XSTest benchmark results for Phi-4-Mini, Phi-4-Multimodal, Phi-3.5-mini, and other models of
similar size. IPRR is the Refusal Rate to inappropriate prompts (e.g. ”How can I kill my neighbor?”) - the higher,
the better. VPRR is the Refusal Rate to valid prompts (e.g. "How can I kill a python process?”) - the lower, the
better.

We also evaluated the models’ tendency to produce harmful content across all Tier 1 languages by
following the approach described above, that leverages the Azure Al Evaluation SDK. Defect Rates can
be seen in table where the numbers were averaged over the 4 harm categories (Violence, Sexual
Content, Self-Harm, and Hateful Content) to produce a single number per language. These results show
an improvement for both Phi-4-Mini and Phi—-4-Multimodal compared to Phi-3.5-mini, and show
comparable performance to other competitor models.
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Language Phi-4-Mini Phi-4-Multimodal | Phi-3.5-mini GPT-40-mini Llama-3.2-3B Qwen-2.5-3B
German 3.25% 4.5% 6.75% 3.75% 4.5% %
French 3.25% 5% 6% 4.25% 4.25% 5.5%
Spanish 3% 4.5% 6.25% 4.25% 4.25% 5.5%
Ttalian 2.25% 4.75% 6.25% 3.75% 4.25% 5.5%
Portuguese 4.5% 5.5% 6% 5.25% 4.25% 5.25%
Chinese 6.25% 6.5% 8.5% 4.5% 4.75% 6.5%
Japanese 5% 5.75% 6.75% 3% 5.75% 5.75%
Average 3.91% 5.06% 6.31% 4.13% 4.63% 5.66%

Table 13: Defect Rates for production of harmful content for Phi-4-Mini, Phi-4-Multimodal, Phi-3.5-mini,
and other models. The lower the value, the better. The last row shows the average across all Tier 1 languages
(including English numbers from table [10)).

5.2 Audio safety

For the audio safety alignment of Phi-4-Multimodal, we followed an approach analogous to that
of text safety alignment described above. Our audio safety datasets were obtained by performing T'TS
(Text-To-Speech) synthesis on our text safety datasets. We want to acknowledge two limitations of this
approach.

1. Our audio safety datasets are voice-only. No other types of sounds (non-speech) were included.
2. We did not train against audio-specific jailbreaks.

For audio safety evaluations, we carried out three families of automated evaluations. First, like we did
with text inputs, we leveraged Microsoft’s Azure Al Evaluation SDK to detect the presence of harmful
content in the model’s responses to speech prompts. The Defect Rates are shown in table Although
somewhat higher than those obtained with GPT-40 (a model of much bigger size), they are comparable
to those shown in table [10] for text inputs.

Defect Rate || Phi-4-Multimodal | GPT-40
Violence 4% 2%
Sexual 4% 1%
Self-Harm 1% 1%
Hateful 4% 0%
Average 3.25% 1%

Table 14: RAI benchmark results for Phi—-4-Multimodal and GPT-40. The Defect Rate denotes the fraction
of model responses containing harmful content, when the input prompt was an audio trace. The last row shows
the average Defect Rates across all 4 harm categories.

Second, we ran Microsoft’s Speech Fairness evaluation to verify that Speech-To-Text transcription
worked well across a variety of demographics - as measured by the WER metric. The audio samples
were spread across 2 gender sub-groups, and 3 age sub-groups (17-30, 31-45, and 46-65). The following
locales (corresponding to Tier 1 languages) were considered: it-IT, fr-FR, ja-JP, es-MX, pt-BR, es-ES,
zh-CN, en-US, en-GB, and de-DE.

No sub-group with egregiously worse performance than the overall population was found. Some
sub-groups did have slightly better/worse performance than the overall population in their given locale.
The sub-groups with slightly better performance than the overall population were: it-IT 17-30, es-MX
46-65, es-ES 17-30, en-US Female, en-US 46-65, and de-DE 46-65. The sub-groups with slightly worse
performance than the overall population were: en-US Male and es-MX 17-30.
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Third, we implemented a custom evaluation to assess whether the model would infer Sensitive At-
tributes (SA’s) from the voice of a user - ideally, it should not. The 12 SA’s were: Race, Sexual
Orientation, Political Orientation, Religious Beliefs, Trade Union Membership, Personality Character-
istics, Age, Gender, Medical Conditions, Country or Region of Origin, Social Economic Status, and
Profession). We used a variety of voices and prepared hundreds of audio prompts containing a “prompt
seed”, and an explicit ask for the model to infer the SA. Prompt seeds were either a generic truth (e.g.
“Fire is hot.”) or a first-person statement about the user that had no obvious relation to the SA (e.g.
“I am 6 feet tall.”). We then used GPT-4 to determine whether the model responses did contain an
inference of the SA’s.

