Commit
路
96ca933
verified
路
0
Parent(s):
Super-squash branch 'main' using huggingface_hub
Browse files- .gitattributes +36 -0
- README.md +246 -0
- consolidated.safetensors +3 -0
- params.json +34 -0
- tekken.json +3 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tekken.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- it
|
8 |
+
- pt
|
9 |
+
- nl
|
10 |
+
- hi
|
11 |
+
license: apache-2.0
|
12 |
+
library_name: vllm
|
13 |
+
inference: false
|
14 |
+
extra_gated_description: >-
|
15 |
+
If you want to learn more about how we process your personal data, please read
|
16 |
+
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
|
17 |
+
pipeline_tag: audio-text-to-text
|
18 |
+
---
|
19 |
+
# Voxtral Mini 1.0 (3B) - 2507
|
20 |
+
|
21 |
+
Voxtral Mini is an enhancement of [Ministral 3B](https://mistral.ai/news/ministraux), incorporating state-of-the-art audio input capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and audio understanding.
|
22 |
+
|
23 |
+
Learn more about Voxtral in our blog post [here](https://mistral.ai/news/voxtral-2507).
|
24 |
+
|
25 |
+
## Key Features
|
26 |
+
|
27 |
+
Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
|
28 |
+
- **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
|
29 |
+
- **Long-form context**: With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
|
30 |
+
- **Built-in Q&A and summarization**: Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
|
31 |
+
- **Natively multilingual**: Automatic language detection and state-of-the-art performance in the world鈥檚 most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
|
32 |
+
- **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
|
33 |
+
- **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B
|
34 |
+
|
35 |
+
## Benchmark Results
|
36 |
+
|
37 |
+
### Audio
|
38 |
+
|
39 |
+
Average word error rate (WER) over the FLEURS, Mozilla Common Voice and Multilingual LibriSpeech benchmarks:
|
40 |
+
|
41 |
+

|
42 |
+
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
The model can be used with the following frameworks;
|
47 |
+
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
|
48 |
+
|
49 |
+
**Notes**:
|
50 |
+
|
51 |
+
- `temperature=0.2` and `top_p=0.95` for chat completion (*e.g. Audio Understanding*) and `temperature=0.0` for transcription
|
52 |
+
- Multiple audios per message and multiple user turns with audio are supported
|
53 |
+
- Function calling is supported
|
54 |
+
- System prompts are not yet supported
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
The model can be used with the following frameworks;
|
59 |
+
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
|
60 |
+
|
61 |
+
**Recommended settings**:
|
62 |
+
|
63 |
+
- `temperature=0.2` and `top_p=0.95` for chat completion (*e.g. Audio Understanding*) and `temperature=0.0` for transcription
|
64 |
+
- Multiple audios per message and multiple user turns with audio are supported
|
65 |
+
- System prompts are not yet supported
|
66 |
+
- Function calling is not yet supported
|
67 |
+
|
68 |
+
### vLLM (recommended)
|
69 |
+
|
70 |
+
We recommend using this model with [vLLM](https://github.com/vllm-project/vllm).
|
71 |
+
|
72 |
+
#### Installation
|
73 |
+
|
74 |
+
Make sure to install vllm from "main":
|
75 |
+
|
76 |
+
```
|
77 |
+
pip install -U vllm\[audio\] \
|
78 |
+
--pre \
|
79 |
+
--extra-index-url https://wheels.vllm.ai/nightly
|
80 |
+
```
|
81 |
+
|
82 |
+
Doing so should automatically install [`mistral_common >= 1.8.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.8.0).
|
83 |
+
|
84 |
+
To check:
|
85 |
+
```
|
86 |
+
python -c "import mistral_common; print(mistral_common.__version__)"
|
87 |
+
```
|
88 |
+
|
89 |
+
#### Offline
|
90 |
+
|
91 |
+
You can test that your vLLM setup works as expected by cloning the vLLM repo:
|
92 |
+
|
93 |
+
```sh
|
94 |
+
git clone https://github.com/vllm-project/vllm && cd vllm
|
95 |
+
```
|
96 |
+
|
97 |
+
and then running:
|
98 |
+
|
99 |
+
```sh
|
100 |
+
python examples/offline_inference/audio_language.py --num-audios 2 --model-type voxtral
|
101 |
+
```
|
102 |
+
|
103 |
+
#### Serve
|
104 |
+
|
105 |
+
We recommend that you use Voxtral-Small-24B-2507 in a server/client setting.
