Fix
Browse files- scripts/deepseek_slice.py +3 -173
scripts/deepseek_slice.py
CHANGED
|
@@ -1,173 +1,3 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import os
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
import json
|
| 7 |
-
import re
|
| 8 |
-
|
| 9 |
-
model_dir_name = "DeepSeek-V3-bf16"
|
| 10 |
-
model_dir_path = Path(model_dir_name)
|
| 11 |
-
|
| 12 |
-
output_dir_name = "DeepSeek-V3-slice"
|
| 13 |
-
output_dir_path = Path(output_dir_name)
|
| 14 |
-
os.makedirs(output_dir_name, exist_ok=True)
|
| 15 |
-
|
| 16 |
-
try:
|
| 17 |
-
tensor_map_json = json.load(open(model_dir_path / "model.safetensors.index.json"))
|
| 18 |
-
weight_map = tensor_map_json["weight_map"]
|
| 19 |
-
except FileNotFoundError:
|
| 20 |
-
print("モデルのインデックスファイルが見つかりません")
|
| 21 |
-
raise
|
| 22 |
-
|
| 23 |
-
tensor_files = list(set(weight_map.values()))
|
| 24 |
-
tensor_files.sort()
|
| 25 |
-
print(f"変換対象のファイル数: {len(tensor_files)}")
|
| 26 |
-
|
| 27 |
-
try:
|
| 28 |
-
config_json = json.load(open(model_dir_path / "config.json"))
|
| 29 |
-
except FileNotFoundError:
|
| 30 |
-
print("モデルの設定ファイルが見つかりません")
|
| 31 |
-
raise
|
| 32 |
-
|
| 33 |
-
# experts
|
| 34 |
-
n_routed_experts = int(config_json["n_routed_experts"])
|
| 35 |
-
|
| 36 |
-
# layers
|
| 37 |
-
num_hidden_layers = int(config_json["num_hidden_layers"])
|
| 38 |
-
|
| 39 |
-
# active experts
|
| 40 |
-
num_experts_per_tok = int(config_json["num_experts_per_tok"])
|
| 41 |
-
|
| 42 |
-
# このlayer-idxからdenseレイヤーをMoEにする
|
| 43 |
-
first_k_dense_replace = int(config_json["first_k_dense_replace"])
|
| 44 |
-
|
| 45 |
-
converted_tensors_size = 0
|
| 46 |
-
|
| 47 |
-
target_n_routed_experts = 64
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def print_tensor_info(tensor, key, new_key=None):
|
| 51 |
-
print(f"key: {key} to {new_key if new_key else key}, shape: {tensor.shape}, size: {tensor.numel() * tensor.element_size() } Byte")
|
| 52 |
-
|
| 53 |
-
def ensure_tensor_has_data(tensor):
|
| 54 |
-
try:
|
| 55 |
-
# テンソルが実際にアクセス可能かテスト
|
| 56 |
-
tensor[0]
|
| 57 |
-
return tensor
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"テンソルの再構築が必要: {e}")
|
| 60 |
-
# テンソルを明示的に再構築
|
| 61 |
-
return torch.tensor(tensor.cpu().numpy(), dtype=tensor.dtype)
|
| 62 |
-
|
| 63 |
-
with open("layer_topk_idx_distribution.json", "r") as f:
|
| 64 |
-
layer_topk_idx_distribution = json.load(f)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
for i, tensor_file_name in enumerate(tensor_files, 1):
|
| 68 |
-
print(f"\n処理中: {tensor_file_name} ({i}/{len(tensor_files)})")
|
| 69 |
-
|
| 70 |
-
tensor_path = model_dir_path / tensor_file_name
|
| 71 |
-
tensor_data = safe_open(tensor_path, framework="pt")
|
| 72 |
-
converted_tensors = {}
|
| 73 |
-
|
| 74 |
-
for key in tensor_data.keys():
|
| 75 |
-
tensor = tensor_data.get_tensor(key)
|
| 76 |
-
tensor = ensure_tensor_has_data(tensor) # テンソルの実データを確保
|
| 77 |
-
|
| 78 |
-
# レイヤーidxを取得 model.layers.0.から数値 ない場合もある
|
| 79 |
-
layer_idx = int(re.search(r'model\.layers\.(\d+)\.', key).group(1)) if re.search(r'model\.layers\.(\d+)\.', key) else -1
|
| 80 |
-
|
| 81 |
-
# レイヤーidxがない場合はそのまま保存
|
| 82 |
-
if layer_idx < first_k_dense_replace:
|
| 83 |
-
converted_tensors[key] = tensor.clone()
|
| 84 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
| 85 |
-
print_tensor_info(tensor, key, key)
|
| 86 |
-
continue
|
| 87 |
-
|
| 88 |
-
if layer_idx >= num_hidden_layers:
|
| 89 |
-
del tensor_map_json["weight_map"][key]
|
| 90 |
-
continue
|
| 91 |
-
|
| 92 |
-
# layer_topk_idx_distribution から当該レイヤーで使いたい experts idx を取得
|
| 93 |
-
if str(layer_idx) in layer_topk_idx_distribution:
|
| 94 |
-
experts_list = layer_topk_idx_distribution[str(layer_idx)]["experts"][:target_n_routed_experts]
|
| 95 |
-
else:
|
| 96 |
-
step = n_routed_experts // target_n_routed_experts
|
| 97 |
-
experts_list = list(range(0, n_routed_experts, step))[:target_n_routed_experts]
|
| 98 |
-
experts_list.sort()
|
| 99 |
-
experts_tensor = torch.tensor(experts_list, dtype=torch.long, device=tensor.device)
|
| 100 |
-
|
| 101 |
-
# experts
|
| 102 |
-
if ".mlp.experts." in key:
|
| 103 |
-
experts_idx = int(re.search(r'\.mlp\.experts\.(\d+)\.', key).group(1))
|
| 104 |
-
if experts_idx in experts_list:
|
| 105 |
-
new_key = key.replace(f".mlp.experts.{experts_idx}.", f".mlp.experts.{experts_list.index(experts_idx)}.")
