--- library_name: transformers license: mit base_model: facebook/xlm-v-base tags: - generated_from_trainer model-index: - name: multi-wiki-qa-gn-xlm-v-base results: [] datasets: - alexandrainst/multi-wiki-qa language: - es - gn - grn - gug metrics: - squad - f1 - exact_match --- # multi-wiki-qa-gn-xlm-v-base This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on [alexandrainst/multi-wiki-qa](https://huggingface.co/datasets/alexandrainst/multi-wiki-qa) dataset. Results on test set: - exact_match: 31.3373253493014 - f1: 48.315832905161635 ## Model description The best model for QA on my account, prefer this ones over the other models trained with this corpus. ## Intended uses & limitations Question Answering on Guarani. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results Results on validation set: - exact_match: 31.914893617021278 - f1: 45.947126767245244 ### Framework versions - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1