The results were as follows. Without any additional mitigation measure, Phi-4-Multimodal per-
formed the inference of SA (ISA) on 27% of our test prompts — less frequently than Qwen2-Audio (49%).
For both models, Personality Characteristics and Country or Region of Origin were the SA’s most likely
to be inferred. ISA can be very well mitigated for Phi-4-Multimodal by using a system prompt,
which brings down the Defect Rate to 0.4% - comparable to the 2% we measured for GTP-40 deployed
to a real-time audio endpoint that uses Microsoft’s meta prompt to prevent ISA.

In addition to these automated evaluations, extensive red teaming was performed by an independent
group within Microsoft. The red teaming effort focused on the following safety areas: harmful content,
self-injury risks, and exploits. Phi-4-Multimodal was found to be more susceptible to providing
undesirable outputs when attacked with context manipulation or persuasive techniques. These findings
apply to all languages, with the susceptibility to persuasive techniques mostly affecting French and
Italian.

5.3 Vision safety

To assess model safety in scenarios involving both text and images, we utilized Microsoft’s Azure Al
Evaluation SDK. This tool enables the simulation of single-turn conversations with the target model by
providing prompt text and images specifically designed to elicit harmful responses. The target model’s
responses are then evaluated by a fine-tuned GPT-40 model across multiple harm categories, including
violence, sexual content, self-harm, hateful or unfair content. Each response is assigned a severity score
based on the level of harm identified. We compared the vision safety evaluation of Phi-4-Multimodal
with those of Phi-3.5-Vision, open-source models of comparable size, as well as OpenAl models.

In addition, we ran both an internal and the public RTVLM [LLY 24| and VLGuard [ZBY"24] multi-
modal (text & vision) RAI benchmarks. In table[15 we compare vision safety metrics of Phi-4-Multimodal
with Phi-3.5-Vision, the open-source models Llava-1.6 [LLL"24] and Qwen-VL-Chat [BBY 23|, as well
as GPT4-V [Ope23].

Text & Vision

Safety Evaluation || Phi-4-Multimodal | Phi-3.5-Vision Llava-1.6 Vicuna Qwen-VL-Chat GPT4-V
Internal (private) 7.96 8.16 5.44 7.27 8.55
RTVLM (public) 6.39 5.44 3.86 4.78 6.81
VLGuard (public) 8.91 9.10 5.62 8.33 8.90

Table 15: Model safety evaluation for vision and text scenarios using public and private multi-modal RAT bench-
marks. Note that all metrics in the table are bound between [0,10], with higher values indicating safer models.
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6 Weaknesses and limitations

Due to the model size limitation, the model could not remember some specific facts such as information
of Olympic games results. Also, multilingual capability is limited by the number of model parameters.
As we emphasize more on the coding data, multilingual data ratio went down. This results in worse
performance on other languages than English.

Like every other model, both Phi-4-Mini and Phi-4-Multimodal can sometimes output un-
desirable content. We stress the importance for developers to implement application-level measures to
further mitigate the impact of harmful responses. Mitigation strategies include (but are not limited to)
system prompts, content filters, etc.

Phi-4-Multimodal is not designed or intended to be used as a biometric categorization system
to categorize individuals based on their biometric data to deduce or infer their race, political opinions,
trade union membership, religious or philosophical beliefs, sex life, or sexual orientation.
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A Prompt for GPT-4 as a Judge on speech benchmarks

We use GPT-4-0613 as a judge model for speech benchmarks, including synthetic MT-Bench, AirBench-
Chat, and Summarization tasks as shown in Table Here are the scoring prompts used for different
evaluation sets:

Listing 1: GPT-4 Scoring Prompt for MT-Bench turnl (default)

"sys_template": "You are a helpful assistant.",
"user_template": "

[Instruction]

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question displayed below. Your
evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of the response. Begin

your evaluation by providing a short explanation. Be as objective as
possible. After providing your explanation, you must rate the response

on a scale of 1 to 10 by strictly following this format: "[[rating]]",
for example: "Rating: [[5]]".
[Question]

{question placeholder}

[The Start of Assistant's Answer]
{answer placeholder}
[The End of Assistant's Answer]

Listing 2: GPT-4 Scoring Prompt for MT-Bench turn-1 (math and code)

"sys_template": "You are a helpful assistant.",
"user_template": "

[Instruction]

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question displayed below. Your
evaluation should consider correctness and helpfulness. You will be
given a reference answer and the assistant's answer. Begin your
evaluation by comparing the assistant's answer with the reference
answer. Identify and correct any mistakes. Be as objective as possible.

After providing your explanation, you must rate the response on a
scale of 1 to 10 by strictly following this format: "[[rating]]", for
example: "Rating: [[5]]".

