File size: 3,192 Bytes
428e563 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
MODEL:
WEIGHTS: ''
compute_precision:
grad_scaler: true
teacher:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
student:
backbone:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp16
buffer_dtype: fp32
dino_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
ibot_head:
sharding_strategy: SHARD_GRAD_OP
mixed_precision:
param_dtype: fp16
reduce_dtype: fp32
buffer_dtype: fp32
dino:
loss_weight: 1.0
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
koleo_loss_weight: 0.1
ibot:
loss_weight: 1.0
mask_sample_probability: 0.5
mask_ratio_min_max:
- 0.1
- 0.5
separate_head: false
head_n_prototypes: 65536
head_bottleneck_dim: 256
head_nlayers: 3
head_hidden_dim: 2048
train:
batch_size_per_gpu: 64
dataset_path: ImageNet:split=TRAIN
output_dir: .
saveckp_every_n_epoch: 5
seed: 0
num_workers: 10
OFFICIAL_EPOCH_LENGTH: 0 # automatic rescaling based on the dataset len is applied if this is set to 0
cache_dataset: true
centering: "centering" # or "sinkhorn_knopp"
student:
arch: vit_large
patch_size: 16
drop_block_rate: 0.0
drop_path_rate: 0.3
layerscale: 1.0e-05
drop_path_uniform: true
pretrained_weights: ''
ffn_layer: "mlp"
block_chunks: 0
qkv_bias: true
proj_bias: true
ffn_bias: true
num_register_tokens: 0
interpolate_antialias: false
interpolate_offset: 0.1
load_weights: true
checkpoints_dir: null
teacher:
momentum_teacher: 0.992
final_momentum_teacher: 1
warmup_teacher_temp: 0.04
teacher_temp: 0.07
warmup_teacher_temp_epochs: 30
optim:
epochs: 100
weight_decay: 0.04
weight_decay_end: 0.4
base_lr: 0.004 # learning rate for a batch size of 1024
lr: 0. # will be set after applying scaling rule
warmup_epochs: 10
min_lr: 1.0e-06
clip_grad: 3.0
freeze_last_layer_epochs: 1
scaling_rule: sqrt_wrt_1024
patch_embed_lr_mult: 0.2
layerwise_decay: 0.9
adamw_beta1: 0.9
adamw_beta2: 0.999
crops:
global_crops_scale:
- 0.32
- 1.0
local_crops_number: 8
local_crops_scale:
- 0.05
- 0.32
global_crops_size: 224
local_crops_size: 96
evaluation:
eval_period_iterations: 12500
dataset_str: None
online: # see dinov2.eval.linear_callback for documentation
learning_rate: 1e-6 # will be multiplied by batch size and number of devices
num_last_blocks: 1
add_avg_pool: true
num_update_epochs_per_eval: 3
augmentation:
degrees: 30
scale:
- 0.8
- 1.2
shear: 15
interpolation: BICUBIC
horizontal_flip: true
|