|
106 |
+
|
107 |
+
1. Spin up a server:
|
108 |
+
|
109 |
+
```
|
110 |
+
vllm serve mistralai/Voxtral-Mini-3B-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral
|
111 |
+
```
|
112 |
+
|
113 |
+
**Note:** Running Voxtral-Mini-3B-2507 on GPU requires ~9.5 GB of GPU RAM in bf16 or fp16.
|
114 |
+
|
115 |
+
|
116 |
+
2. To ping the client you can use a simple Python snippet. See the following examples.
|
117 |
+
|
118 |
+
|
119 |
+
### Audio Instruct
|
120 |
+
|
121 |
+
Leverage the audio capabilities of Voxtral-Mini-3B-2507 to chat.
|
122 |
+
|
123 |
+
Make sure that your client has `mistral-common` with audio installed:
|
124 |
+
|
125 |
+
```sh
|
126 |
+
pip install --upgrade mistral_common\[audio\]
|
127 |
+
```
|
128 |
+
|
129 |
+
<details>
|
130 |
+
<summary>Python snippet</summary>
|
131 |
+
|
132 |
+
```py
|
133 |
+
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
|
134 |
+
from mistral_common.audio import Audio
|
135 |
+
from huggingface_hub import hf_hub_download
|
136 |
+
|
137 |
+
from openai import OpenAI
|
138 |
+
|
139 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
140 |
+
openai_api_key = "EMPTY"
|
141 |
+
openai_api_base = "http://<your-server-host>:8000/v1"
|
142 |
+
|
143 |
+
client = OpenAI(
|
144 |
+
api_key=openai_api_key,
|
145 |
+
base_url=openai_api_base,
|
146 |
+
)
|
147 |
+
|
148 |
+
models = client.models.list()
|
149 |
+
model = models.data[0].id
|
150 |
+
|
151 |
+
obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
|
152 |
+
bcn_file = hf_hub_download("patrickvonplaten/audio_samples", "bcn_weather.mp3", repo_type="dataset")
|
153 |
+
|
154 |
+
def file_to_chunk(file: str) -> AudioChunk:
|
155 |
+
audio = Audio.from_file(file, strict=False)
|
156 |
+
return AudioChunk.from_audio(audio)
|
157 |
+
|
158 |
+
text_chunk = TextChunk(text="Which speaker is more inspiring? Why? How are they different from each other? Answer in French.")
|
159 |
+
user_msg = UserMessage(content=[file_to_chunk(obama_file), file_to_chunk(bcn_file), text_chunk]).to_openai()
|
160 |
+
|
161 |
+
print(30 * "=" + "USER 1" + 30 * "=")
|
162 |
+
print(text_chunk.text)
|
163 |
+
print("\n\n")
|
164 |
+
|
165 |
+
response = client.chat.completions.create(
|
166 |
+
model=model,
|
167 |
+
messages=[user_msg],
|
168 |
+
temperature=0.2,
|
169 |
+
top_p=0.95,
|
170 |
+
)
|
171 |
+
content = response.choices[0].message.content
|
172 |
+
|
173 |
+
print(30 * "=" + "BOT 1" + 30 * "=")
|
174 |
+
print(content)
|
175 |
+
print("\n\n")