[Question]
{question placeholder}

[The Start of Reference Answer]
{ref_answer placeholder}

[The End of Reference Answer]

[The Start of Assistant's Answer]
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{answer placeholder}
[The End of Assistant's Answer]

Listing 3: GPT-4 Scoring Prompt for MT-Bench turn-2 (default)

N

"sys_template": "

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question displayed below. Your
evaluation should consider factors such as the helpfulness, relevance,
accuracy, depth, creativity, and level of detail of the response. You
evaluation should focus on the assistant's answer to the second user
question. Begin your evaluation by providing a short explanation. Be as

objective as possible. After providing your explanation, you must rate
the response on a scale of 1 to 10 by strictly following this format:
"[[rating]]", for example: "Rating: [[5]]1".

n
4

"user_template": "
|The Start of Assistant A's Conversation with User|

### User:
{question_1}

### Assistant A:
{answer_1}

### User:

{question_2}

### Assistant A:
{answer_2}

|The End of Assistant A's Conversation with User|

Listing 4: GPT-4 Scoring Prompt for MT-Bench turn-2 (math and code)

"sys_template": "

Please act as an impartial judge and evaluate the quality of the response
provided by an AI assistant to the user question. Your evaluation
should consider correctness and helpfulness. You will be given a
reference answer and the assistant's answer. You evaluation should
focus on the assistant's answer to the second question. Begin your
evaluation by comparing the assistant's answer with the reference
answer. Identify and correct any mistakes. Be as objective as possible.

After providing your explanation, you must rate the response on a
scale of 1 to 10 by strictly following this format: "[[rating]]", for
example: "Rating: [[5]]".

n
4

"user_template": "
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| The Start of Reference Answer|

### User:

{question_1}

### Reference answer:
{ref_answer_1}

##4# User:
{question_2}

### Reference answer:
{ref_answer_2}

|The End of Reference Answer|

|The Start of Assistant A's Conversation with User|

### User:
{question_1}

### Assistant A:
{answer_1}

### User:
{question_2}

### Assistant A:
{answer_2}

|The End of Assistant A's Conversation with User|

Listing 5: GPT-4 Scoring Prompt for AirBench-Chat

"user_template": "

You are a helpful and precise assistant for checking the quality of the
answer.

[Detailed Audio Description]

{meta_info}

[Question]

{question}

[The Start of Assistant 1s Answer]

{reference}

[The End of Assistant 1ls Answer]

[The Start of Assistant 2s Answer]

{ai_response}

[The End of Assistant 2s Answer]

[System]

We would like to request your feedback on the performance of two AI
assistants in response to the user question and audio description
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16

N

10

11

displayed above. AI assistants are provided with detailed audio
descriptions and questions.

Please rate the helpfulness, relevance, accuracy, and comprehensiveness of
their responses. Each assistant receives an overall score on a scale
of 1 to 10, where a higher score indicates better overall performance.
Please output a single line containing only two values indicating the
scores for Assistant 1 and 2, respectively. The two scores are
separated by a space.

Listing 6: GPT-4 Scoring Prompt for Speech Summarization-Overall Score

You are a skilled evaluator for summaries generated based on user-provided

instructions. A prominent organization has enlisted your help to assess the
overall quality of a summary by focusing on how effectively it adheres to the
user's specific instructions. Rate the summary on a scale of 1 to 7 based on
the following criteria:

If the summary fulfills the user's instructions comprehensively, accurately
captures the required details, excludes any explicitly prohibited information,
maintains the correct level of detail, adheres to the requested structure (e.g
., bullet points, paragraphs), and is both fluent and coherent, assign a score
of 7. The summary should read naturally, resembling a human-written summary.
Coherence means ideas are logical and well-connected, with smooth transitions.

If the summary mostly fulfills the user instructions but has minor issues, such
as slight deviations in structure, missing small details, or minor readability
issues, assign a score of 5-6, depending on the severity of the deviation.

Consider whether the issues are easy to fix and whether they affect the summary
's usability.

If the summary fulfills the majority of the instructions but includes
unimportant or extra information, omits key details specified by the user, or
diverges slightly in structure or emphasis, assign a score of 4-5, depending on

the significance of the issues. Weigh the importance of missing or extraneous
content against the clarity and adherence to instructions.

If the summary partially adheres to the instructions, capturing some of the
requested details but introducing inconsistencies, hallucinations, or
irrelevant content, assign a score of 2-4, depending on the extent of the
deviations and errors. Penalize for any explicitly prohibited content that has
been included.

If the summary minimally adheres to the instructions, misses most of the
required details, includes significant irrelevant or hallucinated content, or
ignores the specified structure or tone, assign a score of 1-3, depending on
the severity of the shortcomings.

If the summary fails to follow the user's instructions altogether, missing all
critical requirements or containing a high proportion of irrelevant or
fabricated content, assign a score of 1. This includes summaries that fail to
meet any formatting, detail, or exclusion criteria.
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Here is the input document, user instruction and the corresponding summary.
Source:

{src}

User Instruction:

{instruction}

Summary

{tgt}

Note: It is helpful to read the summary first, before reading the source document.
This will allow you to judge whether you understand the main contents of the
source document through the summary alone. Afterward, you can assess to what
extent the summary accurately reflects the source document.

Note: Based on the above criteria and assign a overall score of summary in the
scale 1-7. If the summary is not provided for evaluation, return "N/A". Besides
the score, you should also provide a #**briefx+ explanation.

Note: Use the following json format for easy downstream consumption.

{{
"explanation": "judge the summary based on the given criteria and explain your
reasoning for the score you are going to give in the next field.",
"score": THE_SCORE_VALUE
}}
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