|
| 106 |
-
converted_tensors[new_key] = tensor.clone()
|
| 107 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
| 108 |
-
print_tensor_info(tensor, key, new_key)
|
| 109 |
-
tensor_map_json["weight_map"][new_key] = tensor_file_name
|
| 110 |
-
else:
|
| 111 |
-
print(f"skip experts: {key}")
|
| 112 |
-
continue
|
| 113 |
-
|
| 114 |
-
# shared-experts
|
| 115 |
-
if ".mlp.shared_experts." in key:
|
| 116 |
-
# shared-expertsを保存
|
| 117 |
-
converted_tensors[key] = tensor.clone()
|
| 118 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
| 119 |
-
print_tensor_info(tensor, key, key)
|
| 120 |
-
continue
|
| 121 |
-
|
| 122 |
-
if ".mlp.gate.e_score_correction_bias" in key:
|
| 123 |
-
# Tensor [256]を [target_n_routed_experts]に変換
|
| 124 |
-
squeezed_tensor = tensor[experts_tensor].clone()
|
| 125 |
-
converted_tensors[key] = squeezed_tensor
|
| 126 |
-
converted_tensors_size += squeezed_tensor.numel() * squeezed_tensor.element_size()
|
| 127 |
-
print_tensor_info(squeezed_tensor, key, key)
|
| 128 |
-
continue
|
| 129 |
-
|
| 130 |
-
if ".mlp.gate.weight" in key:
|
| 131 |
-
# Tensor [256, 7168]を [target_n_routed_experts, 7168]に変換
|
| 132 |
-
squeezed_tensor = tensor[experts_tensor, :].clone()
|
| 133 |
-
converted_tensors[key] = squeezed_tensor
|
| 134 |
-
converted_tensors_size += squeezed_tensor.numel() * squeezed_tensor.element_size()
|
| 135 |
-
print_tensor_info(squeezed_tensor, key, key)
|
| 136 |
-
continue
|
| 137 |
-
|
| 138 |
-
converted_tensors[key] = tensor.clone()
|
| 139 |
-
converted_tensors_size += tensor.numel() * tensor.element_size()
|
| 140 |
-
print_tensor_info(tensor, key, key)
|
| 141 |
-
|
| 142 |
-
save_file(converted_tensors, output_dir_path / tensor_file_name, metadata={"format": "pt"})
|
| 143 |
-
|
| 144 |
-
print(f"\n変換完了!")
|
| 145 |
-
print(f"合計サイズ: {converted_tensors_size / (1024**3):.2f} GB")
|
| 146 |
-
|
| 147 |
-
# model.safetensors.index.json
|
| 148 |
-
|
| 149 |
-
old_keys = list(tensor_map_json["weight_map"].keys())
|
| 150 |
-
for key in old_keys:
|
| 151 |
-
if ".mlp.experts." in key:
|
| 152 |
-
experts_idx = int(re.search(r'\.mlp\.experts\.(\d+)\.', key).group(1))
|
| 153 |
-
if experts_idx >= target_n_routed_experts:
|
| 154 |
-
del tensor_map_json["weight_map"][key]
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
tensor_map_json["metadata"]["total_size"] = converted_tensors_size
|
| 158 |
-
with open(output_dir_path / "model.safetensors.index.json", "w") as f:
|
| 159 |
-
json.dump(tensor_map_json, f, indent=4)
|
| 160 |
-
|
| 161 |
-
# config.json
|
| 162 |
-
output_config_json = config_json.copy()
|
| 163 |
-
output_config_json["n_routed_experts"] = target_n_routed_experts
|
| 164 |
-
# output_config_json["num_hidden_layers"] = num_hidden_layers
|
| 165 |
-
output_config_json["num_experts_per_tok"] = 4
|
| 166 |
-
# output_config_json["first_k_dense_replace"] = first_k_dense_replace
|
| 167 |
-
# output_config_json["n_shared_experts"] = n_shared_experts
|
| 168 |
-
# output_config_json["topk_group"] = topk_group
|
| 169 |
-
# output_config_json["n_group"] = n_group
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
with open(output_dir_path / "config.json", "w") as f:
|
| 173 |
-
json.dump(output_config_json, f, indent=4)
|
|
|
|
| 1 |
+
\[
|
| 2 |
+
R = P \land Q \land C
|
| 3 |
+
\]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|