|
176 |
+
# The model could give the following answer:
|
177 |
+
# ```L'orateur le plus inspirant est le pr茅sident.
|
178 |
+
# Il est plus inspirant parce qu'il parle de ses exp茅riences personnelles
|
179 |
+
# et de son optimisme pour l'avenir du pays.
|
180 |
+
# Il est diff茅rent de l'autre orateur car il ne parle pas de la m茅t茅o,
|
181 |
+
# mais plut么t de ses interactions avec les gens et de son r么le en tant que pr茅sident.```
|
182 |
+
|
183 |
+
messages = [
|
184 |
+
user_msg,
|
185 |
+
AssistantMessage(content=content).to_openai(),
|
186 |
+
UserMessage(content="Ok, now please summarize the content of the first audio.").to_openai()
|
187 |
+
]
|
188 |
+
print(30 * "=" + "USER 2" + 30 * "=")
|
189 |
+
print(messages[-1]["content"])
|
190 |
+
print("\n\n")
|
191 |
+
|
192 |
+
response = client.chat.completions.create(
|
193 |
+
model=model,
|
194 |
+
messages=messages,
|
195 |
+
temperature=0.2,
|
196 |
+
top_p=0.95,
|
197 |
+
)
|
198 |
+
content = response.choices[0].message.content
|
199 |
+
print(30 * "=" + "BOT 2" + 30 * "=")
|
200 |
+
print(content)
|
201 |
+
```
|
202 |
+
</details>
|
203 |
+
|
204 |
+
#### Transcription
|
205 |
+
|
206 |
+
Voxtral-Mini-3B-2507 has powerful transcription capabilities!
|
207 |
+
|
208 |
+
Make sure that your client has `mistral-common` with audio installed:
|
209 |
+
|
210 |
+
```sh
|
211 |
+
pip install --upgrade mistral_common\[audio\]
|
212 |
+
```
|
213 |
+
|
214 |
+
<details>
|
215 |
+
<summary>Python snippet</summary>
|
216 |
+
|
217 |
+
```python
|
218 |
+
from mistral_common.protocol.transcription.request import TranscriptionRequest
|
219 |
+
from mistral_common.protocol.instruct.messages import RawAudio
|
220 |
+
from mistral_common.audio import Audio
|
221 |
+
from huggingface_hub import hf_hub_download
|
222 |
+
|
223 |
+
from openai import OpenAI
|
224 |
+
|
225 |
+
# Modify OpenAI's API key and API base to use vLLM's API server.
|
226 |
+
openai_api_key = "EMPTY"
|
227 |
+
openai_api_base = "http://<your-server-host>:8000/v1"
|
228 |
+
|
229 |
+
client = OpenAI(
|
230 |
+
api_key=openai_api_key,
|
231 |
+
base_url=openai_api_base,
|
232 |
+
)
|
233 |
+
|
234 |
+
models = client.models.list()
|
235 |
+
model = models.data[0].id
|
236 |
+
|
237 |
+
obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
|
238 |
+
audio = Audio.from_file(obama_file, strict=False)
|
239 |
+
|
240 |
+
audio = RawAudio.from_audio(audio)
|
241 |
+
req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))
|
242 |
+
|
243 |
+
response = client.audio.transcriptions.create(**req)
|
244 |
+
print(response)
|
245 |
+
```
|
246 |
+
</details>
|
consolidated.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4dda59bfd9956e71347530d62168cee564c2caf72986c8727355758691eaa7
|
3 |
+
size 9348806528
|
params.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dim": 3072,
|
3 |
+
"n_layers": 30,
|
4 |
+
"head_dim": 128,
|
5 |
+
"hidden_dim": 8192,
|
6 |
+
"n_heads": 32,
|
7 |
+
"n_kv_heads": 8,
|
8 |
+
"rope_theta": 100000000.0,
|
9 |
+
"norm_eps": 1e-05,
|
10 |
+
"vocab_size": 131072,
|
11 |
+
"max_position_embeddings": 32768,
|
12 |
+
"multimodal": {
|
13 |
+
"whisper_model_args": {
|
14 |
+
"encoder_args": {
|
15 |
+
"dim": 1280,
|
16 |
+
"n_layers": 32,
|
17 |
+
"head_dim": 64,
|
18 |
+
"hidden_dim": 5120,
|
19 |
+
"n_heads": 20,
|
20 |
+
"vocab_size": 51866,
|
21 |
+
"max_source_positions": 1500,
|
22 |
+
"audio_encoding_args": {
|
23 |
+
"sampling_rate": 16000,
|
24 |
+
"num_mel_bins": 128,
|
25 |
+
"hop_length": 160,
|
26 |
+
"window_size": 400
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"downsample_args": {
|
30 |
+
"downsample_factor": 4
|
31 |
+
}
|
32 |
+
}
|
33 |
+
}
|
34 |
+
}
|
tekken.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aaf3836c2a5332f029ce85a7a62255c966f47b6797ef81dedd0ade9c862e4a8
|
3 |
+
size 14894206
|