Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: mlx-image
|
| 4 |
+
tags:
|
| 5 |
+
- mlx
|
| 6 |
+
- mlx-image
|
| 7 |
+
- vision
|
| 8 |
+
- image-classification
|
| 9 |
+
datasets:
|
| 10 |
+
- imagenet-1k
|
| 11 |
+
---
|
| 12 |
+
# regnet_y_16gf
|
| 13 |
+
|
| 14 |
+
A RegNetY-16GF image classification model. Pretrained in ImageNet by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe).
|
| 15 |
+
|
| 16 |
+
Disclaimer: This is a porting of the torch model weights to Apple MLX Framework.
|
| 17 |
+
|
| 18 |
+
## How to use
|
| 19 |
+
```bash
|
| 20 |
+
pip install mlx-image
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
Here is how to use this model for image classification:
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
from mlxim.model import create_model
|
| 27 |
+
from mlxim.io import read_rgb
|
| 28 |
+
from mlxim.transform import ImageNetTransform
|
| 29 |
+
|
| 30 |
+
transform = ImageNetTransform(train=False, img_size=224)
|
| 31 |
+
x = transform(read_rgb("cat.png"))
|
| 32 |
+
x = mx.expand_dims(x, 0)
|
| 33 |
+
|
| 34 |
+
model = create_model("regnet_y_16gf")
|
| 35 |
+
model.eval()
|
| 36 |
+
|
| 37 |
+
logits = model(x)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
You can also use the embeds from layer before head:
|
| 41 |
+
```python
|
| 42 |
+
from mlxim.model import create_model
|
| 43 |
+
from mlxim.io import read_rgb
|
| 44 |
+
from mlxim.transform import ImageNetTransform
|
| 45 |
+
|
| 46 |
+
transform = ImageNetTransform(train=False, img_size=224)
|
| 47 |
+
x = transform(read_rgb("cat.png"))
|
| 48 |
+
x = mx.expand_dims(x, 0)
|
| 49 |
+
|
| 50 |
+
# first option
|
| 51 |
+
model = create_model("regnet_y_16gf", num_classes=0)
|
| 52 |
+
model.eval()
|
| 53 |
+
|
| 54 |
+
embeds = model(x)
|
| 55 |
+
|
| 56 |
+
# second option
|
| 57 |
+
model = create_model("regnet_y_16gf")
|
| 58 |
+
model.eval()
|
| 59 |
+
|
| 60 |
+
embeds = model.get_features(x)
|
| 61 |
+
```
|
| 62 |
+
|